e6bc60c98d
This reverts r19140. Reason: Octane regression. BUG= TBR=verwaest@chromium.org Review URL: https://codereview.chromium.org/156673002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19147 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
697 lines
23 KiB
C++
697 lines
23 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_PREPARSER_H
|
|
#define V8_PREPARSER_H
|
|
|
|
#include "hashmap.h"
|
|
#include "token.h"
|
|
#include "scanner.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Common base class shared between parser and pre-parser.
|
|
class ParserBase {
|
|
public:
|
|
ParserBase(Scanner* scanner, uintptr_t stack_limit)
|
|
: scanner_(scanner),
|
|
stack_limit_(stack_limit),
|
|
stack_overflow_(false),
|
|
allow_lazy_(false),
|
|
allow_natives_syntax_(false),
|
|
allow_generators_(false),
|
|
allow_for_of_(false) { }
|
|
// TODO(mstarzinger): Only virtual until message reporting has been unified.
|
|
virtual ~ParserBase() { }
|
|
|
|
// Getters that indicate whether certain syntactical constructs are
|
|
// allowed to be parsed by this instance of the parser.
|
|
bool allow_lazy() const { return allow_lazy_; }
|
|
bool allow_natives_syntax() const { return allow_natives_syntax_; }
|
|
bool allow_generators() const { return allow_generators_; }
|
|
bool allow_for_of() const { return allow_for_of_; }
|
|
bool allow_modules() const { return scanner()->HarmonyModules(); }
|
|
bool allow_harmony_scoping() const { return scanner()->HarmonyScoping(); }
|
|
bool allow_harmony_numeric_literals() const {
|
|
return scanner()->HarmonyNumericLiterals();
|
|
}
|
|
|
|
// Setters that determine whether certain syntactical constructs are
|
|
// allowed to be parsed by this instance of the parser.
|
|
void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
|
|
void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; }
|
|
void set_allow_generators(bool allow) { allow_generators_ = allow; }
|
|
void set_allow_for_of(bool allow) { allow_for_of_ = allow; }
|
|
void set_allow_modules(bool allow) { scanner()->SetHarmonyModules(allow); }
|
|
void set_allow_harmony_scoping(bool allow) {
|
|
scanner()->SetHarmonyScoping(allow);
|
|
}
|
|
void set_allow_harmony_numeric_literals(bool allow) {
|
|
scanner()->SetHarmonyNumericLiterals(allow);
|
|
}
|
|
|
|
protected:
|
|
enum AllowEvalOrArgumentsAsIdentifier {
|
|
kAllowEvalOrArguments,
|
|
kDontAllowEvalOrArguments
|
|
};
|
|
|
|
Scanner* scanner() const { return scanner_; }
|
|
int position() { return scanner_->location().beg_pos; }
|
|
int peek_position() { return scanner_->peek_location().beg_pos; }
|
|
bool stack_overflow() const { return stack_overflow_; }
|
|
void set_stack_overflow() { stack_overflow_ = true; }
|
|
|
|
INLINE(Token::Value peek()) {
|
|
if (stack_overflow_) return Token::ILLEGAL;
|
|
return scanner()->peek();
|
|
}
|
|
|
|
INLINE(Token::Value Next()) {
|
|
if (stack_overflow_) return Token::ILLEGAL;
|
|
{
|
|
int marker;
|
|
if (reinterpret_cast<uintptr_t>(&marker) < stack_limit_) {
|
|
// Any further calls to Next or peek will return the illegal token.
|
|
// The current call must return the next token, which might already
|
|
// have been peek'ed.
|
|
stack_overflow_ = true;
|
|
}
|
|
}
|
|
return scanner()->Next();
|
|
}
|
|
|
|
void Consume(Token::Value token) {
|
|
Token::Value next = Next();
|
|
USE(next);
|
|
USE(token);
|
|
ASSERT(next == token);
|
|
}
|
|
|
|
bool Check(Token::Value token) {
|
|
Token::Value next = peek();
|
|
if (next == token) {
|
|
Consume(next);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Expect(Token::Value token, bool* ok) {
|
|
Token::Value next = Next();
|
|
if (next != token) {
|
|
ReportUnexpectedToken(next);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
bool peek_any_identifier();
|
|
void ExpectSemicolon(bool* ok);
|
|
bool CheckContextualKeyword(Vector<const char> keyword);
|
|
void ExpectContextualKeyword(Vector<const char> keyword, bool* ok);
|
|
|
|
// Strict mode octal literal validation.
