d07a2eb806
This way we don't clash with the ASSERT* macros defined by GoogleTest, and we are one step closer to being able to replace our homegrown base/ with base/ from Chrome. R=jochen@chromium.org, svenpanne@chromium.org Review URL: https://codereview.chromium.org/430503007 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22812 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1365 lines
39 KiB
C++
1365 lines
39 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Features shared by parsing and pre-parsing scanners.
|
|
|
|
#include <cmath>
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "include/v8stdint.h"
|
|
#include "src/ast-value-factory.h"
|
|
#include "src/char-predicates-inl.h"
|
|
#include "src/conversions-inl.h"
|
|
#include "src/list-inl.h"
|
|
#include "src/parser.h"
|
|
#include "src/scanner.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
Handle<String> LiteralBuffer::Internalize(Isolate* isolate) const {
|
|
if (is_one_byte()) {
|
|
return isolate->factory()->InternalizeOneByteString(one_byte_literal());
|
|
}
|
|
return isolate->factory()->InternalizeTwoByteString(two_byte_literal());
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Scanner
|
|
|
|
Scanner::Scanner(UnicodeCache* unicode_cache)
|
|
: unicode_cache_(unicode_cache),
|
|
octal_pos_(Location::invalid()),
|
|
harmony_scoping_(false),
|
|
harmony_modules_(false),
|
|
harmony_numeric_literals_(false) { }
|
|
|
|
|
|
void Scanner::Initialize(Utf16CharacterStream* source) {
|
|
source_ = source;
|
|
// Need to capture identifiers in order to recognize "get" and "set"
|
|
// in object literals.
|
|
Init();
|
|
// Skip initial whitespace allowing HTML comment ends just like
|
|
// after a newline and scan first token.
|
|
has_line_terminator_before_next_ = true;
|
|
SkipWhiteSpace();
|
|
Scan();
|
|
}
|
|
|
|
|
|
uc32 Scanner::ScanHexNumber(int expected_length) {
|
|
DCHECK(expected_length <= 4); // prevent overflow
|
|
|
|
uc32 digits[4] = { 0, 0, 0, 0 };
|
|
uc32 x = 0;
|
|
for (int i = 0; i < expected_length; i++) {
|
|
digits[i] = c0_;
|
|
int d = HexValue(c0_);
|
|
if (d < 0) {
|
|
// According to ECMA-262, 3rd, 7.8.4, page 18, these hex escapes
|
|
// should be illegal, but other JS VMs just return the
|
|
// non-escaped version of the original character.
|
|
|
|
// Push back digits that we have advanced past.
|
|
for (int j = i-1; j >= 0; j--) {
|
|
PushBack(digits[j]);
|
|
}
|
|
return -1;
|
|
}
|
|
x = x * 16 + d;
|
|
Advance();
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
// Ensure that tokens can be stored in a byte.
|
|
STATIC_ASSERT(Token::NUM_TOKENS <= 0x100);
|
|
|
|
// Table of one-character tokens, by character (0x00..0x7f only).
|
|
static const byte one_char_tokens[] = {
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::LPAREN, // 0x28
|
|
Token::RPAREN, // 0x29
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::COMMA, // 0x2c
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::COLON, // 0x3a
|
|
Token::SEMICOLON, // 0x3b
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::CONDITIONAL, // 0x3f
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::LBRACK, // 0x5b
|
|
Token::ILLEGAL,
|
|
Token::RBRACK, // 0x5d
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::ILLEGAL,
|
|
Token::LBRACE, // 0x7b
|
|
Token::ILLEGAL,
|
|
Token::RBRACE, // 0x7d
|
|
Token::BIT_NOT, // 0x7e
|
|
Token::ILLEGAL
|
|
};
|
|
|
|
|
|
Token::Value Scanner::Next() {
|
|
current_ = next_;
|
|
has_line_terminator_before_next_ = false;
|
|
has_multiline_comment_before_next_ = false;
|
|
if (static_cast<unsigned>(c0_) <= 0x7f) {
|
|
Token::Value token = static_cast<Token::Value>(one_char_tokens[c0_]);
|
|
if (token != Token::ILLEGAL) {
|
|
int pos = source_pos();
|
|
next_.token = token;
|
|
next_.location.beg_pos = pos;
|
|
next_.location.end_pos = pos + 1;
|
|
Advance();
|
|
return current_.token;
|
|
}
|
|
}
|
|
Scan();
|
|
return current_.token;
|
|
}
|
|
|
|
|
|
// TODO(yangguo): check whether this is actually necessary.
|
|
static inline bool IsLittleEndianByteOrderMark(uc32 c) {
|
|
// The Unicode value U+FFFE is guaranteed never to be assigned as a
|
|
// Unicode character; this implies that in a Unicode context the
|
|
// 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF
|
|
// character expressed in little-endian byte order (since it could
|
|
// not be a U+FFFE character expressed in big-endian byte
|
|
// order). Nevertheless, we check for it to be compatible with
|
|
// Spidermonkey.
|
|
return c == 0xFFFE;
|
|
}
|
|
|
|
|
|
bool Scanner::SkipWhiteSpace() {
|
|
int start_position = source_pos();
|
|
|
|
while (true) {
|
|
while (true) {
|
|
// Advance as long as character is a WhiteSpace or LineTerminator.
|
|
// Remember if the latter is the case.
|
|
if (unicode_cache_->IsLineTerminator(c0_)) {
|
|
has_line_terminator_before_next_ = true;
|
|
} else if (!unicode_cache_->IsWhiteSpace(c0_) &&
|
|
!IsLittleEndianByteOrderMark(c0_)) {
|
|
break;
|
|
}
|
|
Advance();
|
|
}
|
|
|
|
// If there is an HTML comment end '-->' at the beginning of a
|
|
// line (with only whitespace in front of it), we treat the rest
|
|
// of the line as a comment. This is in line with the way
|
|
// SpiderMonkey handles it.
