v8/test/cctest/compiler/test-gap-resolver.cc
Michael Starzinger 3bccb99557 Remove compiler distinction from RegisterConfiguration.
This removes the obsolete {Crankshaft} factory method as it returns the
same configuration as the {Turbofan} factory by now. We now consistently
use {RegisterConfiguration::Default} everywhere.

R=jkummerow@chromium.org
BUG=v8:6408

Change-Id: I6be25774aa6714ef4dc1ef6856bb6dbc95593a29
Reviewed-on: https://chromium-review.googlesource.com/597858
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Commit-Queue: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#47109}
2017-08-03 07:47:36 +00:00

515 lines
17 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
const auto GetRegConfig = RegisterConfiguration::Default;
// Fragments the given FP operand into an equivalent set of FP operands to
// simplify ParallelMove equivalence testing.
void GetCanonicalOperands(const InstructionOperand& op,
std::vector<InstructionOperand>* fragments) {
CHECK(!kSimpleFPAliasing);
CHECK(op.IsFPLocationOperand());
const LocationOperand& loc = LocationOperand::cast(op);
MachineRepresentation rep = loc.representation();
int base = -1;
int aliases = GetRegConfig()->GetAliases(
rep, 0, MachineRepresentation::kFloat32, &base);
CHECK_LT(0, aliases);
CHECK_GE(4, aliases);
int index = -1;
int step = 1;
if (op.IsFPRegister()) {
index = loc.register_code() * aliases;
} else {
index = loc.index();
step = -1;
}
for (int i = 0; i < aliases; i++) {
fragments->push_back(AllocatedOperand(loc.location_kind(),
MachineRepresentation::kFloat32,
index + i * step));
}
}
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
void ExecuteInParallel(const ParallelMove* moves) {
InterpreterState copy(*this);
for (const auto m : *moves) {
CHECK(!m->IsRedundant());
const InstructionOperand& src = m->source();
const InstructionOperand& dst = m->destination();
if (!kSimpleFPAliasing && src.IsFPLocationOperand() &&
dst.IsFPLocationOperand()) {
// Canonicalize FP location-location moves by fragmenting them into
// an equivalent sequence of float32 moves, to simplify state
// equivalence testing.
std::vector<InstructionOperand> src_fragments;
GetCanonicalOperands(src, &src_fragments);
CHECK(!src_fragments.empty());
std::vector<InstructionOperand> dst_fragments;
GetCanonicalOperands(dst, &dst_fragments);
CHECK_EQ(src_fragments.size(), dst_fragments.size());
for (size_t i = 0; i < src_fragments.size(); ++i) {
write(dst_fragments[i], copy.read(src_fragments[i]));
}
continue;
}
// All other moves.
write(dst, copy.read(src));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
private:
// struct for mapping operands to a unique value, that makes it easier to
// detect illegal parallel moves, and to evaluate moves for equivalence. This
// is a one way transformation. All general register and slot operands are
// mapped to the default representation. FP registers and slots are mapped to
// float64 except on architectures with non-simple FP register aliasing, where
// the actual representation is used.
struct Key {
bool is_constant;
MachineRepresentation rep;
LocationOperand::LocationKind kind;
int index;
bool operator<(const Key& other) const {
if (this->is_constant != other.is_constant) {
return this->is_constant;
}
if (this->rep != other.rep) {
return this->rep < other.rep;
}
if (this->kind != other.kind) {
return this->kind < other.kind;
}
return this->index < other.index;
}
bool operator==(const Key& other) const {
return this->is_constant == other.is_constant && this->rep == other.rep &&
this->kind == other.kind && this->index == other.index;
}
};
// Internally, the state is a normalized permutation of Value pairs.
typedef Key Value;
typedef std::map<Key, Value> OperandMap;
Value read(const InstructionOperand& op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand& dst, Value v) {
if (v == ValueFor(dst)) {
values_.erase(KeyFor(dst));
} else {
values_[KeyFor(dst)] = v;
}
}
static Key KeyFor(const InstructionOperand& op) {
bool is_constant = op.IsConstant();
MachineRepresentation rep =
v8::internal::compiler::InstructionSequence::DefaultRepresentation();
LocationOperand::LocationKind kind;
int index;
if (!is_constant) {
const LocationOperand& loc_op = LocationOperand::cast(op);
// Preserve FP representation when FP register aliasing is complex.