|
|
void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok);
|
|
|
|
// Determine precedence of given token.
|
|
static int Precedence(Token::Value token, bool accept_IN);
|
|
|
|
// Report syntax errors.
|
|
virtual void ReportUnexpectedToken(Token::Value token) = 0;
|
|
virtual void ReportMessageAt(Scanner::Location loc, const char* type) = 0;
|
|
|
|
// Used to detect duplicates in object literals. Each of the values
|
|
// kGetterProperty, kSetterProperty and kValueProperty represents
|
|
// a type of object literal property. When parsing a property, its
|
|
// type value is stored in the DuplicateFinder for the property name.
|
|
// Values are chosen so that having intersection bits means the there is
|
|
// an incompatibility.
|
|
// I.e., you can add a getter to a property that already has a setter, since
|
|
// kGetterProperty and kSetterProperty doesn't intersect, but not if it
|
|
// already has a getter or a value. Adding the getter to an existing
|
|
// setter will store the value (kGetterProperty | kSetterProperty), which
|
|
// is incompatible with adding any further properties.
|
|
enum PropertyKind {
|
|
kNone = 0,
|
|
// Bit patterns representing different object literal property types.
|
|
kGetterProperty = 1,
|
|
kSetterProperty = 2,
|
|
kValueProperty = 7,
|
|
// Helper constants.
|
|
kValueFlag = 4
|
|
};
|
|
|
|
// Validation per ECMA 262 - 11.1.5 "Object Initialiser".
|
|
class ObjectLiteralChecker {
|
|
public:
|
|
ObjectLiteralChecker(ParserBase* parser, LanguageMode mode)
|
|
: parser_(parser),
|
|
finder_(scanner()->unicode_cache()),
|
|
language_mode_(mode) { }
|
|
|
|
void CheckProperty(Token::Value property, PropertyKind type, bool* ok);
|
|
|
|
private:
|
|
ParserBase* parser() const { return parser_; }
|
|
Scanner* scanner() const { return parser_->scanner(); }
|
|
|
|
// Checks the type of conflict based on values coming from PropertyType.
|
|
bool HasConflict(PropertyKind type1, PropertyKind type2) {
|
|
return (type1 & type2) != 0;
|
|
}
|
|
bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 & type2) & kValueFlag) != 0;
|
|
}
|
|
bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 ^ type2) & kValueFlag) != 0;
|
|
}
|
|
bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) {
|
|
return ((type1 | type2) & kValueFlag) == 0;
|
|
}
|
|
|
|
ParserBase* parser_;
|
|
DuplicateFinder finder_;
|
|
LanguageMode language_mode_;
|
|
};
|
|
|
|
private:
|
|
Scanner* scanner_;
|
|
uintptr_t stack_limit_;
|
|
bool stack_overflow_;
|
|
|
|
bool allow_lazy_;
|
|
bool allow_natives_syntax_;
|
|
bool allow_generators_;
|
|
bool allow_for_of_;
|
|
};
|
|
|
|
|
|
// Preparsing checks a JavaScript program and emits preparse-data that helps
|
|
// a later parsing to be faster.
|
|
// See preparse-data-format.h for the data format.
|
|
|
|
// The PreParser checks that the syntax follows the grammar for JavaScript,
|
|
// and collects some information about the program along the way.
|
|
// The grammar check is only performed in order to understand the program
|
|
// sufficiently to deduce some information about it, that can be used
|
|
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
|
|
// rather it is to speed up properly written and correct programs.
|
|
// That means that contextual checks (like a label being declared where
|
|
// it is used) are generally omitted.
|
|
class PreParser : public ParserBase {
|
|
public:
|
|
enum PreParseResult {
|
|
kPreParseStackOverflow,
|
|
kPreParseSuccess
|
|
};
|
|
|
|
PreParser(Scanner* scanner,
|
|
ParserRecorder* log,
|
|
uintptr_t stack_limit)
|
|
: ParserBase(scanner, stack_limit),
|
|
log_(log),
|
|
scope_(NULL),
|
|
strict_mode_violation_location_(Scanner::Location::invalid()),
|
|
strict_mode_violation_type_(NULL),
|
|
parenthesized_function_(false) { }
|
|
|
|
~PreParser() {}
|
|
|
|
// Pre-parse the program from the character stream; returns true on
|
|
// success (even if parsing failed, the pre-parse data successfully
|
|
// captured the syntax error), and false if a stack-overflow happened
|
|
// during parsing.