|
|
if (c0_ == '-' && has_line_terminator_before_next_) {
|
|
Advance();
|
|
if (c0_ == '-') {
|
|
Advance();
|
|
if (c0_ == '>') {
|
|
// Treat the rest of the line as a comment.
|
|
SkipSingleLineComment();
|
|
// Continue skipping white space after the comment.
|
|
continue;
|
|
}
|
|
PushBack('-'); // undo Advance()
|
|
}
|
|
PushBack('-'); // undo Advance()
|
|
}
|
|
// Return whether or not we skipped any characters.
|
|
return source_pos() != start_position;
|
|
}
|
|
}
|
|
|
|
|
|
Token::Value Scanner::SkipSingleLineComment() {
|
|
Advance();
|
|
|
|
// The line terminator at the end of the line is not considered
|
|
// to be part of the single-line comment; it is recognized
|
|
// separately by the lexical grammar and becomes part of the
|
|
// stream of input elements for the syntactic grammar (see
|
|
// ECMA-262, section 7.4).
|
|
while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
|
|
Advance();
|
|
}
|
|
|
|
return Token::WHITESPACE;
|
|
}
|
|
|
|
|
|
Token::Value Scanner::SkipSourceURLComment() {
|
|
TryToParseSourceURLComment();
|
|
while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
|
|
Advance();
|
|
}
|
|
|
|
return Token::WHITESPACE;
|
|
}
|
|
|
|
|
|
void Scanner::TryToParseSourceURLComment() {
|
|
// Magic comments are of the form: //[#@]\s<name>=\s*<value>\s*.* and this
|
|
// function will just return if it cannot parse a magic comment.
|
|
if (!unicode_cache_->IsWhiteSpace(c0_))
|
|
return;
|
|
Advance();
|
|
LiteralBuffer name;
|
|
while (c0_ >= 0 && !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) &&
|
|
c0_ != '=') {
|
|
name.AddChar(c0_);
|
|
Advance();
|
|
}
|
|
if (!name.is_one_byte()) return;
|
|
Vector<const uint8_t> name_literal = name.one_byte_literal();
|
|
LiteralBuffer* value;
|
|
if (name_literal == STATIC_ASCII_VECTOR("sourceURL")) {
|
|
value = &source_url_;
|
|
} else if (name_literal == STATIC_ASCII_VECTOR("sourceMappingURL")) {
|
|
value = &source_mapping_url_;
|
|
} else {
|
|
return;
|
|
}
|
|
if (c0_ != '=')
|
|
return;
|
|
Advance();
|
|
value->Reset();
|
|
while (c0_ >= 0 && unicode_cache_->IsWhiteSpace(c0_)) {
|
|
Advance();
|
|
}
|
|
while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
|
|
// Disallowed characters.
|
|
if (c0_ == '"' || c0_ == '\'') {
|
|
value->Reset();
|
|
return;
|
|
}
|
|
if (unicode_cache_->IsWhiteSpace(c0_)) {
|
|
break;
|
|
}
|
|
value->AddChar(c0_);
|
|
Advance();
|
|
}
|
|
// Allow whitespace at the end.
|
|
while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
|
|
if (!unicode_cache_->IsWhiteSpace(c0_)) {
|
|
value->Reset();
|
|
break;
|
|
}
|
|
Advance();
|
|
}
|
|
}
|
|
|
|
|
|
Token::Value Scanner::SkipMultiLineComment() {
|
|
DCHECK(c0_ == '*');
|
|
Advance();
|
|
|
|
while (c0_ >= 0) {
|
|
uc32 ch = c0_;
|
|
Advance();
|
|
if (unicode_cache_->IsLineTerminator(ch)) {
|
|
// Following ECMA-262, section 7.4, a comment containing
|
|
// a newline will make the comment count as a line-terminator.
|
|
has_multiline_comment_before_next_ = true;
|
|
}
|
|
// If we have reached the end of the multi-line comment, we
|
|
// consume the '/' and insert a whitespace. This way all
|
|
// multi-line comments are treated as whitespace.
|
|
if (ch == '*' && c0_ == '/') {
|
|
c0_ = ' ';
|
|
return Token::WHITESPACE;
|
|
}
|
|
}
|
|
|
|
// Unterminated multi-line comment.
|
|
return Token::ILLEGAL;
|
|
}
|
|
|
|
|
|
Token::Value Scanner::ScanHtmlComment() {
|
|
// Check for <!-- comments.
