e80cfa000b
Inferred names are currently generated for FunctionLiterals but not generated for ClassLiterals. Without them, DevTools does not have enough information to make descriptive descriptions. E.g. var x = {y: class{}}; var a = new x.y(); console.log(a); This shows "Object{}" when it could be more descriptive "x.y {}" BUG=v8:5621 CQ_INCLUDE_TRYBOTS=master.tryserver.blink:linux_precise_blink_rel Review-Url: https://codereview.chromium.org/2488193003 Cr-Commit-Position: refs/heads/master@{#41013}
5447 lines
212 KiB
C++
5447 lines
212 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/parsing/parser.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "src/api.h"
|
|
#include "src/ast/ast-expression-rewriter.h"
|
|
#include "src/ast/ast-literal-reindexer.h"
|
|
#include "src/ast/ast-traversal-visitor.h"
|
|
#include "src/ast/ast.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/char-predicates-inl.h"
|
|
#include "src/messages.h"
|
|
#include "src/parsing/duplicate-finder.h"
|
|
#include "src/parsing/parameter-initializer-rewriter.h"
|
|
#include "src/parsing/parse-info.h"
|
|
#include "src/parsing/rewriter.h"
|
|
#include "src/parsing/scanner-character-streams.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/string-stream.h"
|
|
#include "src/tracing/trace-event.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
ScriptData::ScriptData(const byte* data, int length)
|
|
: owns_data_(false), rejected_(false), data_(data), length_(length) {
|
|
if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) {
|
|
byte* copy = NewArray<byte>(length);
|
|
DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment));
|
|
CopyBytes(copy, data, length);
|
|
data_ = copy;
|
|
AcquireDataOwnership();
|
|
}
|
|
}
|
|
|
|
FunctionEntry ParseData::GetFunctionEntry(int start) {
|
|
// The current pre-data entry must be a FunctionEntry with the given
|
|
// start position.
|
|
if ((function_index_ + FunctionEntry::kSize <= Length()) &&
|
|
(static_cast<int>(Data()[function_index_]) == start)) {
|
|
int index = function_index_;
|
|
function_index_ += FunctionEntry::kSize;
|
|
Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize);
|
|
return FunctionEntry(subvector);
|
|
}
|
|
return FunctionEntry();
|
|
}
|
|
|
|
|
|
int ParseData::FunctionCount() {
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return 0;
|
|
if (functions_size % FunctionEntry::kSize != 0) return 0;
|
|
return functions_size / FunctionEntry::kSize;
|
|
}
|
|
|
|
|
|
bool ParseData::IsSane() {
|
|
if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false;
|
|
// Check that the header data is valid and doesn't specify
|
|
// point to positions outside the store.
|
|
int data_length = Length();
|
|
if (data_length < PreparseDataConstants::kHeaderSize) return false;
|
|
if (Magic() != PreparseDataConstants::kMagicNumber) return false;
|
|
if (Version() != PreparseDataConstants::kCurrentVersion) return false;
|
|
// Check that the space allocated for function entries is sane.
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return false;
|
|
if (functions_size % FunctionEntry::kSize != 0) return false;
|
|
// Check that the total size has room for header and function entries.
|
|
int minimum_size =
|
|
PreparseDataConstants::kHeaderSize + functions_size;
|
|
if (data_length < minimum_size) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
void ParseData::Initialize() {
|
|
// Prepares state for use.
|
|
int data_length = Length();
|
|
if (data_length >= PreparseDataConstants::kHeaderSize) {
|
|
function_index_ = PreparseDataConstants::kHeaderSize;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned ParseData::Magic() {
|
|
return Data()[PreparseDataConstants::kMagicOffset];
|
|
}
|
|
|
|
|
|
unsigned ParseData::Version() {
|
|
return Data()[PreparseDataConstants::kVersionOffset];
|
|
}
|
|
|
|
|
|
int ParseData::FunctionsSize() {
|
|
return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]);
|
|
}
|
|
|
|
// Helper for putting parts of the parse results into a temporary zone when
|
|
// parsing inner function bodies.
|
|
class DiscardableZoneScope {
|
|
public:
|
|
DiscardableZoneScope(Parser* parser, Zone* temp_zone, bool use_temp_zone)
|
|
: ast_node_factory_scope_(parser->factory(), temp_zone, use_temp_zone),
|
|
fni_(parser->ast_value_factory_, temp_zone),
|
|
parser_(parser),
|
|
prev_fni_(parser->fni_),
|
|
prev_zone_(parser->zone_) {
|
|
if (use_temp_zone) {
|
|
parser_->fni_ = &fni_;
|
|
parser_->zone_ = temp_zone;
|
|
if (parser_->reusable_preparser_ != nullptr) {
|
|
parser_->reusable_preparser_->zone_ = temp_zone;
|
|
parser_->reusable_preparser_->factory()->set_zone(temp_zone);
|
|
}
|
|
}
|
|
}
|
|
void Reset() {
|
|
parser_->fni_ = prev_fni_;
|
|
parser_->zone_ = prev_zone_;
|
|
if (parser_->reusable_preparser_ != nullptr) {
|
|
parser_->reusable_preparser_->zone_ = prev_zone_;
|
|
parser_->reusable_preparser_->factory()->set_zone(prev_zone_);
|
|
}
|
|
ast_node_factory_scope_.Reset();
|
|
}
|
|
~DiscardableZoneScope() { Reset(); }
|
|
|
|
private:
|
|
AstNodeFactory::BodyScope ast_node_factory_scope_;
|
|
FuncNameInferrer fni_;
|
|
Parser* parser_;
|
|
FuncNameInferrer* prev_fni_;
|
|
Zone* prev_zone_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(DiscardableZoneScope);
|
|
};
|
|
|
|
void Parser::SetCachedData(ParseInfo* info) {
|
|
DCHECK_NULL(cached_parse_data_);
|
|
if (consume_cached_parse_data()) {
|
|
cached_parse_data_ = ParseData::FromCachedData(*info->cached_data());
|
|
if (cached_parse_data_ == nullptr) {
|
|
compile_options_ = ScriptCompiler::kNoCompileOptions;
|
|
}
|
|
}
|
|
}
|
|
|
|
Expression* Parser::CallClassFieldInitializer(Scope* scope,
|
|
Expression* this_expr) {
|
|
// This produces the expression
|
|
// `.class_field_intializer(this_expr)`, where '.class_field_intializer' is
|
|
// the name
|
|
// of a synthetic variable.
|
|
// 'this_expr' will be 'this' in a base constructor and the result of calling
|
|
// 'super' in a derived one.
|
|
const AstRawString* init_fn_name =
|
|
ast_value_factory()->dot_class_field_init_string();
|
|
VariableProxy* init_fn_proxy = scope->NewUnresolved(factory(), init_fn_name);
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(init_fn_proxy, zone());
|
|
args->Add(this_expr, zone());
|
|
return factory()->NewCallRuntime(Runtime::kInlineCall, args,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
Expression* Parser::RewriteSuperCall(Expression* super_call) {
|
|
// TODO(bakkot) find a way to avoid this for classes without fields.