|
|
PreParseResult PreParseProgram() {
|
|
Scope top_scope(&scope_, kTopLevelScope);
|
|
bool ok = true;
|
|
int start_position = scanner()->peek_location().beg_pos;
|
|
ParseSourceElements(Token::EOS, &ok);
|
|
if (stack_overflow()) return kPreParseStackOverflow;
|
|
if (!ok) {
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
} else if (!scope_->is_classic_mode()) {
|
|
CheckOctalLiteral(start_position, scanner()->location().end_pos, &ok);
|
|
}
|
|
return kPreParseSuccess;
|
|
}
|
|
|
|
// Parses a single function literal, from the opening parentheses before
|
|
// parameters to the closing brace after the body.
|
|
// Returns a FunctionEntry describing the body of the function in enough
|
|
// detail that it can be lazily compiled.
|
|
// The scanner is expected to have matched the "function" or "function*"
|
|
// keyword and parameters, and have consumed the initial '{'.
|
|
// At return, unless an error occurred, the scanner is positioned before the
|
|
// the final '}'.
|
|
PreParseResult PreParseLazyFunction(LanguageMode mode,
|
|
bool is_generator,
|
|
ParserRecorder* log);
|
|
|
|
private:
|
|
// These types form an algebra over syntactic categories that is just
|
|
// rich enough to let us recognize and propagate the constructs that
|
|
// are either being counted in the preparser data, or is important
|
|
// to throw the correct syntax error exceptions.
|
|
|
|
enum ScopeType {
|
|
kTopLevelScope,
|
|
kFunctionScope
|
|
};
|
|
|
|
enum VariableDeclarationContext {
|
|
kSourceElement,
|
|
kStatement,
|
|
kForStatement
|
|
};
|
|
|
|
// If a list of variable declarations includes any initializers.
|
|
enum VariableDeclarationProperties {
|
|
kHasInitializers,
|
|
kHasNoInitializers
|
|
};
|
|
|
|
class Expression;
|
|
|
|
class Identifier {
|
|
public:
|
|
static Identifier Default() {
|
|
return Identifier(kUnknownIdentifier);
|
|
}
|
|
static Identifier Eval() {
|
|
return Identifier(kEvalIdentifier);
|
|
}
|
|
static Identifier Arguments() {
|
|
return Identifier(kArgumentsIdentifier);
|
|
}
|
|
static Identifier FutureReserved() {
|
|
return Identifier(kFutureReservedIdentifier);
|
|
}
|
|
static Identifier FutureStrictReserved() {
|
|
return Identifier(kFutureStrictReservedIdentifier);
|
|
}
|
|
static Identifier Yield() {
|
|
return Identifier(kYieldIdentifier);
|
|
}
|
|
bool IsEval() { return type_ == kEvalIdentifier; }
|
|
bool IsArguments() { return type_ == kArgumentsIdentifier; }
|
|
bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; }
|
|
bool IsYield() { return type_ == kYieldIdentifier; }
|
|
bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; }
|
|
bool IsFutureStrictReserved() {
|
|
return type_ == kFutureStrictReservedIdentifier;
|
|
}
|
|
bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; }
|
|
|
|
private:
|
|
enum Type {
|
|
kUnknownIdentifier,
|
|
kFutureReservedIdentifier,
|
|
kFutureStrictReservedIdentifier,
|
|
kYieldIdentifier,
|
|
kEvalIdentifier,
|
|
kArgumentsIdentifier
|
|
};
|
|
explicit Identifier(Type type) : type_(type) { }
|
|
Type type_;
|
|
|
|
friend class Expression;
|
|
};
|
|
|
|
// Bits 0 and 1 are used to identify the type of expression:
|
|
// If bit 0 is set, it's an identifier.
|
|
// if bit 1 is set, it's a string literal.
|
|
// If neither is set, it's no particular type, and both set isn't
|
|
// use yet.
|
|
// Bit 2 is used to mark the expression as being parenthesized,
|
|
// so "(foo)" isn't recognized as a pure identifier (and possible label).