|
|
DCHECK(c0_ == '!');
|
|
Advance();
|
|
if (c0_ == '-') {
|
|
Advance();
|
|
if (c0_ == '-') return SkipSingleLineComment();
|
|
PushBack('-'); // undo Advance()
|
|
}
|
|
PushBack('!'); // undo Advance()
|
|
DCHECK(c0_ == '!');
|
|
return Token::LT;
|
|
}
|
|
|
|
|
|
void Scanner::Scan() {
|
|
next_.literal_chars = NULL;
|
|
Token::Value token;
|
|
do {
|
|
// Remember the position of the next token
|
|
next_.location.beg_pos = source_pos();
|
|
|
|
switch (c0_) {
|
|
case ' ':
|
|
case '\t':
|
|
Advance();
|
|
token = Token::WHITESPACE;
|
|
break;
|
|
|
|
case '\n':
|
|
Advance();
|
|
has_line_terminator_before_next_ = true;
|
|
token = Token::WHITESPACE;
|
|
break;
|
|
|
|
case '"': case '\'':
|
|
token = ScanString();
|
|
break;
|
|
|
|
case '<':
|
|
// < <= << <<= <!--
|
|
Advance();
|
|
if (c0_ == '=') {
|
|
token = Select(Token::LTE);
|
|
} else if (c0_ == '<') {
|
|
token = Select('=', Token::ASSIGN_SHL, Token::SHL);
|
|
} else if (c0_ == '!') {
|
|
token = ScanHtmlComment();
|
|
} else {
|
|
token = Token::LT;
|
|
}
|
|
break;
|
|
|
|
case '>':
|
|
// > >= >> >>= >>> >>>=
|
|
Advance();
|
|
if (c0_ == '=') {
|
|
token = Select(Token::GTE);
|
|
} else if (c0_ == '>') {
|
|
// >> >>= >>> >>>=
|
|
Advance();
|
|
if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_SAR);
|
|
} else if (c0_ == '>') {
|
|
token = Select('=', Token::ASSIGN_SHR, Token::SHR);
|
|
} else {
|
|
token = Token::SAR;
|
|
}
|
|
} else {
|
|
token = Token::GT;
|
|
}
|
|
break;
|
|
|
|
case '=':
|
|
// = == === =>
|
|
Advance();
|
|
if (c0_ == '=') {
|
|
token = Select('=', Token::EQ_STRICT, Token::EQ);
|
|
} else if (c0_ == '>') {
|
|
token = Select(Token::ARROW);
|
|
} else {
|
|
token = Token::ASSIGN;
|
|
}
|
|
break;
|
|
|
|
case '!':
|
|
// ! != !==
|
|
Advance();
|
|
if (c0_ == '=') {
|
|
token = Select('=', Token::NE_STRICT, Token::NE);
|
|
} else {
|
|
token = Token::NOT;
|
|
}
|
|
break;
|
|
|
|
case '+':
|
|
// + ++ +=
|
|
Advance();
|
|
if (c0_ == '+') {
|
|
token = Select(Token::INC);
|
|
} else if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_ADD);
|
|
} else {
|
|
token = Token::ADD;
|
|
}
|
|
break;
|
|
|
|
case '-':
|
|
// - -- --> -=
|
|
Advance();
|
|
if (c0_ == '-') {
|
|
Advance();
|
|
if (c0_ == '>' && has_line_terminator_before_next_) {
|
|
// For compatibility with SpiderMonkey, we skip lines that
|
|
// start with an HTML comment end '-->'.
|
|
token = SkipSingleLineComment();
|
|
} else {
|
|
token = Token::DEC;
|
|
}
|
|
} else if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_SUB);
|
|
} else {
|
|
token = Token::SUB;
|
|
}
|
|
break;
|
|
|
|
case '*':
|
|
// * *=
|
|
token = Select('=', Token::ASSIGN_MUL, Token::MUL);
|
|
break;
|
|
|
|
case '%':
|
|
// % %=
|
|
token = Select('=', Token::ASSIGN_MOD, Token::MOD);
|
|
break;
|
|
|
|
case '/':
|
|
// / // /* /=
|
|
Advance();
|
|
if (c0_ == '/') {
|
|
Advance();
|
|
if (c0_ == '@' || c0_ == '#') {
|
|
Advance();
|
|
token = SkipSourceURLComment();
|
|
} else {
|
|
PushBack(c0_);
|
|
token = SkipSingleLineComment();
|
|
}
|
|
} else if (c0_ == '*') {
|
|
token = SkipMultiLineComment();
|
|
} else if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_DIV);
|
|
} else {
|
|
token = Token::DIV;
|
|
}
|
|
break;
|
|
|
|
case '&':
|
|
// & && &=
|
|
Advance();
|
|
if (c0_ == '&') {
|
|
token = Select(Token::AND);
|
|
} else if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_BIT_AND);
|
|
} else {
|
|
token = Token::BIT_AND;
|
|
}
|
|
break;
|
|
|
|
case '|':
|
|
// | || |=
|
|
Advance();
|
|
if (c0_ == '|') {
|
|
token = Select(Token::OR);
|
|
} else if (c0_ == '=') {
|
|
token = Select(Token::ASSIGN_BIT_OR);
|
|
} else {
|
|
token = Token::BIT_OR;
|
|
}
|
|
break;
|
|
|
|
case '^':
|
|
// ^ ^=
|
|
token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR);
|
|
break;
|
|
|
|
case '.':
|
|
// . Number
|
|
Advance();
|
|
if (IsDecimalDigit(c0_)) {
|
|
token = ScanNumber(true);
|
|
} else {
|
|
token = Token::PERIOD;
|
|
}
|
|
break;
|
|
|
|
case ':':
|
|
token = Select(Token::COLON);
|
|
break;
|
|
|
|
case ';':
|
|
token = Select(Token::SEMICOLON);
|
|
break;
|
|
|
|
case ',':
|
|
token = Select(Token::COMMA);
|
|
break;
|
|
|
|
case '(':
|
|
token = Select(Token::LPAREN);
|
|
break;
|
|
|
|
case ')':
|
|
token = Select(Token::RPAREN);
|
|
break;
|
|
|
|
case '[':
|
|
token = Select(Token::LBRACK);
|
|
break;
|
|
|
|
case ']':
|
|
token = Select(Token::RBRACK);
|
|
break;
|
|
|
|
case '{':
|
|
token = Select(Token::LBRACE);
|
|
break;
|
|
|
|
case '}':
|
|
token = Select(Token::RBRACE);
|
|
break;
|
|
|
|
case '?':
|
|
token = Select(Token::CONDITIONAL);
|
|
break;
|
|
|
|
case '~':
|
|
token = Select(Token::BIT_NOT);
|
|
break;
|
|
|
|
default:
|
|
if (unicode_cache_->IsIdentifierStart(c0_)) {
|
|
token = ScanIdentifierOrKeyword();
|
|
} else if (IsDecimalDigit(c0_)) {
|
|
token = ScanNumber(false);
|
|
} else if (SkipWhiteSpace()) {
|
|
token = Token::WHITESPACE;
|
|
} else if (c0_ < 0) {
|
|
token = Token::EOS;
|
|
} else {
|
|
token = Select(Token::ILLEGAL);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Continue scanning for tokens as long as we're just skipping
|
|
// whitespace.