|
|
if (!allow_harmony_class_fields()) {
|
|
return super_call;
|
|
}
|
|
// This turns a super call `super()` into a do expression of the form
|
|
// do {
|
|
// tmp x = super();
|
|
// if (.class-field-init)
|
|
// .class-field-init(x)
|
|
// x; // This isn't actually present; our do-expression representation
|
|
// allows specifying that the expression returns x directly.
|
|
// }
|
|
Variable* var_tmp =
|
|
scope()->NewTemporary(ast_value_factory()->empty_string());
|
|
Block* block = factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(var_tmp), super_call,
|
|
kNoSourcePosition);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition), zone());
|
|
const AstRawString* init_fn_name =
|
|
ast_value_factory()->dot_class_field_init_string();
|
|
VariableProxy* init_fn_proxy =
|
|
scope()->NewUnresolved(factory(), init_fn_name);
|
|
Expression* condition = init_fn_proxy;
|
|
Statement* initialize = factory()->NewExpressionStatement(
|
|
CallClassFieldInitializer(scope(), factory()->NewVariableProxy(var_tmp)),
|
|
kNoSourcePosition);
|
|
IfStatement* if_statement = factory()->NewIfStatement(
|
|
condition, initialize, factory()->NewEmptyStatement(kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
block->statements()->Add(if_statement, zone());
|
|
return factory()->NewDoExpression(block, var_tmp, kNoSourcePosition);
|
|
}
|
|
|
|
FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
|
|
bool call_super,
|
|
bool requires_class_field_init,
|
|
int pos, int end_pos,
|
|
LanguageMode language_mode) {
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
const int parameter_count = 0;
|
|
if (name == nullptr) name = ast_value_factory()->empty_string();
|
|
|
|
FunctionKind kind = call_super ? FunctionKind::kDefaultSubclassConstructor
|
|
: FunctionKind::kDefaultBaseConstructor;
|
|
DeclarationScope* function_scope = NewFunctionScope(kind);
|
|
SetLanguageMode(function_scope,
|
|
static_cast<LanguageMode>(language_mode | STRICT));
|
|
// Set start and end position to the same value
|
|
function_scope->set_start_position(pos);
|
|
function_scope->set_end_position(pos);
|
|
ZoneList<Statement*>* body = NULL;
|
|
|
|
{
|
|
FunctionState function_state(&function_state_, &scope_state_,
|
|
function_scope);
|
|
|
|
body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone());
|
|
if (call_super) {
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct(
|
|
// $super_constructor, InternalArray(...args), new.target)
|
|
auto constructor_args_name = ast_value_factory()->empty_string();
|
|
bool is_duplicate;
|
|
bool is_rest = true;
|
|
bool is_optional = false;
|
|
Variable* constructor_args = function_scope->DeclareParameter(
|
|
constructor_args_name, TEMPORARY, is_optional, is_rest, &is_duplicate,
|
|
ast_value_factory());
|
|
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(2, zone());
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
ZoneList<Expression*>* tmp =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(this_function_proxy, zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->Add(super_constructor, zone());
|
|
Spread* spread_args = factory()->NewSpread(
|
|
factory()->NewVariableProxy(constructor_args), pos, pos);
|
|
ZoneList<Expression*>* spread_args_expr =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
spread_args_expr->Add(spread_args, zone());
|
|
args->AddAll(*PrepareSpreadArguments(spread_args_expr), zone());
|
|
VariableProxy* new_target_proxy =
|
|
NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
args->Add(new_target_proxy, zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
if (requires_class_field_init) {
|
|
call = CallClassFieldInitializer(scope(), call);
|
|
}
|
|
body->Add(factory()->NewReturnStatement(call, pos), zone());
|
|
}
|
|
|
|
materialized_literal_count = function_state.materialized_literal_count();
|
|
expected_property_count = function_state.expected_property_count();
|
|
}
|
|
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
name, function_scope, body, materialized_literal_count,
|
|
expected_property_count, parameter_count, parameter_count,
|
|
FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression, default_eager_compile_hint(), pos,
|
|
true);
|
|
|
|
function_literal->set_requires_class_field_init(requires_class_field_init);
|
|
|
|
return function_literal;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The CHECK_OK macro is a convenient macro to enforce error
|
|
// handling for functions that may fail (by returning !*ok).
|
|
//
|
|
// CAUTION: This macro appends extra statements after a call,
|
|
// thus it must never be used where only a single statement
|
|
// is correct (e.g. an if statement branch w/o braces)!
|
|
|
|
#define CHECK_OK_VALUE(x) ok); \
|
|
if (!*ok) return x; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
#define CHECK_OK CHECK_OK_VALUE(nullptr)
|
|
#define CHECK_OK_VOID CHECK_OK_VALUE(this->Void())
|
|
|
|
#define CHECK_FAILED /**/); \
|
|
if (failed_) return nullptr; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of Parser
|
|
|
|
bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
|
|
Expression* y,
|
|
Token::Value op, int pos) {
|
|
if ((*x)->AsLiteral() && (*x)->AsLiteral()->raw_value()->IsNumber() &&
|
|
y->AsLiteral() && y->AsLiteral()->raw_value()->IsNumber()) {
|
|
double x_val = (*x)->AsLiteral()->raw_value()->AsNumber();
|
|
double y_val = y->AsLiteral()->raw_value()->AsNumber();
|
|
bool x_has_dot = (*x)->AsLiteral()->raw_value()->ContainsDot();
|
|
bool y_has_dot = y->AsLiteral()->raw_value()->ContainsDot();
|
|
bool has_dot = x_has_dot || y_has_dot;
|
|
switch (op) {
|
|
case Token::ADD:
|
|
*x = factory()->NewNumberLiteral(x_val + y_val, pos, has_dot);
|
|
return true;
|
|
case Token::SUB:
|
|
*x = factory()->NewNumberLiteral(x_val - y_val, pos, has_dot);
|
|
return true;
|
|
case Token::MUL:
|
|
*x = factory()->NewNumberLiteral(x_val * y_val, pos, has_dot);
|
|
return true;
|
|
case Token::DIV:
|
|
*x = factory()->NewNumberLiteral(x_val / y_val, pos, has_dot);
|
|
return true;
|
|
case Token::BIT_OR: {
|
|
int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_AND: {
|
|
int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_XOR: {
|
|
int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHL: {
|
|
int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
uint32_t value = DoubleToUint32(x_val) >> shift;
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SAR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::EXP: {
|
|
double value = Pow(x_val, y_val);
|
|
int int_value = static_cast<int>(value);
|
|
*x = factory()->NewNumberLiteral(
|
|
int_value == value && value != -0.0 ? int_value : value, pos,
|
|
has_dot);
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Expression* Parser::BuildUnaryExpression(Expression* expression,
|
|
Token::Value op, int pos) {
|
|
DCHECK(expression != NULL);
|
|
if (expression->IsLiteral()) {
|
|
const AstValue* literal = expression->AsLiteral()->raw_value();
|
|
if (op == Token::NOT) {
|
|
// Convert the literal to a boolean condition and negate it.
|
|
bool condition = literal->BooleanValue();
|
|
return factory()->NewBooleanLiteral(!condition, pos);
|
|
} else if (literal->IsNumber()) {
|
|
// Compute some expressions involving only number literals.