|
|
class Expression {
|
|
public:
|
|
static Expression Default() {
|
|
return Expression(kUnknownExpression);
|
|
}
|
|
|
|
static Expression FromIdentifier(Identifier id) {
|
|
return Expression(kIdentifierFlag | (id.type_ << kIdentifierShift));
|
|
}
|
|
|
|
static Expression StringLiteral() {
|
|
return Expression(kUnknownStringLiteral);
|
|
}
|
|
|
|
static Expression UseStrictStringLiteral() {
|
|
return Expression(kUseStrictString);
|
|
}
|
|
|
|
static Expression This() {
|
|
return Expression(kThisExpression);
|
|
}
|
|
|
|
static Expression ThisProperty() {
|
|
return Expression(kThisPropertyExpression);
|
|
}
|
|
|
|
static Expression StrictFunction() {
|
|
return Expression(kStrictFunctionExpression);
|
|
}
|
|
|
|
bool IsIdentifier() {
|
|
return (code_ & kIdentifierFlag) != 0;
|
|
}
|
|
|
|
// Only works corretly if it is actually an identifier expression.
|
|
PreParser::Identifier AsIdentifier() {
|
|
return PreParser::Identifier(
|
|
static_cast<PreParser::Identifier::Type>(code_ >> kIdentifierShift));
|
|
}
|
|
|
|
bool IsParenthesized() {
|
|
// If bit 0 or 1 is set, we interpret bit 2 as meaning parenthesized.
|
|
return (code_ & 7) > 4;
|
|
}
|
|
|
|
bool IsRawIdentifier() {
|
|
return !IsParenthesized() && IsIdentifier();
|
|
}
|
|
|
|
bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; }
|
|
|
|
bool IsRawStringLiteral() {
|
|
return !IsParenthesized() && IsStringLiteral();
|
|
}
|
|
|
|
bool IsUseStrictLiteral() {
|
|
return (code_ & kStringLiteralMask) == kUseStrictString;
|
|
}
|
|
|
|
bool IsThis() {
|
|
return code_ == kThisExpression;
|
|
}
|
|
|
|
bool IsThisProperty() {
|
|
return code_ == kThisPropertyExpression;
|
|
}
|
|
|
|
bool IsStrictFunction() {
|
|
return code_ == kStrictFunctionExpression;
|
|
}
|
|
|
|
Expression Parenthesize() {
|
|
int type = code_ & 3;
|
|
if (type != 0) {
|
|
// Identifiers and string literals can be parenthesized.
|
|
// They no longer work as labels or directive prologues,
|
|
// but are still recognized in other contexts.
|
|
return Expression(code_ | kParenthesizedExpressionFlag);
|
|
}
|
|
// For other types of expressions, it's not important to remember
|
|
// the parentheses.
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
// First two/three bits are used as flags.
|
|
// Bit 0 and 1 represent identifiers or strings literals, and are
|
|
// mutually exclusive, but can both be absent.
|
|
// If bit 0 or 1 are set, bit 2 marks that the expression has
|
|
// been wrapped in parentheses (a string literal can no longer
|
|
// be a directive prologue, and an identifier can no longer be
|
|
// a label.
|
|
enum {
|
|
kUnknownExpression = 0,
|
|
// Identifiers
|
|
kIdentifierFlag = 1, // Used to detect labels.
|
|
kIdentifierShift = 3,
|
|
|
|
kStringLiteralFlag = 2, // Used to detect directive prologue.
|
|
kUnknownStringLiteral = kStringLiteralFlag,
|
|
kUseStrictString = kStringLiteralFlag | 8,
|
|
kStringLiteralMask = kUseStrictString,
|
|
|
|
// Only if identifier or string literal.
|
|
kParenthesizedExpressionFlag = 4,
|
|
|
|
// Below here applies if neither identifier nor string literal.
|
|
kThisExpression = 4,
|
|
kThisPropertyExpression = 8,
|
|
kStrictFunctionExpression = 12
|
|
};
|
|
|
|
explicit Expression(int expression_code) : code_(expression_code) { }
|
|
|
|
int code_;
|
|
};
|
|
|
|
class Statement {
|
|
public:
|
|
static Statement Default() {
|
|
return Statement(kUnknownStatement);
|
|
}
|
|
|
|
static Statement FunctionDeclaration() {
|
|
return Statement(kFunctionDeclaration);
|
|
}
|
|
|
|
// Creates expression statement from expression.
|
|
// Preserves being an unparenthesized string literal, possibly
|
|
// "use strict".