|
|
} while (token == Token::WHITESPACE);
|
|
|
|
next_.location.end_pos = source_pos();
|
|
next_.token = token;
|
|
}
|
|
|
|
|
|
void Scanner::SeekForward(int pos) {
|
|
// After this call, we will have the token at the given position as
|
|
// the "next" token. The "current" token will be invalid.
|
|
if (pos == next_.location.beg_pos) return;
|
|
int current_pos = source_pos();
|
|
DCHECK_EQ(next_.location.end_pos, current_pos);
|
|
// Positions inside the lookahead token aren't supported.
|
|
DCHECK(pos >= current_pos);
|
|
if (pos != current_pos) {
|
|
source_->SeekForward(pos - source_->pos());
|
|
Advance();
|
|
// This function is only called to seek to the location
|
|
// of the end of a function (at the "}" token). It doesn't matter
|
|
// whether there was a line terminator in the part we skip.
|
|
has_line_terminator_before_next_ = false;
|
|
has_multiline_comment_before_next_ = false;
|
|
}
|
|
Scan();
|
|
}
|
|
|
|
|
|
bool Scanner::ScanEscape() {
|
|
uc32 c = c0_;
|
|
Advance();
|
|
|
|
// Skip escaped newlines.
|
|
if (unicode_cache_->IsLineTerminator(c)) {
|
|
// Allow CR+LF newlines in multiline string literals.
|
|
if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance();
|
|
// Allow LF+CR newlines in multiline string literals.
|
|
if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance();
|
|
return true;
|
|
}
|
|
|
|
switch (c) {
|
|
case '\'': // fall through
|
|
case '"' : // fall through
|
|
case '\\': break;
|
|
case 'b' : c = '\b'; break;
|
|
case 'f' : c = '\f'; break;
|
|
case 'n' : c = '\n'; break;
|
|
case 'r' : c = '\r'; break;
|
|
case 't' : c = '\t'; break;
|
|
case 'u' : {
|
|
c = ScanHexNumber(4);
|
|
if (c < 0) return false;
|
|
break;
|
|
}
|
|
case 'v' : c = '\v'; break;
|
|
case 'x' : {
|
|
c = ScanHexNumber(2);
|
|
if (c < 0) return false;
|
|
break;
|
|
}
|
|
case '0' : // fall through
|
|
case '1' : // fall through
|
|
case '2' : // fall through
|
|
case '3' : // fall through
|
|
case '4' : // fall through
|
|
case '5' : // fall through
|
|
case '6' : // fall through
|
|
case '7' : c = ScanOctalEscape(c, 2); break;
|
|
}
|
|
|
|
// According to ECMA-262, section 7.8.4, characters not covered by the
|
|
// above cases should be illegal, but they are commonly handled as
|
|
// non-escaped characters by JS VMs.
|
|
AddLiteralChar(c);
|
|
return true;
|
|
}
|
|
|
|
|
|
// Octal escapes of the forms '\0xx' and '\xxx' are not a part of
|
|
// ECMA-262. Other JS VMs support them.
|
|
uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
|
|
uc32 x = c - '0';
|
|
int i = 0;
|
|
for (; i < length; i++) {
|
|
int d = c0_ - '0';
|
|
if (d < 0 || d > 7) break;
|
|
int nx = x * 8 + d;
|
|
if (nx >= 256) break;
|
|
x = nx;
|
|
Advance();
|
|
}
|
|
// Anything except '\0' is an octal escape sequence, illegal in strict mode.
|
|
// Remember the position of octal escape sequences so that an error
|
|
// can be reported later (in strict mode).
|
|
// We don't report the error immediately, because the octal escape can
|
|
// occur before the "use strict" directive.
|
|
if (c != '0' || i > 0) {
|
|
octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
Token::Value Scanner::ScanString() {
|
|
uc32 quote = c0_;
|
|
Advance(); // consume quote
|
|
|
|
LiteralScope literal(this);
|
|
while (c0_ != quote && c0_ >= 0
|
|
&& !unicode_cache_->IsLineTerminator(c0_)) {
|
|
uc32 c = c0_;
|
|
Advance();
|
|
if (c == '\\') {
|
|
if (c0_ < 0 || !ScanEscape()) return Token::ILLEGAL;
|
|
} else {
|
|
AddLiteralChar(c);
|
|
}
|
|
}
|
|
if (c0_ != quote) return Token::ILLEGAL;
|
|
literal.Complete();
|
|
|
|
Advance(); // consume quote
|
|
return Token::STRING;
|
|
}
|
|
|
|
|
|
void Scanner::ScanDecimalDigits() {
|
|
while (IsDecimalDigit(c0_))
|
|
AddLiteralCharAdvance();
|
|
}
|
|
|
|
|
|
Token::Value Scanner::ScanNumber(bool seen_period) {
|
|
DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction
|
|
|
|
enum { DECIMAL, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL;
|
|
|
|
LiteralScope literal(this);
|
|
if (seen_period) {
|
|
// we have already seen a decimal point of the float
|
|
AddLiteralChar('.');
|
|
ScanDecimalDigits(); // we know we have at least one digit
|
|
|
|
} else {
|
|
// if the first character is '0' we must check for octals and hex
|
|
if (c0_ == '0') {
|
|
int start_pos = source_pos(); // For reporting octal positions.