|
|
double value = literal->AsNumber();
|
|
bool has_dot = literal->ContainsDot();
|
|
switch (op) {
|
|
case Token::ADD:
|
|
return expression;
|
|
case Token::SUB:
|
|
return factory()->NewNumberLiteral(-value, pos, has_dot);
|
|
case Token::BIT_NOT:
|
|
return factory()->NewNumberLiteral(~DoubleToInt32(value), pos,
|
|
has_dot);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Desugar '+foo' => 'foo*1'
|
|
if (op == Token::ADD) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::MUL, expression, factory()->NewNumberLiteral(1, pos, true), pos);
|
|
}
|
|
// The same idea for '-foo' => 'foo*(-1)'.
|
|
if (op == Token::SUB) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::MUL, expression, factory()->NewNumberLiteral(-1, pos), pos);
|
|
}
|
|
// ...and one more time for '~foo' => 'foo^(~0)'.
|
|
if (op == Token::BIT_NOT) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::BIT_XOR, expression, factory()->NewNumberLiteral(~0, pos), pos);
|
|
}
|
|
return factory()->NewUnaryOperation(op, expression, pos);
|
|
}
|
|
|
|
Expression* Parser::BuildIteratorResult(Expression* value, bool done) {
|
|
int pos = kNoSourcePosition;
|
|
|
|
if (value == nullptr) value = factory()->NewUndefinedLiteral(pos);
|
|
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(value, zone());
|
|
args->Add(factory()->NewBooleanLiteral(done, pos), zone());
|
|
|
|
return factory()->NewCallRuntime(Runtime::kInlineCreateIterResultObject, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* Parser::NewThrowError(Runtime::FunctionId id,
|
|
MessageTemplate::Template message,
|
|
const AstRawString* arg, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewSmiLiteral(message, pos), zone());
|
|
args->Add(factory()->NewStringLiteral(arg, pos), zone());
|
|
CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
|
|
return factory()->NewThrow(call_constructor, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperPropertyReference(int pos) {
|
|
// this_function[home_object_symbol]
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
Expression* home_object_symbol_literal =
|
|
factory()->NewSymbolLiteral("home_object_symbol", kNoSourcePosition);
|
|
Expression* home_object = factory()->NewProperty(
|
|
this_function_proxy, home_object_symbol_literal, pos);
|
|
return factory()->NewSuperPropertyReference(
|
|
ThisExpression(pos)->AsVariableProxy(), home_object, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperCallReference(int pos) {
|
|
VariableProxy* new_target_proxy =
|
|
NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
return factory()->NewSuperCallReference(
|
|
ThisExpression(pos)->AsVariableProxy(), new_target_proxy,
|
|
this_function_proxy, pos);
|
|
}
|
|
|
|
Expression* Parser::NewTargetExpression(int pos) {
|
|
auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
proxy->set_is_new_target();
|
|
return proxy;
|
|
}
|
|
|
|
Expression* Parser::FunctionSentExpression(int pos) {
|
|
// We desugar function.sent into %_GeneratorGetInputOrDebugPos(generator).
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
VariableProxy* generator =
|
|
factory()->NewVariableProxy(function_state_->generator_object_variable());
|
|
args->Add(generator, zone());
|
|
return factory()->NewCallRuntime(Runtime::kInlineGeneratorGetInputOrDebugPos,
|
|
args, pos);
|
|
}
|
|
|
|
Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
|
|
switch (token) {
|
|
case Token::NULL_LITERAL:
|
|
return factory()->NewNullLiteral(pos);
|
|
case Token::TRUE_LITERAL:
|
|
return factory()->NewBooleanLiteral(true, pos);
|
|
case Token::FALSE_LITERAL:
|
|
return factory()->NewBooleanLiteral(false, pos);
|
|
case Token::SMI: {
|
|
uint32_t value = scanner()->smi_value();
|
|
return factory()->NewSmiLiteral(value, pos);
|
|
}
|
|
case Token::NUMBER: {
|
|
bool has_dot = scanner()->ContainsDot();
|
|
double value = scanner()->DoubleValue();
|
|
return factory()->NewNumberLiteral(value, pos, has_dot);
|
|
}
|
|
default:
|
|
DCHECK(false);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
Expression* Parser::GetIterator(Expression* iterable, int pos) {
|
|
Expression* iterator_symbol_literal =
|
|
factory()->NewSymbolLiteral("iterator_symbol", kNoSourcePosition);
|
|
Expression* prop =
|
|
factory()->NewProperty(iterable, iterator_symbol_literal, pos);
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(0, zone());
|
|
return factory()->NewCall(prop, args, pos);
|
|
}
|
|
|
|
void Parser::MarkTailPosition(Expression* expression) {
|
|
expression->MarkTail();
|
|
}
|
|
|
|
Expression* Parser::NewV8Intrinsic(const AstRawString* name,
|
|
ZoneList<Expression*>* args, int pos,
|
|
bool* ok) {
|
|
if (extension_ != nullptr) {
|
|
// The extension structures are only accessible while parsing the
|
|
// very first time, not when reparsing because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
}
|
|
|
|
DCHECK(name->is_one_byte());
|
|
const Runtime::Function* function =
|
|
Runtime::FunctionForName(name->raw_data(), name->length());
|
|
|
|
if (function != nullptr) {
|
|
// Check for possible name clash.
|
|
DCHECK_EQ(Context::kNotFound,
|
|
Context::IntrinsicIndexForName(name->raw_data(), name->length()));
|
|
// Check for built-in IS_VAR macro.
|
|
if (function->function_id == Runtime::kIS_VAR) {
|
|
DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
|
|
// %IS_VAR(x) evaluates to x if x is a variable,
|
|
// leads to a parse error otherwise. Could be implemented as an
|
|
// inline function %_IS_VAR(x) to eliminate this special case.
|
|
if (args->length() == 1 && args->at(0)->AsVariableProxy() != nullptr) {
|
|
return args->at(0);
|
|
} else {
|
|
ReportMessage(MessageTemplate::kNotIsvar);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Check that the expected number of arguments are being passed.
|
|
if (function->nargs != -1 && function->nargs != args->length()) {
|
|
ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(function, args, pos);
|
|
}
|
|
|
|
int context_index =
|
|
Context::IntrinsicIndexForName(name->raw_data(), name->length());
|
|
|
|
// Check that the function is defined.
|
|
if (context_index == Context::kNotFound) {
|
|
ReportMessage(MessageTemplate::kNotDefined, name);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(context_index, args, pos);
|
|
}
|
|
|
|
Parser::Parser(ParseInfo* info)
|
|
: ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(),
|
|
info->extension(), info->ast_value_factory(),
|
|
info->isolate()->counters()->runtime_call_stats()),
|
|
scanner_(info->unicode_cache()),
|
|
reusable_preparser_(nullptr),
|
|
original_scope_(nullptr),
|
|
mode_(PARSE_EAGERLY), // Lazy mode must be set explicitly.
|
|
target_stack_(nullptr),
|
|
compile_options_(info->compile_options()),
|
|
cached_parse_data_(nullptr),
|
|
total_preparse_skipped_(0),
|
|
parsing_on_main_thread_(true),
|
|
log_(nullptr) {
|
|
// Even though we were passed ParseInfo, we should not store it in
|
|
// Parser - this makes sure that Isolate is not accidentally accessed via
|
|
// ParseInfo during background parsing.