// Otherwise, canonicalize to kFloat64.
if (IsFloatingPoint(loc_op.representation())) {
rep = kSimpleFPAliasing ? MachineRepresentation::kFloat64
: loc_op.representation();
}
if (loc_op.IsAnyRegister()) {
index = loc_op.register_code();
} else {
index = loc_op.index();
}
kind = loc_op.location_kind();
} else {
index = ConstantOperand::cast(op).virtual_register();
kind = LocationOperand::REGISTER;
}
Key key = {is_constant, rep, kind, index};
return key;
}
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
static InstructionOperand FromKey(Key key) {
if (key.is_constant) {
return ConstantOperand(key.index);
}
return AllocatedOperand(key.kind, key.rep, key.index);
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
for (OperandMap::const_iterator it = is.values_.begin();
it != is.values_.end(); ++it) {
if (it != is.values_.begin()) os << " ";
InstructionOperand source = FromKey(it->second);
InstructionOperand destination = FromKey(it->first);
MoveOperands mo(source, destination);
PrintableMoveOperands pmo = {GetRegConfig(), &mo};
os << pmo;
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
state_.ExecuteInParallel(moves);
}
void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
moves->AddMove(*destination, *source);
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* moves) {
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
Zone* const zone_;
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
// Creates a ParallelMove with 'size' random MoveOperands. Note that illegal
// moves will be rejected, so the actual number of MoveOperands may be less.
ParallelMove* Create(int size) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
// Valid ParallelMoves can't have interfering destination ops.
std::set<InstructionOperand, CompareOperandModuloType> destinations;
// Valid ParallelMoves can't have interfering source ops of different reps.
std::map<InstructionOperand, MachineRepresentation,
CompareOperandModuloType>
sources;
for (int i = 0; i < size; ++i) {
MachineRepresentation rep = RandomRepresentation();
MoveOperands mo(CreateRandomOperand(true, rep),
CreateRandomOperand(false, rep));
if (mo.IsRedundant()) continue;
const InstructionOperand& dst = mo.destination();
bool reject = false;
// On architectures where FP register aliasing is non-simple, update the
// destinations set with the float equivalents of the operand and check
// that all destinations are unique and do not alias each other.
if (!kSimpleFPAliasing && mo.destination().IsFPLocationOperand()) {
std::vector<InstructionOperand> fragments;
GetCanonicalOperands(dst, &fragments);
CHECK(!fragments.empty());
for (size_t i = 0; i < fragments.size(); ++i) {
if (destinations.find(fragments[i]) == destinations.end()) {
destinations.insert(fragments[i]);
} else {
reject = true;
break;
}
}
// Update the sources map, and check that no FP source has multiple
// representations.
const InstructionOperand& src = mo.source();
if (src.IsFPRegister()) {
std::vector<InstructionOperand> fragments;
MachineRepresentation src_rep =
LocationOperand::cast(src).representation();
GetCanonicalOperands(src, &fragments);
CHECK(!fragments.empty());
for (size_t i = 0; i < fragments.size(); ++i) {
auto find_it = sources.find(fragments[i]);
if (find_it != sources.end() && find_it->second != src_rep) {
reject = true;
break;
}
sources.insert(std::make_pair(fragments[i], src_rep));
}
}
} else {
if (destinations.find(dst) == destinations.end()) {
destinations.insert(dst);
} else {
reject = true;
}
}
if (!reject) {
parallel_move->AddMove(mo.source(), mo.destination());
}
}
return parallel_move;
}
// Creates a ParallelMove from a list of operand pairs. Even operands are
// destinations, odd ones are sources.
ParallelMove* Create(const std::vector<InstructionOperand>& operand_pairs) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
for (size_t i = 0; i < operand_pairs.size(); i += 2) {
const InstructionOperand& dst = operand_pairs[i];
const InstructionOperand& src = operand_pairs[i + 1];
parallel_move->AddMove(src, dst);
}
return parallel_move;
}
private:
MachineRepresentation RandomRepresentation() {
int index = rng_->NextInt(6);
switch (index) {
case 0:
return MachineRepresentation::kWord32;
case 1:
return MachineRepresentation::kWord64;
case 2:
return MachineRepresentation::kFloat32;
case 3:
return MachineRepresentation::kFloat64;
case 4:
return MachineRepresentation::kSimd128;
case 5:
return MachineRepresentation::kTagged;
}
UNREACHABLE();
}
const int kMaxIndex = 7;
const int kMaxIndices = kMaxIndex + 1;
// Non-FP slots shouldn't overlap FP slots.