|
|
AddLiteralCharAdvance();
|
|
|
|
// either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or
|
|
// an octal number.
|
|
if (c0_ == 'x' || c0_ == 'X') {
|
|
// hex number
|
|
kind = HEX;
|
|
AddLiteralCharAdvance();
|
|
if (!IsHexDigit(c0_)) {
|
|
// we must have at least one hex digit after 'x'/'X'
|
|
return Token::ILLEGAL;
|
|
}
|
|
while (IsHexDigit(c0_)) {
|
|
AddLiteralCharAdvance();
|
|
}
|
|
} else if (harmony_numeric_literals_ && (c0_ == 'o' || c0_ == 'O')) {
|
|
kind = OCTAL;
|
|
AddLiteralCharAdvance();
|
|
if (!IsOctalDigit(c0_)) {
|
|
// we must have at least one octal digit after 'o'/'O'
|
|
return Token::ILLEGAL;
|
|
}
|
|
while (IsOctalDigit(c0_)) {
|
|
AddLiteralCharAdvance();
|
|
}
|
|
} else if (harmony_numeric_literals_ && (c0_ == 'b' || c0_ == 'B')) {
|
|
kind = BINARY;
|
|
AddLiteralCharAdvance();
|
|
if (!IsBinaryDigit(c0_)) {
|
|
// we must have at least one binary digit after 'b'/'B'
|
|
return Token::ILLEGAL;
|
|
}
|
|
while (IsBinaryDigit(c0_)) {
|
|
AddLiteralCharAdvance();
|
|
}
|
|
} else if ('0' <= c0_ && c0_ <= '7') {
|
|
// (possible) octal number
|
|
kind = IMPLICIT_OCTAL;
|
|
while (true) {
|
|
if (c0_ == '8' || c0_ == '9') {
|
|
kind = DECIMAL;
|
|
break;
|
|
}
|
|
if (c0_ < '0' || '7' < c0_) {
|
|
// Octal literal finished.
|
|
octal_pos_ = Location(start_pos, source_pos());
|
|
break;
|
|
}
|
|
AddLiteralCharAdvance();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse decimal digits and allow trailing fractional part.
|
|
if (kind == DECIMAL) {
|
|
ScanDecimalDigits(); // optional
|
|
if (c0_ == '.') {
|
|
AddLiteralCharAdvance();
|
|
ScanDecimalDigits(); // optional
|
|
}
|
|
}
|
|
}
|
|
|
|
// scan exponent, if any
|
|
if (c0_ == 'e' || c0_ == 'E') {
|
|
DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
|
|
if (kind != DECIMAL) return Token::ILLEGAL;
|
|
// scan exponent
|
|
AddLiteralCharAdvance();
|
|
if (c0_ == '+' || c0_ == '-')
|
|
AddLiteralCharAdvance();
|
|
if (!IsDecimalDigit(c0_)) {
|
|
// we must have at least one decimal digit after 'e'/'E'
|
|
return Token::ILLEGAL;
|
|
}
|
|
ScanDecimalDigits();
|
|
}
|
|
|
|
// The source character immediately following a numeric literal must
|
|
// not be an identifier start or a decimal digit; see ECMA-262
|
|
// section 7.8.3, page 17 (note that we read only one decimal digit
|
|
// if the value is 0).
|
|
if (IsDecimalDigit(c0_) || unicode_cache_->IsIdentifierStart(c0_))
|
|
return Token::ILLEGAL;
|
|
|
|
literal.Complete();
|
|
|
|
return Token::NUMBER;
|
|
}
|
|
|
|
|
|
uc32 Scanner::ScanIdentifierUnicodeEscape() {
|
|
Advance();
|
|
if (c0_ != 'u') return -1;
|
|
Advance();
|
|
uc32 result = ScanHexNumber(4);
|
|
if (result < 0) PushBack('u');
|
|
return result;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Keyword Matcher
|
|
|
|
#define KEYWORDS(KEYWORD_GROUP, KEYWORD) \
|
|
KEYWORD_GROUP('b') \
|
|
KEYWORD("break", Token::BREAK) \
|
|
KEYWORD_GROUP('c') \
|
|
KEYWORD("case", Token::CASE) \
|
|
KEYWORD("catch", Token::CATCH) \
|
|
KEYWORD("class", Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD("const", Token::CONST) \
|
|
KEYWORD("continue", Token::CONTINUE) \
|
|
KEYWORD_GROUP('d') \
|
|
KEYWORD("debugger", Token::DEBUGGER) \
|
|
KEYWORD("default", Token::DEFAULT) \
|
|
KEYWORD("delete", Token::DELETE) \
|
|
KEYWORD("do", Token::DO) \
|
|
KEYWORD_GROUP('e') \
|
|
KEYWORD("else", Token::ELSE) \
|
|
KEYWORD("enum", Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD("export", harmony_modules \
|
|
? Token::EXPORT : Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD("extends", Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD_GROUP('f') \
|
|
KEYWORD("false", Token::FALSE_LITERAL) \
|
|
KEYWORD("finally", Token::FINALLY) \
|
|
KEYWORD("for", Token::FOR) \
|
|
KEYWORD("function", Token::FUNCTION) \
|
|
KEYWORD_GROUP('i') \
|
|
KEYWORD("if", Token::IF) \
|
|
KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD("import", harmony_modules \
|
|
? Token::IMPORT : Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD("in", Token::IN) \
|
|
KEYWORD("instanceof", Token::INSTANCEOF) \
|
|
KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD_GROUP('l') \
|
|
KEYWORD("let", harmony_scoping \
|
|
? Token::LET : Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD_GROUP('n') \
|
|
KEYWORD("new", Token::NEW) \
|
|
KEYWORD("null", Token::NULL_LITERAL) \
|
|
KEYWORD_GROUP('p') \
|
|
KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD_GROUP('r') \
|
|
KEYWORD("return", Token::RETURN) \
|
|
KEYWORD_GROUP('s') \
|
|
KEYWORD("static", Token::FUTURE_STRICT_RESERVED_WORD) \
|
|
KEYWORD("super", Token::FUTURE_RESERVED_WORD) \
|
|
KEYWORD("switch", Token::SWITCH) \
|
|
KEYWORD_GROUP('t') \
|
|
KEYWORD("this", Token::THIS) \
|
|
KEYWORD("throw", Token::THROW) \
|
|
KEYWORD("true", Token::TRUE_LITERAL) \
|
|
KEYWORD("try", Token::TRY) \
|
|
KEYWORD("typeof", Token::TYPEOF) \
|
|
KEYWORD_GROUP('v') \
|
|
KEYWORD("var", Token::VAR) \
|
|
KEYWORD("void", Token::VOID) \
|
|
KEYWORD_GROUP('w') \
|
|
KEYWORD("while", Token::WHILE) \
|
|
KEYWORD("with", Token::WITH) \
|
|
KEYWORD_GROUP('y') \
|
|
KEYWORD("yield", Token::YIELD)
|
|
|
|
|
|
static Token::Value KeywordOrIdentifierToken(const uint8_t* input,
|
|
int input_length,
|
|
bool harmony_scoping,
|
|
bool harmony_modules) {
|
|
DCHECK(input_length >= 1);
|
|
const int kMinLength = 2;
|
|
const int kMaxLength = 10;
|
|
if (input_length < kMinLength || input_length > kMaxLength) {
|
|
return Token::IDENTIFIER;
|
|
}
|
|
switch (input[0]) {
|
|
default:
|
|
#define KEYWORD_GROUP_CASE(ch) \
|
|
break; \
|
|
case ch:
|
|
#define KEYWORD(keyword, token) \
|
|
{ \
|
|
/* 'keyword' is a char array, so sizeof(keyword) is */ \
|
|
/* strlen(keyword) plus 1 for the NUL char. */ \
|
|
const int keyword_length = sizeof(keyword) - 1; \
|
|
STATIC_ASSERT(keyword_length >= kMinLength); \
|
|
STATIC_ASSERT(keyword_length <= kMaxLength); \
|
|
if (input_length == keyword_length && \
|
|
input[1] == keyword[1] && \
|
|
(keyword_length <= 2 || input[2] == keyword[2]) && \
|
|
(keyword_length <= 3 || input[3] == keyword[3]) && \
|
|
(keyword_length <= 4 || input[4] == keyword[4]) && \
|
|
(keyword_length <= 5 || input[5] == keyword[5]) && \
|
|
(keyword_length <= 6 || input[6] == keyword[6]) && \
|
|
(keyword_length <= 7 || input[7] == keyword[7]) && \
|
|
(keyword_length <= 8 || input[8] == keyword[8]) && \
|
|
(keyword_length <= 9 || input[9] == keyword[9])) { \
|
|
return token; \
|
|
} \
|
|
}
|
|
KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD)
|
|
}
|
|
return Token::IDENTIFIER;
|
|
}
|
|
|
|
|
|
bool Scanner::IdentifierIsFutureStrictReserved(
|
|
const AstRawString* string) const {
|
|
// Keywords are always 1-byte strings.
|
|
return string->is_one_byte() &&
|
|
Token::FUTURE_STRICT_RESERVED_WORD ==
|
|
KeywordOrIdentifierToken(string->raw_data(), string->length(),
|
|
harmony_scoping_, harmony_modules_);
|
|
}
|
|
|
|
|
|
Token::Value Scanner::ScanIdentifierOrKeyword() {
|
|
DCHECK(unicode_cache_->IsIdentifierStart(c0_));
|
|
LiteralScope literal(this);
|
|
// Scan identifier start character.
|
|
if (c0_ == '\\') {
|
|
uc32 c = ScanIdentifierUnicodeEscape();
|
|
// Only allow legal identifier start characters.
|
|
if (c < 0 ||
|
|
c == '\\' || // No recursive escapes.
|
|
!unicode_cache_->IsIdentifierStart(c)) {
|
|
return Token::ILLEGAL;
|
|
}
|
|
AddLiteralChar(c);
|
|
return ScanIdentifierSuffix(&literal);
|
|
}
|
|
|
|
uc32 first_char = c0_;
|
|
Advance();
|
|
AddLiteralChar(first_char);
|
|
|
|
// Scan the rest of the identifier characters.
|
|
while (unicode_cache_->IsIdentifierPart(c0_)) {
|
|
if (c0_ != '\\') {
|
|
uc32 next_char = c0_;
|
|
Advance();
|
|
AddLiteralChar(next_char);
|
|
continue;
|
|
}
|
|
// Fallthrough if no longer able to complete keyword.
|
|
return ScanIdentifierSuffix(&literal);
|
|
}
|
|
|
|
literal.Complete();
|
|
|
|
if (next_.literal_chars->is_one_byte()) {
|
|
Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
|
|
return KeywordOrIdentifierToken(chars.start(),
|
|
chars.length(),
|
|
harmony_scoping_,
|
|
harmony_modules_);
|
|
}
|
|
|
|
return Token::IDENTIFIER;
|
|
}
|
|
|
|
|
|
Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal) {
|
|
// Scan the rest of the identifier characters.