|
|
DCHECK(!info->script().is_null() || info->source_stream() != nullptr ||
|
|
info->character_stream() != nullptr);
|
|
// Determine if functions can be lazily compiled. This is necessary to
|
|
// allow some of our builtin JS files to be lazily compiled. These
|
|
// builtins cannot be handled lazily by the parser, since we have to know
|
|
// if a function uses the special natives syntax, which is something the
|
|
// parser records.
|
|
// If the debugger requests compilation for break points, we cannot be
|
|
// aggressive about lazy compilation, because it might trigger compilation
|
|
// of functions without an outer context when setting a breakpoint through
|
|
// Debug::FindSharedFunctionInfoInScript
|
|
bool can_compile_lazily = FLAG_lazy && !info->is_debug();
|
|
|
|
// Consider compiling eagerly when targeting the code cache.
|
|
can_compile_lazily &= !(FLAG_serialize_eager && info->will_serialize());
|
|
|
|
set_default_eager_compile_hint(can_compile_lazily
|
|
? FunctionLiteral::kShouldLazyCompile
|
|
: FunctionLiteral::kShouldEagerCompile);
|
|
set_allow_lazy(FLAG_lazy && info->allow_lazy_parsing() &&
|
|
!info->is_native() && info->extension() == nullptr &&
|
|
can_compile_lazily);
|
|
set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
|
|
set_allow_tailcalls(FLAG_harmony_tailcalls && !info->is_native() &&
|
|
info->isolate()->is_tail_call_elimination_enabled());
|
|
set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
|
|
set_allow_harmony_function_sent(FLAG_harmony_function_sent);
|
|
set_allow_harmony_async_await(FLAG_harmony_async_await);
|
|
set_allow_harmony_restrictive_generators(FLAG_harmony_restrictive_generators);
|
|
set_allow_harmony_trailing_commas(FLAG_harmony_trailing_commas);
|
|
set_allow_harmony_class_fields(FLAG_harmony_class_fields);
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
use_counts_[feature] = 0;
|
|
}
|
|
if (info->ast_value_factory() == NULL) {
|
|
// info takes ownership of AstValueFactory.
|
|
info->set_ast_value_factory(new AstValueFactory(zone(), info->hash_seed()));
|
|
info->set_ast_value_factory_owned();
|
|
ast_value_factory_ = info->ast_value_factory();
|
|
ast_node_factory_.set_ast_value_factory(ast_value_factory_);
|
|
}
|
|
}
|
|
|
|
void Parser::DeserializeScopeChain(
|
|
ParseInfo* info, MaybeHandle<ScopeInfo> maybe_outer_scope_info) {
|
|
DCHECK(ThreadId::Current().Equals(info->isolate()->thread_id()));
|
|
// TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
|
|
// context, which will have the "this" binding for script scopes.
|
|
DeclarationScope* script_scope = NewScriptScope();
|
|
info->set_script_scope(script_scope);
|
|
Scope* scope = script_scope;
|
|
Handle<ScopeInfo> outer_scope_info;
|
|
if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) {
|
|
scope = Scope::DeserializeScopeChain(
|
|
info->isolate(), zone(), *outer_scope_info, script_scope,
|
|
ast_value_factory(), Scope::DeserializationMode::kScopesOnly);
|
|
DCHECK(!info->is_module() || scope->is_module_scope());
|
|
}
|
|
original_scope_ = scope;
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
|
|
// TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
|
|
// see comment for HistogramTimerScope class.
|
|
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
|
|
RuntimeCallTimerScope runtime_timer(
|
|
runtime_call_stats_, info->is_eval() ? &RuntimeCallStats::ParseEval
|
|
: &RuntimeCallStats::ParseProgram);
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram");
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
|
|
// Initialize parser state.
|
|
ParserLogger logger;
|
|
|
|
if (produce_cached_parse_data()) {
|
|
log_ = &logger;
|
|
} else if (consume_cached_parse_data()) {
|
|
cached_parse_data_->Initialize();
|
|
}
|
|
|
|
DeserializeScopeChain(info, info->maybe_outer_scope_info());
|
|
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
|
|
{
|
|
std::unique_ptr<Utf16CharacterStream> stream(ScannerStream::For(source));
|
|
scanner_.Initialize(stream.get());
|
|
result = DoParseProgram(info);
|
|
}
|
|
if (result != NULL) {
|
|
DCHECK_EQ(scanner_.peek_location().beg_pos, source->length());
|
|
}
|
|
HandleSourceURLComments(isolate, info->script());
|
|
|
|
if (FLAG_trace_parse && result != nullptr) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
if (info->is_eval()) {
|
|
PrintF("[parsing eval");
|
|
} else if (info->script()->name()->IsString()) {
|
|
String* name = String::cast(info->script()->name());
|
|
std::unique_ptr<char[]> name_chars = name->ToCString();
|
|
PrintF("[parsing script: %s", name_chars.get());
|
|
} else {
|
|
PrintF("[parsing script");
|
|
}
|
|
PrintF(" - took %0.3f ms]\n", ms);
|
|
}
|
|
if (produce_cached_parse_data() && result != nullptr) {
|
|
*info->cached_data() = logger.GetScriptData();
|
|
}
|
|
log_ = nullptr;
|
|
return result;
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) {
|
|
// Note that this function can be called from the main thread or from a
|
|
// background thread. We should not access anything Isolate / heap dependent
|
|
// via ParseInfo, and also not pass it forward.
|
|
DCHECK_NULL(scope_state_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
ParsingModeScope mode(this, allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY);
|
|
|
|
FunctionLiteral* result = NULL;
|
|
{
|
|
Scope* outer = original_scope_;
|
|
DCHECK_NOT_NULL(outer);
|
|
parsing_module_ = info->is_module();
|
|
if (info->is_eval()) {
|
|
outer = NewEvalScope(outer);
|
|
} else if (parsing_module_) {
|
|
DCHECK_EQ(outer, info->script_scope());
|
|
outer = NewModuleScope(info->script_scope());
|
|
}
|
|
|
|
DeclarationScope* scope = outer->AsDeclarationScope();
|
|
|
|
scope->set_start_position(0);
|
|
|
|
FunctionState function_state(&function_state_, &scope_state_, scope);
|
|
|
|
ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone());
|
|
bool ok = true;
|
|
int beg_pos = scanner()->location().beg_pos;
|
|
if (parsing_module_) {
|
|
// Declare the special module parameter.
|
|
auto name = ast_value_factory()->empty_string();
|
|
bool is_duplicate;
|
|
bool is_rest = false;
|
|
bool is_optional = false;
|
|
auto var = scope->DeclareParameter(name, VAR, is_optional, is_rest,
|
|
&is_duplicate, ast_value_factory());
|
|
DCHECK(!is_duplicate);
|
|
var->AllocateTo(VariableLocation::PARAMETER, 0);
|
|
|
|
PrepareGeneratorVariables(&function_state);
|
|
Expression* initial_yield =
|
|
BuildInitialYield(kNoSourcePosition, kGeneratorFunction);
|
|
body->Add(
|
|
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
|
|
zone());
|
|
|
|
ParseModuleItemList(body, &ok);
|
|
ok = ok &&
|
|
module()->Validate(this->scope()->AsModuleScope(),
|
|
&pending_error_handler_, zone());
|
|
} else {
|
|
// Don't count the mode in the use counters--give the program a chance
|
|
// to enable script-wide strict mode below.
