v8/test/unittests/heap/spaces-unittest.cc
Dominik Inführ e79d34ee36 [heap] Slots are either in sweeping or old-to-new RS after Full GC
This CL ensures that recorded slots are either in the sweeping or the
old-to-new remembered set after mark-compact depending on whether the
page was already swept or not.

All pages that are swept during the evacuation phase also have their
remembered sets merged. is_local() is renamed to
is_compaction_space() and non-virtual. The PagedSpace now not only
knows whether it is a compaction space or not but also for which
collection through the compaction_space_kind_ field. This allows
RefillFreeList to merge the remembered sets immediately also for the
mark-compact collection.

Change-Id: I7457f8393d73f3e8d6b6ebedc46ebc36af509729
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1868613
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Commit-Queue: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/master@{#64458}
2019-10-22 11:09:35 +00:00

289 lines
12 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/spaces-inl.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
using SpacesTest = TestWithIsolate;
TEST_F(SpacesTest, CompactionSpaceMerge) {
Heap* heap = i_isolate()->heap();
OldSpace* old_space = heap->old_space();
EXPECT_TRUE(old_space != nullptr);
CompactionSpace* compaction_space = new CompactionSpace(
heap, OLD_SPACE, NOT_EXECUTABLE, CompactionSpaceKind::kMarkCompact);
EXPECT_TRUE(compaction_space != nullptr);
for (Page* p : *old_space) {
// Unlink free lists from the main space to avoid reusing the memory for
// compaction spaces.
old_space->UnlinkFreeListCategories(p);
}
// Cannot loop until "Available()" since we initially have 0 bytes available
// and would thus neither grow, nor be able to allocate an object.
const int kNumObjects = 10;
const int kNumObjectsPerPage =
compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
const int kExpectedPages =
(kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
for (int i = 0; i < kNumObjects; i++) {
HeapObject object =
compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
.ToObjectChecked();
heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
ClearRecordedSlots::kNo);
}
int pages_in_old_space = old_space->CountTotalPages();
int pages_in_compaction_space = compaction_space->CountTotalPages();
EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
old_space->MergeCompactionSpace(compaction_space);
EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
old_space->CountTotalPages());
delete compaction_space;
}
TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
constexpr Address address1 = Page::kPageSize;
HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
MemoryChunk* chunk1 = MemoryChunk::FromHeapObject(object1);
heap_internals::MemoryChunk* slim_chunk1 =
heap_internals::MemoryChunk::FromHeapObject(object1);
EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
constexpr Address address2 = 2 * Page::kPageSize - 1;
HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
MemoryChunk* chunk2 = MemoryChunk::FromHeapObject(object2);
heap_internals::MemoryChunk* slim_chunk2 =
heap_internals::MemoryChunk::FromHeapObject(object2);
EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
}
TEST_F(SpacesTest, WriteBarrierIsMarking) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_TRUE(slim_chunk->IsMarking());
chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::TO_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::TO_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::FROM_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::FROM_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, CodeRangeAddressReuse) {
CodeRangeAddressHint hint;
// Create code ranges.
Address code_range1 = hint.GetAddressHint(100);
Address code_range2 = hint.GetAddressHint(200);
Address code_range3 = hint.GetAddressHint(100);
// Since the addresses are random, we cannot check that they are different.
// Free two code ranges.
hint.NotifyFreedCodeRange(code_range1, 100);
hint.NotifyFreedCodeRange(code_range2, 200);
// The next two code ranges should reuse the freed addresses.
Address code_range4 = hint.GetAddressHint(100);
EXPECT_EQ(code_range4, code_range1);
Address code_range5 = hint.GetAddressHint(200);
EXPECT_EQ(code_range5, code_range2);
// Free the third code range and check address reuse.
hint.NotifyFreedCodeRange(code_range3, 100);
Address code_range6 = hint.GetAddressHint(100);
EXPECT_EQ(code_range6, code_range3);
}
// Tests that FreeListMany::SelectFreeListCategoryType returns what it should.
TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) {
FreeListMany free_list;
// Testing that all sizes below 256 bytes get assigned the correct category
for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) {
FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
if (cat == 0) {
// If cat == 0, then we make sure that |size| doesn't fit in the 2nd
// category.
EXPECT_LT(size, free_list.categories_min[1]);
} else {
// Otherwise, size should fit in |cat|, but not in |cat+1|.
EXPECT_LE(free_list.categories_min[cat], size);
EXPECT_LT(size, free_list.categories_min[cat + 1]);
}
}
// Testing every size above 256 would take long time, so test only some
// "interesting cases": picking some number in the middle of the categories,
// as well as at the categories' bounds.
for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
// Adding size between this category's minimum and the next category
if (cat != free_list.last_category_) {
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
if (cat == free_list.last_category_) {
// If cat == last_category, then we make sure that |size| indeeds fits
// in the last category.
EXPECT_LE(free_list.categories_min[cat], size);
} else {
// Otherwise, size should fit in |cat|, but not in |cat+1|.
EXPECT_LE(free_list.categories_min[cat], size);
EXPECT_LT(size, free_list.categories_min[cat + 1]);
}
}
}
}
// Tests that FreeListMany::GuaranteedAllocatable returns what it should.
TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) {
FreeListMany free_list;
for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
if (cat != free_list.last_category_) {
// Adding size between this category's minimum and the next category
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat_free =
free_list.SelectFreeListCategoryType(size);
size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size);
if (cat_free == free_list.last_category_) {
// If |cat_free| == last_category, then guaranteed_allocatable must
// return the last category, because when allocating, the last category
// is searched entirely.
EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable),
free_list.last_category_);
} else if (size < free_list.categories_min[0]) {
// If size < free_list.categories_min[0], then the bytes are wasted, and
// guaranteed_allocatable should return 0.
EXPECT_EQ(guaranteed_allocatable, 0ul);
} else {
// Otherwise, |guaranteed_allocatable| is equal to the minimum of
// |size|'s category (|cat_free|);
EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable);
}
}
}
}
// Tests that
// FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns
// what it should.
TEST_F(SpacesTest,
FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) {
FreeListManyCachedFastPath free_list;
for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) {
std::vector<size_t> sizes;
// Adding size less than this category's minimum
sizes.push_back(free_list.categories_min[cat] - 8);
// Adding size equal to this category's minimum
sizes.push_back(free_list.categories_min[cat]);
// Adding size greater than this category's minimum
sizes.push_back(free_list.categories_min[cat] + 8);
// Adding size between this category's minimum and the next category
if (cat != free_list.last_category_) {
sizes.push_back(
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
2);
}
for (size_t size : sizes) {
FreeListCategoryType cat =
free_list.SelectFastAllocationFreeListCategoryType(size);
if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) {
// For tiny objects, the first category of the fast path should be
// chosen.
EXPECT_TRUE(cat == FreeListManyCachedFastPath::kFastPathFirstCategory);
} else if (size >= free_list.categories_min[free_list.last_category_] -
FreeListManyCachedFastPath::kFastPathOffset) {
// For objects close to the minimum of the last category, the last
// category is chosen.
EXPECT_EQ(cat, free_list.last_category_);
} else {
// For other objects, the chosen category must satisfy that its minimum
// is at least |size|+1.85k.
EXPECT_GE(free_list.categories_min[cat],
size + FreeListManyCachedFastPath::kFastPathOffset);
// And the smaller categoriy's minimum is less than |size|+1.85k
// (otherwise it would have been chosen instead).
EXPECT_LT(free_list.categories_min[cat - 1],
size + FreeListManyCachedFastPath::kFastPathOffset);
}
}
}
}
} // namespace internal
} // namespace v8