|
|
while (unicode_cache_->IsIdentifierPart(c0_)) {
|
|
if (c0_ == '\\') {
|
|
uc32 c = ScanIdentifierUnicodeEscape();
|
|
// Only allow legal identifier part characters.
|
|
if (c < 0 ||
|
|
c == '\\' ||
|
|
!unicode_cache_->IsIdentifierPart(c)) {
|
|
return Token::ILLEGAL;
|
|
}
|
|
AddLiteralChar(c);
|
|
} else {
|
|
AddLiteralChar(c0_);
|
|
Advance();
|
|
}
|
|
}
|
|
literal->Complete();
|
|
|
|
return Token::IDENTIFIER;
|
|
}
|
|
|
|
|
|
bool Scanner::ScanRegExpPattern(bool seen_equal) {
|
|
// Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags
|
|
bool in_character_class = false;
|
|
|
|
// Previous token is either '/' or '/=', in the second case, the
|
|
// pattern starts at =.
|
|
next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1);
|
|
next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0);
|
|
|
|
// Scan regular expression body: According to ECMA-262, 3rd, 7.8.5,
|
|
// the scanner should pass uninterpreted bodies to the RegExp
|
|
// constructor.
|
|
LiteralScope literal(this);
|
|
if (seen_equal) {
|
|
AddLiteralChar('=');
|
|
}
|
|
|
|
while (c0_ != '/' || in_character_class) {
|
|
if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false;
|
|
if (c0_ == '\\') { // Escape sequence.
|
|
AddLiteralCharAdvance();
|
|
if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false;
|
|
AddLiteralCharAdvance();
|
|
// If the escape allows more characters, i.e., \x??, \u????, or \c?,
|
|
// only "safe" characters are allowed (letters, digits, underscore),
|
|
// otherwise the escape isn't valid and the invalid character has
|
|
// its normal meaning. I.e., we can just continue scanning without
|
|
// worrying whether the following characters are part of the escape
|
|
// or not, since any '/', '\\' or '[' is guaranteed to not be part
|
|
// of the escape sequence.
|
|
|
|
// TODO(896): At some point, parse RegExps more throughly to capture
|
|
// octal esacpes in strict mode.
|
|
} else { // Unescaped character.
|
|
if (c0_ == '[') in_character_class = true;
|
|
if (c0_ == ']') in_character_class = false;
|
|
AddLiteralCharAdvance();
|
|
}
|
|
}
|
|
Advance(); // consume '/'
|
|
|
|
literal.Complete();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Scanner::ScanLiteralUnicodeEscape() {
|
|
DCHECK(c0_ == '\\');
|
|
uc32 chars_read[6] = {'\\', 'u', 0, 0, 0, 0};
|
|
Advance();
|
|
int i = 1;
|
|
if (c0_ == 'u') {
|
|
i++;
|
|
while (i < 6) {
|
|
Advance();
|
|
if (!IsHexDigit(c0_)) break;
|
|
chars_read[i] = c0_;
|
|
i++;
|
|
}
|
|
}
|
|
if (i < 6) {
|
|
// Incomplete escape. Undo all advances and return false.
|
|
while (i > 0) {
|
|
i--;
|
|
PushBack(chars_read[i]);
|
|
}
|
|
return false;
|
|
}
|
|
// Complete escape. Add all chars to current literal buffer.
|
|
for (int i = 0; i < 6; i++) {
|
|
AddLiteralChar(chars_read[i]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Scanner::ScanRegExpFlags() {
|
|
// Scan regular expression flags.
|
|
LiteralScope literal(this);
|
|
while (unicode_cache_->IsIdentifierPart(c0_)) {
|
|
if (c0_ != '\\') {
|
|
AddLiteralCharAdvance();
|
|
} else {
|
|
if (!ScanLiteralUnicodeEscape()) {
|
|
break;
|
|
}
|
|
Advance();
|
|
}
|
|
}
|
|
literal.Complete();
|
|
|
|
next_.location.end_pos = source_pos() - 1;
|
|
return true;
|
|
}
|
|
|
|
|
|
const AstRawString* Scanner::CurrentSymbol(AstValueFactory* ast_value_factory) {
|
|
if (is_literal_one_byte()) {
|
|
return ast_value_factory->GetOneByteString(literal_one_byte_string());
|
|
}
|
|
return ast_value_factory->GetTwoByteString(literal_two_byte_string());
|
|
}
|
|
|
|
|
|
const AstRawString* Scanner::NextSymbol(AstValueFactory* ast_value_factory) {
|
|
if (is_next_literal_one_byte()) {
|
|
return ast_value_factory->GetOneByteString(next_literal_one_byte_string());
|
|
}
|
|
return ast_value_factory->GetTwoByteString(next_literal_two_byte_string());
|
|
}
|
|
|
|
|
|
double Scanner::DoubleValue() {
|
|
DCHECK(is_literal_one_byte());
|
|
return StringToDouble(
|
|
unicode_cache_,
|
|
literal_one_byte_string(),
|
|
ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY);
|
|
}
|
|
|
|
|
|
int Scanner::FindNumber(DuplicateFinder* finder, int value) {
|
|
return finder->AddNumber(literal_one_byte_string(), value);
|
|
}
|
|
|
|
|
|
int Scanner::FindSymbol(DuplicateFinder* finder, int value) {
|
|
if (is_literal_one_byte()) {
|
|
return finder->AddOneByteSymbol(literal_one_byte_string(), value);
|
|
}
|
|
return finder->AddTwoByteSymbol(literal_two_byte_string(), value);
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddOneByteSymbol(Vector<const uint8_t> key, int value) {
|
|
return AddSymbol(key, true, value);
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddTwoByteSymbol(Vector<const uint16_t> key, int value) {
|
|
return AddSymbol(Vector<const uint8_t>::cast(key), false, value);
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddSymbol(Vector<const uint8_t> key,
|
|
bool is_one_byte,
|
|
int value) {
|
|
uint32_t hash = Hash(key, is_one_byte);
|
|
byte* encoding = BackupKey(key, is_one_byte);
|
|
HashMap::Entry* entry = map_.Lookup(encoding, hash, true);
|
|
int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
|
|
entry->value =
|
|
reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
|
|
return old_value;
|
|
}
|
|
|
|
|
|
int DuplicateFinder::AddNumber(Vector<const uint8_t> key, int value) {
|
|
DCHECK(key.length() > 0);
|
|
// Quick check for already being in canonical form.