|
|
this->scope()->SetLanguageMode(info->language_mode());
|
|
ParseStatementList(body, Token::EOS, &ok);
|
|
}
|
|
|
|
// The parser will peek but not consume EOS. Our scope logically goes all
|
|
// the way to the EOS, though.
|
|
scope->set_end_position(scanner()->peek_location().beg_pos);
|
|
|
|
if (ok && is_strict(language_mode())) {
|
|
CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok);
|
|
CheckDecimalLiteralWithLeadingZero(beg_pos,
|
|
scanner()->location().end_pos);
|
|
}
|
|
if (ok && is_sloppy(language_mode())) {
|
|
// TODO(littledan): Function bindings on the global object that modify
|
|
// pre-existing bindings should be made writable, enumerable and
|
|
// nonconfigurable if possible, whereas this code will leave attributes
|
|
// unchanged if the property already exists.
|
|
InsertSloppyBlockFunctionVarBindings(scope);
|
|
}
|
|
if (ok) {
|
|
CheckConflictingVarDeclarations(scope, &ok);
|
|
}
|
|
|
|
if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
|
|
if (body->length() != 1 ||
|
|
!body->at(0)->IsExpressionStatement() ||
|
|
!body->at(0)->AsExpressionStatement()->
|
|
expression()->IsFunctionLiteral()) {
|
|
ReportMessage(MessageTemplate::kSingleFunctionLiteral);
|
|
ok = false;
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
RewriteDestructuringAssignments();
|
|
int parameter_count = parsing_module_ ? 1 : 0;
|
|
result = factory()->NewScriptOrEvalFunctionLiteral(
|
|
scope, body, function_state.materialized_literal_count(),
|
|
function_state.expected_property_count(), parameter_count);
|
|
}
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
return result;
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseFunction(Isolate* isolate, ParseInfo* info) {
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
RuntimeCallTimerScope runtime_timer(runtime_call_stats_,
|
|
&RuntimeCallStats::ParseFunction);
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction");
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
Handle<SharedFunctionInfo> shared_info = info->shared_info();
|
|
DeserializeScopeChain(info, info->maybe_outer_scope_info());
|
|
|
|
// Initialize parser state.
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
{
|
|
std::unique_ptr<Utf16CharacterStream> stream(ScannerStream::For(
|
|
source, shared_info->start_position(), shared_info->end_position()));
|
|
Handle<String> name(String::cast(shared_info->name()));
|
|
result = DoParseFunction(info, ast_value_factory()->GetString(name),
|
|
stream.get());
|
|
if (result != nullptr) {
|
|
Handle<String> inferred_name(shared_info->inferred_name());
|
|
result->set_inferred_name(inferred_name);
|
|
}
|
|
}
|
|
|
|
if (FLAG_trace_parse && result != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
// We need to make sure that the debug-name is available.
|
|
ast_value_factory()->Internalize(isolate);
|
|
std::unique_ptr<char[]> name_chars = result->debug_name()->ToCString();
|
|
PrintF("[parsing function: %s - took %0.3f ms]\n", name_chars.get(), ms);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) {
|
|
if (info->is_declaration()) {
|
|
return FunctionLiteral::kDeclaration;
|
|
} else if (info->is_named_expression()) {
|
|
return FunctionLiteral::kNamedExpression;
|
|
} else if (IsConciseMethod(info->function_kind()) ||
|
|
IsAccessorFunction(info->function_kind())) {
|
|
return FunctionLiteral::kAccessorOrMethod;
|
|
}
|
|
return FunctionLiteral::kAnonymousExpression;
|
|
}
|
|
|
|
FunctionLiteral* Parser::DoParseFunction(ParseInfo* info,
|
|
const AstRawString* raw_name,
|
|
Utf16CharacterStream* source) {
|
|
scanner_.Initialize(source);
|
|
DCHECK_NULL(scope_state_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
DCHECK(ast_value_factory());
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
fni_->PushEnclosingName(raw_name);
|
|
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
|
|
// Place holder for the result.
|
|
FunctionLiteral* result = nullptr;
|
|
|
|
{
|
|
// Parse the function literal.
|
|
Scope* outer = original_scope_;
|
|
DeclarationScope* outer_function = outer->GetClosureScope();
|
|
DCHECK(outer);
|
|
FunctionState function_state(&function_state_, &scope_state_,
|
|
outer_function);
|
|
BlockState block_state(&scope_state_, outer);
|
|
DCHECK(is_sloppy(outer->language_mode()) ||
|
|
is_strict(info->language_mode()));
|
|
FunctionLiteral::FunctionType function_type = ComputeFunctionType(info);
|
|
FunctionKind kind = info->function_kind();
|
|
bool ok = true;
|
|
|
|
if (IsArrowFunction(kind)) {
|
|
if (allow_harmony_async_await() && IsAsyncFunction(kind)) {
|
|
DCHECK(!scanner()->HasAnyLineTerminatorAfterNext());
|
|
if (!Check(Token::ASYNC)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// TODO(adamk): We should construct this scope from the ScopeInfo.
|
|
DeclarationScope* scope = NewFunctionScope(kind);
|
|
|
|
// These two bits only need to be explicitly set because we're
|
|
// not passing the ScopeInfo to the Scope constructor.
|
|
// TODO(adamk): Remove these calls once the above NewScope call
|
|
// passes the ScopeInfo.
|
|
if (info->calls_eval()) {
|
|
scope->RecordEvalCall();
|
|
}
|
|
SetLanguageMode(scope, info->language_mode());
|
|
|
|
scope->set_start_position(info->start_position());
|
|
ExpressionClassifier formals_classifier(this);
|
|
ParserFormalParameters formals(scope);
|
|
Checkpoint checkpoint(this);
|
|
{
|
|
// Parsing patterns as variable reference expression creates
|
|
// NewUnresolved references in current scope. Entrer arrow function
|
|
// scope for formal parameter parsing.
|
|
BlockState block_state(&scope_state_, scope);
|
|
if (Check(Token::LPAREN)) {
|
|
// '(' StrictFormalParameters ')'
|
|
ParseFormalParameterList(&formals, &ok);
|
|
if (ok) ok = Check(Token::RPAREN);
|
|
} else {
|
|
// BindingIdentifier
|
|
ParseFormalParameter(&formals, &ok);
|
|
if (ok) DeclareFormalParameter(formals.scope, formals.at(0));
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
checkpoint.Restore(&formals.materialized_literals_count);
|
|
// Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
|
|
// not be observable, or else the preparser would have failed.
|
|
Expression* expression = ParseArrowFunctionLiteral(true, formals, &ok);
|
|
if (ok) {
|
|
// Scanning must end at the same position that was recorded
|
|
// previously. If not, parsing has been interrupted due to a stack
|
|
// overflow, at which point the partially parsed arrow function
|
|
// concise body happens to be a valid expression. This is a problem
|
|
// only for arrow functions with single expression bodies, since there
|
|
// is no end token such as "}" for normal functions.