|
|
static Statement ExpressionStatement(Expression expression) {
|
|
if (!expression.IsParenthesized()) {
|
|
if (expression.IsUseStrictLiteral()) {
|
|
return Statement(kUseStrictExpressionStatement);
|
|
}
|
|
if (expression.IsStringLiteral()) {
|
|
return Statement(kStringLiteralExpressionStatement);
|
|
}
|
|
}
|
|
return Default();
|
|
}
|
|
|
|
bool IsStringLiteral() {
|
|
return code_ == kStringLiteralExpressionStatement;
|
|
}
|
|
|
|
bool IsUseStrictLiteral() {
|
|
return code_ == kUseStrictExpressionStatement;
|
|
}
|
|
|
|
bool IsFunctionDeclaration() {
|
|
return code_ == kFunctionDeclaration;
|
|
}
|
|
|
|
private:
|
|
enum Type {
|
|
kUnknownStatement,
|
|
kStringLiteralExpressionStatement,
|
|
kUseStrictExpressionStatement,
|
|
kFunctionDeclaration
|
|
};
|
|
|
|
explicit Statement(Type code) : code_(code) {}
|
|
Type code_;
|
|
};
|
|
|
|
enum SourceElements {
|
|
kUnknownSourceElements
|
|
};
|
|
|
|
typedef int Arguments;
|
|
|
|
class Scope {
|
|
public:
|
|
Scope(Scope** variable, ScopeType type)
|
|
: variable_(variable),
|
|
prev_(*variable),
|
|
type_(type),
|
|
materialized_literal_count_(0),
|
|
expected_properties_(0),
|
|
with_nesting_count_(0),
|
|
language_mode_(
|
|
(prev_ != NULL) ? prev_->language_mode() : CLASSIC_MODE),
|
|
is_generator_(false) {
|
|
*variable = this;
|
|
}
|
|
~Scope() { *variable_ = prev_; }
|
|
void NextMaterializedLiteralIndex() { materialized_literal_count_++; }
|
|
void AddProperty() { expected_properties_++; }
|
|
ScopeType type() { return type_; }
|
|
int expected_properties() { return expected_properties_; }
|
|
int materialized_literal_count() { return materialized_literal_count_; }
|
|
bool IsInsideWith() { return with_nesting_count_ != 0; }
|
|
bool is_generator() { return is_generator_; }
|
|
void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
|
|
bool is_classic_mode() {
|
|
return language_mode_ == CLASSIC_MODE;
|
|
}
|
|
LanguageMode language_mode() {
|
|
return language_mode_;
|
|
}
|
|
void set_language_mode(LanguageMode language_mode) {
|
|
language_mode_ = language_mode;
|
|
}
|
|
|
|
class InsideWith {
|
|
public:
|
|
explicit InsideWith(Scope* scope) : scope_(scope) {
|
|
scope->with_nesting_count_++;
|
|
}
|
|
|
|
~InsideWith() { scope_->with_nesting_count_--; }
|
|
|
|
private:
|
|
Scope* scope_;
|
|
DISALLOW_COPY_AND_ASSIGN(InsideWith);
|
|
};
|
|
|
|
private:
|
|
Scope** const variable_;
|
|
Scope* const prev_;
|
|
const ScopeType type_;
|
|
int materialized_literal_count_;
|
|
int expected_properties_;
|
|
int with_nesting_count_;
|
|
LanguageMode language_mode_;
|
|
bool is_generator_;
|
|
};
|
|
|
|
// Report syntax error
|
|
void ReportUnexpectedToken(Token::Value token);
|
|
void ReportMessageAt(Scanner::Location location, const char* type) {
|
|
ReportMessageAt(location, type, NULL);
|
|
}
|
|
void ReportMessageAt(Scanner::Location location,
|
|
const char* type,
|
|
const char* name_opt) {
|
|
log_->LogMessage(location.beg_pos, location.end_pos, type, name_opt);
|
|
}
|
|
void ReportMessageAt(int start_pos,
|
|
int end_pos,
|
|
const char* type,
|
|
const char* name_opt) {
|
|
log_->LogMessage(start_pos, end_pos, type, name_opt);
|
|
}
|
|
|
|
// All ParseXXX functions take as the last argument an *ok parameter
|
|
// which is set to false if parsing failed; it is unchanged otherwise.
|
|
// By making the 'exception handling' explicit, we are forced to check
|
|
// for failure at the call sites.