|
|
if (IsNumberCanonical(key)) {
|
|
return AddOneByteSymbol(key, value);
|
|
}
|
|
|
|
int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY;
|
|
double double_value = StringToDouble(
|
|
unicode_constants_, key, flags, 0.0);
|
|
int length;
|
|
const char* string;
|
|
if (!std::isfinite(double_value)) {
|
|
string = "Infinity";
|
|
length = 8; // strlen("Infinity");
|
|
} else {
|
|
string = DoubleToCString(double_value,
|
|
Vector<char>(number_buffer_, kBufferSize));
|
|
length = StrLength(string);
|
|
}
|
|
return AddSymbol(Vector<const byte>(reinterpret_cast<const byte*>(string),
|
|
length), true, value);
|
|
}
|
|
|
|
|
|
bool DuplicateFinder::IsNumberCanonical(Vector<const uint8_t> number) {
|
|
// Test for a safe approximation of number literals that are already
|
|
// in canonical form: max 15 digits, no leading zeroes, except an
|
|
// integer part that is a single zero, and no trailing zeros below
|
|
// the decimal point.
|
|
int pos = 0;
|
|
int length = number.length();
|
|
if (number.length() > 15) return false;
|
|
if (number[pos] == '0') {
|
|
pos++;
|
|
} else {
|
|
while (pos < length &&
|
|
static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
|
|
}
|
|
if (length == pos) return true;
|
|
if (number[pos] != '.') return false;
|
|
pos++;
|
|
bool invalid_last_digit = true;
|
|
while (pos < length) {
|
|
uint8_t digit = number[pos] - '0';
|
|
if (digit > '9' - '0') return false;
|
|
invalid_last_digit = (digit == 0);
|
|
pos++;
|
|
}
|
|
return !invalid_last_digit;
|
|
}
|
|
|
|
|
|
uint32_t DuplicateFinder::Hash(Vector<const uint8_t> key, bool is_one_byte) {
|
|
// Primitive hash function, almost identical to the one used
|
|
// for strings (except that it's seeded by the length and ASCII-ness).
|
|
int length = key.length();
|
|
uint32_t hash = (length << 1) | (is_one_byte ? 1 : 0) ;
|
|
for (int i = 0; i < length; i++) {
|
|
uint32_t c = key[i];
|
|
hash = (hash + c) * 1025;
|
|
hash ^= (hash >> 6);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
|
|
bool DuplicateFinder::Match(void* first, void* second) {
|
|
// Decode lengths.
|
|
// Length + ASCII-bit is encoded as base 128, most significant heptet first,
|
|
// with a 8th bit being non-zero while there are more heptets.
|
|
// The value encodes the number of bytes following, and whether the original
|
|
// was ASCII.
|
|
byte* s1 = reinterpret_cast<byte*>(first);
|
|
byte* s2 = reinterpret_cast<byte*>(second);
|
|
uint32_t length_one_byte_field = 0;
|
|
byte c1;
|
|
do {
|
|
c1 = *s1;
|
|
if (c1 != *s2) return false;
|
|
length_one_byte_field = (length_one_byte_field << 7) | (c1 & 0x7f);
|
|
s1++;
|
|
s2++;
|
|
} while ((c1 & 0x80) != 0);
|
|
int length = static_cast<int>(length_one_byte_field >> 1);
|
|
return memcmp(s1, s2, length) == 0;
|
|
}
|
|
|
|
|
|
byte* DuplicateFinder::BackupKey(Vector<const uint8_t> bytes,
|
|
bool is_one_byte) {
|
|
uint32_t one_byte_length = (bytes.length() << 1) | (is_one_byte ? 1 : 0);
|
|
backing_store_.StartSequence();
|
|
// Emit one_byte_length as base-128 encoded number, with the 7th bit set
|
|
// on the byte of every heptet except the last, least significant, one.
|
|
if (one_byte_length >= (1 << 7)) {
|
|
if (one_byte_length >= (1 << 14)) {
|
|
if (one_byte_length >= (1 << 21)) {
|
|
if (one_byte_length >= (1 << 28)) {
|
|
backing_store_.Add(
|
|
static_cast<uint8_t>((one_byte_length >> 28) | 0x80));
|
|
}
|
|
backing_store_.Add(
|
|
static_cast<uint8_t>((one_byte_length >> 21) | 0x80u));
|
|
}
|
|
backing_store_.Add(
|
|
static_cast<uint8_t>((one_byte_length >> 14) | 0x80u));
|
|
}
|
|
backing_store_.Add(static_cast<uint8_t>((one_byte_length >> 7) | 0x80u));
|
|
}
|
|
backing_store_.Add(static_cast<uint8_t>(one_byte_length & 0x7f));
|
|
|
|
backing_store_.AddBlock(bytes);
|
|
return backing_store_.EndSequence().start();
|
|
}
|
|
|
|
} } // namespace v8::internal
|