|
|
if (scanner()->location().end_pos == info->end_position()) {
|
|
// The pre-parser saw an arrow function here, so the full parser
|
|
// must produce a FunctionLiteral.
|
|
DCHECK(expression->IsFunctionLiteral());
|
|
result = expression->AsFunctionLiteral();
|
|
} else {
|
|
ok = false;
|
|
}
|
|
}
|
|
}
|
|
} else if (IsDefaultConstructor(kind)) {
|
|
DCHECK_EQ(scope(), outer);
|
|
bool is_subclass_constructor = IsSubclassConstructor(kind);
|
|
result = DefaultConstructor(
|
|
raw_name, is_subclass_constructor, info->requires_class_field_init(),
|
|
info->start_position(), info->end_position(), info->language_mode());
|
|
if (!is_subclass_constructor && info->requires_class_field_init()) {
|
|
result = InsertClassFieldInitializer(result);
|
|
}
|
|
} else if (info->is_class_field_initializer()) {
|
|
Handle<SharedFunctionInfo> shared_info = info->shared_info();
|
|
DCHECK(!shared_info.is_null());
|
|
if (shared_info->length() == 0) {
|
|
result = ParseClassFieldForInitializer(
|
|
info->start_position() != info->end_position(), &ok);
|
|
} else {
|
|
result = SynthesizeClassFieldInitializer(shared_info->length());
|
|
}
|
|
} else {
|
|
result = ParseFunctionLiteral(
|
|
raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind,
|
|
kNoSourcePosition, function_type, info->language_mode(), &ok);
|
|
if (info->requires_class_field_init()) {
|
|
result = InsertClassFieldInitializer(result);
|
|
}
|
|
}
|
|
// Make sure the results agree.
|
|
DCHECK(ok == (result != nullptr));
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK_NULL(target_stack_);
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::ParseModuleItem(bool* ok) {
|
|
// ecma262/#prod-ModuleItem
|
|
// ModuleItem :
|
|
// ImportDeclaration
|
|
// ExportDeclaration
|
|
// StatementListItem
|
|
|
|
switch (peek()) {
|
|
case Token::IMPORT:
|
|
ParseImportDeclaration(CHECK_OK);
|
|
return factory()->NewEmptyStatement(kNoSourcePosition);
|
|
case Token::EXPORT:
|
|
return ParseExportDeclaration(ok);
|
|
default:
|
|
return ParseStatementListItem(ok);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) {
|
|
// ecma262/#prod-Module
|
|
// Module :
|
|
// ModuleBody?
|
|
//
|
|
// ecma262/#prod-ModuleItemList
|
|
// ModuleBody :
|
|
// ModuleItem*
|
|
|
|
DCHECK(scope()->is_module_scope());
|
|
while (peek() != Token::EOS) {
|
|
Statement* stat = ParseModuleItem(CHECK_OK_VOID);
|
|
if (stat && !stat->IsEmpty()) {
|
|
body->Add(stat, zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const AstRawString* Parser::ParseModuleSpecifier(bool* ok) {
|
|
// ModuleSpecifier :
|
|
// StringLiteral
|
|
|
|
Expect(Token::STRING, CHECK_OK);
|
|
return GetSymbol();
|
|
}
|
|
|
|
|
|
void Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names,
|
|
ZoneList<Scanner::Location>* export_locations,
|
|
ZoneList<const AstRawString*>* local_names,
|
|
Scanner::Location* reserved_loc, bool* ok) {
|
|
// ExportClause :
|
|
// '{' '}'
|
|
// '{' ExportsList '}'
|
|
// '{' ExportsList ',' '}'
|
|
//
|
|
// ExportsList :
|
|
// ExportSpecifier
|
|
// ExportsList ',' ExportSpecifier
|
|
//
|
|
// ExportSpecifier :
|
|
// IdentifierName
|
|
// IdentifierName 'as' IdentifierName
|
|
|
|
Expect(Token::LBRACE, CHECK_OK_VOID);
|
|
|
|
Token::Value name_tok;
|
|
while ((name_tok = peek()) != Token::RBRACE) {
|
|
// Keep track of the first reserved word encountered in case our
|
|
// caller needs to report an error.
|
|
if (!reserved_loc->IsValid() &&
|
|
!Token::IsIdentifier(name_tok, STRICT, false, parsing_module_)) {
|
|
*reserved_loc = scanner()->location();
|
|
}
|
|
const AstRawString* local_name = ParseIdentifierName(CHECK_OK_VOID);
|
|
const AstRawString* export_name = NULL;
|
|
Scanner::Location location = scanner()->location();
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
export_name = ParseIdentifierName(CHECK_OK_VOID);
|
|
// Set the location to the whole "a as b" string, so that it makes sense
|
|
// both for errors due to "a" and for errors due to "b".
|
|
location.end_pos = scanner()->location().end_pos;
|
|
}
|
|
if (export_name == NULL) {
|
|
export_name = local_name;
|
|
}
|
|
export_names->Add(export_name, zone());
|
|
local_names->Add(local_name, zone());
|
|
export_locations->Add(location, zone());
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK_VOID);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK_VOID);
|
|
}
|
|
|
|
|
|
ZoneList<const Parser::NamedImport*>* Parser::ParseNamedImports(
|
|
int pos, bool* ok) {
|
|
// NamedImports :
|
|
// '{' '}'
|
|
// '{' ImportsList '}'
|
|
// '{' ImportsList ',' '}'
|
|
//
|
|
// ImportsList :
|
|
// ImportSpecifier
|
|
// ImportsList ',' ImportSpecifier
|
|
//
|
|
// ImportSpecifier :
|
|
// BindingIdentifier
|
|
// IdentifierName 'as' BindingIdentifier
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
auto result = new (zone()) ZoneList<const NamedImport*>(1, zone());
|
|
while (peek() != Token::RBRACE) {
|
|
const AstRawString* import_name = ParseIdentifierName(CHECK_OK);
|
|
const AstRawString* local_name = import_name;
|
|
Scanner::Location location = scanner()->location();
|
|
// In the presence of 'as', the left-side of the 'as' can
|
|
// be any IdentifierName. But without 'as', it must be a valid
|
|
// BindingIdentifier.