// FP slots with different representations shouldn't overlap.
int GetValidSlotIndex(MachineRepresentation rep, int index) {
DCHECK_GE(kMaxIndex, index);
// The first group of slots are for non-FP values.
if (!IsFloatingPoint(rep)) return index;
// The next group are for float values.
int base = kMaxIndices;
if (rep == MachineRepresentation::kFloat32) return base + index;
// Double values.
base += kMaxIndices;
if (rep == MachineRepresentation::kFloat64) return base + index * 2;
// SIMD values
base += kMaxIndices * 2;
CHECK_EQ(MachineRepresentation::kSimd128, rep);
return base + index * 4;
}
InstructionOperand CreateRandomOperand(bool is_source,
MachineRepresentation rep) {
auto conf = RegisterConfiguration::Default();
auto GetValidRegisterCode = [&conf](MachineRepresentation rep, int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
return conf->RegisterConfiguration::GetAllocatableFloatCode(index);
case MachineRepresentation::kFloat64:
return conf->RegisterConfiguration::GetAllocatableDoubleCode(index);
case MachineRepresentation::kSimd128:
return conf->RegisterConfiguration::GetAllocatableSimd128Code(index);
default:
return conf->RegisterConfiguration::GetAllocatableGeneralCode(index);
}
UNREACHABLE();
};
int index = rng_->NextInt(kMaxIndex);
// destination can't be Constant.
switch (rng_->NextInt(is_source ? 5 : 4)) {
case 0:
return AllocatedOperand(LocationOperand::STACK_SLOT, rep,
GetValidSlotIndex(rep, index));
case 1:
return AllocatedOperand(LocationOperand::REGISTER, rep,
GetValidRegisterCode(rep, index));
case 2:
return ExplicitOperand(LocationOperand::REGISTER, rep,
GetValidRegisterCode(rep, 1));
case 3:
return ExplicitOperand(LocationOperand::STACK_SLOT, rep,
GetValidSlotIndex(rep, index));
case 4:
return ConstantOperand(index);
}
UNREACHABLE();
}
private:
v8::base::RandomNumberGenerator* rng_;
};
void RunTest(ParallelMove* pm, Zone* zone) {
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1(zone);
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2(zone);
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK_EQ(mi1.state(), mi2.state());
}
TEST(Aliasing) {
// On platforms with simple aliasing, these parallel moves are ill-formed.
if (kSimpleFPAliasing) return;
ParallelMoveCreator pmc;
Zone* zone = pmc.main_zone();
auto s0 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 0);
auto s1 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 1);
auto s2 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 2);
auto s3 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 3);
auto s4 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 4);
auto d0 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 0);
auto d1 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 1);
auto d16 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 16);
// Double slots must be odd to match frame allocation.
auto dSlot = AllocatedOperand(LocationOperand::STACK_SLOT,
MachineRepresentation::kFloat64, 3);
// Cycles involving s- and d-registers.
{
std::vector<InstructionOperand> moves = {
s2, s0, // s2 <- s0
d0, d1 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s0 // s2 <- s0
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
s2, s1, // s2 <- s1
d0, d1 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s1 // s2 <- s1
};
RunTest(pmc.Create(moves), zone);
}
// Two cycles involving a single d-register.
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s1, // s2 <- s1
s3, s0 // s3 <- s0
};
RunTest(pmc.Create(moves), zone);
}
// Cycle with a float move that must be deferred until after swaps.
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s0, // s2 <- s0
s3, s4 // s3 <- s4 must be deferred
};
RunTest(pmc.Create(moves), zone);
}
// Cycles involving s-registers and a non-aliased d-register.
{
std::vector<InstructionOperand> moves = {
d16, d0, // d16 <- d0
s1, s2, // s1 <- s2
d1, d16 // d1 <- d16
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
s2, s1, // s1 <- s2
d0, d16, // d16 <- d0
d16, d1 // d1 <- d16
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d16, // d0 <- d16
d16, d1, // s2 <- s0
s3, s0 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
// Cycle involving aliasing registers and a slot.
{
std::vector<InstructionOperand> moves = {
dSlot, d0, // dSlot <- d0
d1, dSlot, // d1 <- dSlot
s0, s3 // s0 <- s3
};
RunTest(pmc.Create(moves), zone);
}
}
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 80; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
RunTest(pmc.Create(size), pmc.main_zone());
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8