|
|
Statement ParseSourceElement(bool* ok);
|
|
SourceElements ParseSourceElements(int end_token, bool* ok);
|
|
Statement ParseStatement(bool* ok);
|
|
Statement ParseFunctionDeclaration(bool* ok);
|
|
Statement ParseBlock(bool* ok);
|
|
Statement ParseVariableStatement(VariableDeclarationContext var_context,
|
|
bool* ok);
|
|
Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
|
|
VariableDeclarationProperties* decl_props,
|
|
int* num_decl,
|
|
bool* ok);
|
|
Statement ParseExpressionOrLabelledStatement(bool* ok);
|
|
Statement ParseIfStatement(bool* ok);
|
|
Statement ParseContinueStatement(bool* ok);
|
|
Statement ParseBreakStatement(bool* ok);
|
|
Statement ParseReturnStatement(bool* ok);
|
|
Statement ParseWithStatement(bool* ok);
|
|
Statement ParseSwitchStatement(bool* ok);
|
|
Statement ParseDoWhileStatement(bool* ok);
|
|
Statement ParseWhileStatement(bool* ok);
|
|
Statement ParseForStatement(bool* ok);
|
|
Statement ParseThrowStatement(bool* ok);
|
|
Statement ParseTryStatement(bool* ok);
|
|
Statement ParseDebuggerStatement(bool* ok);
|
|
|
|
Expression ParseExpression(bool accept_IN, bool* ok);
|
|
Expression ParseAssignmentExpression(bool accept_IN, bool* ok);
|
|
Expression ParseYieldExpression(bool* ok);
|
|
Expression ParseConditionalExpression(bool accept_IN, bool* ok);
|
|
Expression ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
|
|
Expression ParseUnaryExpression(bool* ok);
|
|
Expression ParsePostfixExpression(bool* ok);
|
|
Expression ParseLeftHandSideExpression(bool* ok);
|
|
Expression ParseNewExpression(bool* ok);
|
|
Expression ParseMemberExpression(bool* ok);
|
|
Expression ParseMemberWithNewPrefixesExpression(unsigned new_count, bool* ok);
|
|
Expression ParsePrimaryExpression(bool* ok);
|
|
Expression ParseArrayLiteral(bool* ok);
|
|
Expression ParseObjectLiteral(bool* ok);
|
|
Expression ParseRegExpLiteral(bool seen_equal, bool* ok);
|
|
Expression ParseV8Intrinsic(bool* ok);
|
|
|
|
Arguments ParseArguments(bool* ok);
|
|
Expression ParseFunctionLiteral(bool is_generator, bool* ok);
|
|
void ParseLazyFunctionLiteralBody(bool* ok);
|
|
|
|
Identifier ParseIdentifier(AllowEvalOrArgumentsAsIdentifier, bool* ok);
|
|
Identifier ParseIdentifierName(bool* ok);
|
|
Identifier ParseIdentifierNameOrGetOrSet(bool* is_get,
|
|
bool* is_set,
|
|
bool* ok);
|
|
|
|
// Logs the currently parsed literal as a symbol in the preparser data.
|
|
void LogSymbol();
|
|
// Log the currently parsed identifier.
|
|
Identifier GetIdentifierSymbol();
|
|
// Log the currently parsed string literal.
|
|
Expression GetStringSymbol();
|
|
|
|
void set_language_mode(LanguageMode language_mode) {
|
|
scope_->set_language_mode(language_mode);
|
|
}
|
|
|
|
bool is_classic_mode() {
|
|
return scope_->language_mode() == CLASSIC_MODE;
|
|
}
|
|
|
|
bool is_extended_mode() {
|
|
return scope_->language_mode() == EXTENDED_MODE;
|
|
}
|
|
|
|
LanguageMode language_mode() { return scope_->language_mode(); }
|
|
|
|
bool CheckInOrOf(bool accept_OF);
|
|
|
|
void SetStrictModeViolation(Scanner::Location,
|
|
const char* type,
|
|
bool* ok);
|
|
|
|
void CheckDelayedStrictModeViolation(int beg_pos, int end_pos, bool* ok);
|
|
|
|
void StrictModeIdentifierViolation(Scanner::Location,
|
|
Identifier identifier,
|
|
bool* ok);
|
|
|
|
ParserRecorder* log_;
|
|
Scope* scope_;
|
|
Scanner::Location strict_mode_violation_location_;
|
|
const char* strict_mode_violation_type_;
|
|
bool parenthesized_function_;
|
|
};
|
|
|
|
} } // v8::internal
|
|
|
|
#endif // V8_PREPARSER_H
|