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
local_name = ParseIdentifierName(CHECK_OK);
|
|
}
|
|
if (!Token::IsIdentifier(scanner()->current_token(), STRICT, false,
|
|
parsing_module_)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
} else if (IsEvalOrArguments(local_name)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kStrictEvalArguments);
|
|
return nullptr;
|
|
}
|
|
|
|
DeclareVariable(local_name, CONST, kNeedsInitialization, position(),
|
|
CHECK_OK);
|
|
|
|
NamedImport* import =
|
|
new (zone()) NamedImport(import_name, local_name, location);
|
|
result->Add(import, zone());
|
|
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Parser::ParseImportDeclaration(bool* ok) {
|
|
// ImportDeclaration :
|
|
// 'import' ImportClause 'from' ModuleSpecifier ';'
|
|
// 'import' ModuleSpecifier ';'
|
|
//
|
|
// ImportClause :
|
|
// ImportedDefaultBinding
|
|
// NameSpaceImport
|
|
// NamedImports
|
|
// ImportedDefaultBinding ',' NameSpaceImport
|
|
// ImportedDefaultBinding ',' NamedImports
|
|
//
|
|
// NameSpaceImport :
|
|
// '*' 'as' ImportedBinding
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IMPORT, CHECK_OK_VOID);
|
|
|
|
Token::Value tok = peek();
|
|
|
|
// 'import' ModuleSpecifier ';'
|
|
if (tok == Token::STRING) {
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
|
|
ExpectSemicolon(CHECK_OK_VOID);
|
|
module()->AddEmptyImport(module_specifier);
|
|
return;
|
|
}
|
|
|
|
// Parse ImportedDefaultBinding if present.
|
|
const AstRawString* import_default_binding = nullptr;
|
|
Scanner::Location import_default_binding_loc;
|
|
if (tok != Token::MUL && tok != Token::LBRACE) {
|
|
import_default_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
|
|
import_default_binding_loc = scanner()->location();
|
|
DeclareVariable(import_default_binding, CONST, kNeedsInitialization, pos,
|
|
CHECK_OK_VOID);
|
|
}
|
|
|
|
// Parse NameSpaceImport or NamedImports if present.
|
|
const AstRawString* module_namespace_binding = nullptr;
|
|
Scanner::Location module_namespace_binding_loc;
|
|
const ZoneList<const NamedImport*>* named_imports = nullptr;
|
|
if (import_default_binding == nullptr || Check(Token::COMMA)) {
|
|
switch (peek()) {
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(CStrVector("as"), CHECK_OK_VOID);
|
|
module_namespace_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
|
|
module_namespace_binding_loc = scanner()->location();
|
|
DeclareVariable(module_namespace_binding, CONST, kCreatedInitialized,
|
|
pos, CHECK_OK_VOID);
|
|
break;
|
|
}
|
|
|
|
case Token::LBRACE:
|
|
named_imports = ParseNamedImports(pos, CHECK_OK_VOID);
|
|
break;
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return;
|
|
}
|
|
}
|
|
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK_VOID);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
|
|
ExpectSemicolon(CHECK_OK_VOID);
|
|
|
|
// Now that we have all the information, we can make the appropriate
|
|
// declarations.
|
|
|
|
// TODO(neis): Would prefer to call DeclareVariable for each case below rather
|
|
// than above and in ParseNamedImports, but then a possible error message
|
|
// would point to the wrong location. Maybe have a DeclareAt version of
|
|
// Declare that takes a location?
|
|
|
|
if (module_namespace_binding != nullptr) {
|
|
module()->AddStarImport(module_namespace_binding, module_specifier,
|
|
module_namespace_binding_loc, zone());
|
|
}
|
|
|
|
if (import_default_binding != nullptr) {
|
|
module()->AddImport(ast_value_factory()->default_string(),
|
|
import_default_binding, module_specifier,
|
|
import_default_binding_loc, zone());
|
|
}
|
|
|
|
if (named_imports != nullptr) {
|
|
if (named_imports->length() == 0) {
|
|
module()->AddEmptyImport(module_specifier);
|
|
} else {
|
|
for (int i = 0; i < named_imports->length(); ++i) {
|
|
const NamedImport* import = named_imports->at(i);
|
|
module()->AddImport(import->import_name, import->local_name,
|
|
module_specifier, import->location, zone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseExportDefault(bool* ok) {
|
|
// Supports the following productions, starting after the 'default' token:
|
|
// 'export' 'default' HoistableDeclaration
|
|
// 'export' 'default' ClassDeclaration
|
|
// 'export' 'default' AssignmentExpression[In] ';'
|
|
|
|
Expect(Token::DEFAULT, CHECK_OK);
|
|
Scanner::Location default_loc = scanner()->location();
|
|
|
|
ZoneList<const AstRawString*> local_names(1, zone());
|
|
Statement* result = nullptr;
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
if (allow_harmony_async_await() && PeekAhead() == Token::FUNCTION &&
|
|
!scanner()->HasAnyLineTerminatorAfterNext()) {
|
|
Consume(Token::ASYNC);
|
|
result = ParseAsyncFunctionDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
}
|
|
/* falls through */
|
|
|
|
default: {
|
|
int pos = position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* value = ParseAssignmentExpression(true, CHECK_OK);
|
|
RewriteNonPattern(CHECK_OK);
|
|
SetFunctionName(value, ast_value_factory()->default_string());
|
|
|
|
const AstRawString* local_name =
|
|
ast_value_factory()->star_default_star_string();
|
|
local_names.Add(local_name, zone());
|
|
|
|
// It's fine to declare this as CONST because the user has no way of
|
|
// writing to it.
|
|
Declaration* decl = DeclareVariable(local_name, CONST, pos, CHECK_OK);
|
|
decl->proxy()->var()->set_initializer_position(position());
|
|
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), value, kNoSourcePosition);
|
|
result = factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
|
|
ExpectSemicolon(CHECK_OK);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DCHECK_EQ(local_names.length(), 1);
|
|
module()->AddExport(local_names.first(),
|
|
ast_value_factory()->default_string(), default_loc,
|
|
zone());
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::ParseExportDeclaration(bool* ok) {
|
|
// ExportDeclaration:
|
|
// 'export' '*' 'from' ModuleSpecifier ';'
|
|
// 'export' ExportClause ('from' ModuleSpecifier)? ';'
|
|
// 'export' VariableStatement
|
|
// 'export' Declaration
|
|
// 'export' 'default' ... (handled in ParseExportDefault)
|
|
|
|
Expect(Token::EXPORT, CHECK_OK);
|
|
int pos = position();
|
|
|
|
Statement* result = nullptr;
|
|
ZoneList<const AstRawString*> names(1, zone());
|
|
Scanner::Location loc = scanner()->peek_location();
|
|
switch (peek()) {
|
|
case Token::DEFAULT:
|
|
return ParseExportDefault(ok);
|
|
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
loc = scanner()->location();
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
module()->AddStarExport(module_specifier, loc, zone());
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::LBRACE: {
|
|
// There are two cases here:
|
|
//
|
|
// 'export' ExportClause ';'
|
|
// and
|
|
// 'export' ExportClause FromClause ';'
|
|
//
|
|
// In the first case, the exported identifiers in ExportClause must
|
|
// not be reserved words, while in the latter they may be. We
|
|
// pass in a location that gets filled with the first reserved word
|
|
// encountered, and then throw a SyntaxError if we are in the
|
|
// non-FromClause case.
|
|
Scanner::Location reserved_loc = Scanner::Location::invalid();
|
|
ZoneList<const AstRawString*> export_names(1, zone());
|
|
ZoneList<Scanner::Location> export_locations(1, zone());
|
|
ZoneList<const AstRawString*> original_names(1, zone());
|
|
ParseExportClause(&export_names, &export_locations, &original_names,
|
|
&reserved_loc, CHECK_OK);
|
|
const AstRawString* module_specifier = nullptr;
|
|
if (CheckContextualKeyword(CStrVector("from"))) {
|
|
module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
} else if (reserved_loc.IsValid()) {
|
|
// No FromClause, so reserved words are invalid in ExportClause.
|
|
*ok = false;
|
|
ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
const int length = export_names.length();
|
|
DCHECK_EQ(length, original_names.length());
|
|
DCHECK_EQ(length, export_locations.length());
|
|
if (module_specifier == nullptr) {
|
|
for (int i = 0; i < length; ++i) {
|
|
module()->AddExport(original_names[i], export_names[i],
|
|
export_locations[i], zone());
|
|
}
|
|
} else if (length == 0) {
|
|
module()->AddEmptyImport(module_specifier);
|
|
} else {
|
|
for (int i = 0; i < length; ++i) {
|
|
module()->AddExport(original_names[i], export_names[i],
|
|
module_specifier, export_locations[i], zone());
|
|
}
|
|
}
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
|
|
case Token::VAR:
|
|
case Token::LET:
|
|
case Token::CONST:
|
|
result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
if (allow_harmony_async_await()) {
|
|
// TODO(neis): Why don't we have the same check here as in
|
|
// ParseStatementListItem?
|
|
Consume(Token::ASYNC);
|
|
result = ParseAsyncFunctionDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
}
|
|
/* falls through */
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return nullptr;
|
|
}
|
|
loc.end_pos = scanner()->location().end_pos;
|
|
|
|
ModuleDescriptor* descriptor = module();
|
|
for (int i = 0; i < names.length(); ++i) {
|
|
descriptor->AddExport(names[i], names[i], loc, zone());
|
|
}
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos,
|
|
VariableKind kind) {
|
|
return scope()->NewUnresolved(factory(), name, begin_pos, kind);
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name) {
|
|
return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos);
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, int pos, bool* ok) {
|
|
return DeclareVariable(name, mode, Variable::DefaultInitializationFlag(mode),
|
|
pos, ok);
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, InitializationFlag init,
|
|
int pos, bool* ok) {
|
|
DCHECK_NOT_NULL(name);
|
|
VariableProxy* proxy = factory()->NewVariableProxy(
|
|
name, NORMAL_VARIABLE, scanner()->location().beg_pos);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, this->scope(), pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, ok, nullptr,
|
|
scanner()->location().end_pos);
|
|
if (!*ok) return nullptr;
|
|
return declaration;
|
|
}
|
|
|
|
Variable* Parser::Declare(Declaration* declaration,
|
|
DeclarationDescriptor::Kind declaration_kind,
|
|
VariableMode mode, InitializationFlag init, bool* ok,
|
|
Scope* scope, int var_end_pos) {
|
|
if (scope == nullptr) {
|
|
scope = this->scope();
|
|
}
|
|
bool sloppy_mode_block_scope_function_redefinition = false;
|
|
Variable* variable = scope->DeclareVariable(
|
|
declaration, mode, init, allow_harmony_restrictive_generators(),
|
|
&sloppy_mode_block_scope_function_redefinition, ok);
|
|
if (!*ok) {
|
|
// If we only have the start position of a proxy, we can't highlight the
|
|
// whole variable name. Pretend its length is 1 so that we highlight at
|
|
// least the first character.
|
|
Scanner::Location loc(declaration->proxy()->position(),
|
|
var_end_pos != kNoSourcePosition
|
|
? var_end_pos
|
|
: declaration->proxy()->position() + 1);
|
|
if (declaration_kind == DeclarationDescriptor::NORMAL) {
|
|
ReportMessageAt(loc, MessageTemplate::kVarRedeclaration,
|
|
declaration->proxy()->raw_name());
|
|
} else {
|
|
ReportMessageAt(loc, MessageTemplate::kParamDupe);
|
|
}
|
|
return nullptr;
|
|
}
|
|
if (sloppy_mode_block_scope_function_redefinition) {
|
|
++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
|
|
}
|
|
return variable;
|
|
}
|
|
|
|
Block* Parser::BuildInitializationBlock(
|
|
DeclarationParsingResult* parsing_result,
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
Block* result = factory()->NewBlock(
|
|
NULL, 1, true, parsing_result->descriptor.declaration_pos);
|
|
for (auto declaration : parsing_result->declarations) {
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
this, result, &(parsing_result->descriptor), &declaration, names,
|
|
CHECK_OK);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void Parser::DeclareAndInitializeVariables(
|
|
Block* block, const DeclarationDescriptor* declaration_descriptor,
|
|
const DeclarationParsingResult::Declaration* declaration,
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
DCHECK_NOT_NULL(block);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
this, block, declaration_descriptor, declaration, names, ok);
|
|
}
|
|
|
|
Statement* Parser::DeclareFunction(const AstRawString* variable_name,
|
|
FunctionLiteral* function, int pos,
|
|
bool is_generator, bool is_async,
|
|
ZoneList<const AstRawString*>* names,
|
|
bool* ok) {
|
|
// In ES6, a function behaves as a lexical binding, except in
|
|
// a script scope, or the initial scope of eval or another function.
|
|
VariableMode mode =
|
|
(!scope()->is_declaration_scope() || scope()->is_module_scope()) ? LET
|
|
: VAR;
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(variable_name, NORMAL_VARIABLE);
|
|
Declaration* declaration =
|
|
factory()->NewFunctionDeclaration(proxy, function, scope(), pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode, kCreatedInitialized,
|
|
CHECK_OK);
|
|
if (names) names->Add(variable_name, zone());
|
|
// Async functions don't undergo sloppy mode block scoped hoisting, and don't
|
|
// allow duplicates in a block. Both are represented by the
|
|
// sloppy_block_function_map. Don't add them to the map for async functions.
|
|
// Generators are also supposed to be prohibited; currently doing this behind
|
|
// a flag and UseCounting violations to assess web compatibility.
|
|
if (is_sloppy(language_mode()) && !scope()->is_declaration_scope() &&
|
|
!is_async && !(allow_harmony_restrictive_generators() && is_generator)) {
|
|
SloppyBlockFunctionStatement* delegate =
|
|
factory()->NewSloppyBlockFunctionStatement(scope());
|
|
DeclarationScope* target_scope = GetDeclarationScope();
|
|
target_scope->DeclareSloppyBlockFunction(variable_name, delegate);
|
|
return delegate;
|
|
}
|
|
return factory()->NewEmptyStatement(kNoSourcePosition);
|
|
}
|
|
|
|
Statement* Parser::DeclareClass(const AstRawString* variable_name,
|
|
Expression* value,
|
|
ZoneList<const AstRawString*>* names,
|
|
int class_token_pos, int end_pos, bool* ok) {
|
|
Declaration* decl =
|
|
DeclareVariable(variable_name, LET, class_token_pos, CHECK_OK);
|
|
decl->proxy()->var()->set_initializer_position(end_pos);
|
|
Assignment* assignment = factory()->NewAssignment(Token::INIT, decl->proxy(),
|
|
value, class_token_pos);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
if (names) names->Add(variable_name, zone());
|
|
return assignment_statement;
|
|
}
|
|
|
|
Statement* Parser::DeclareNative(const AstRawString* name, int pos, bool* ok) {
|
|
// Make sure that the function containing the native declaration
|
|
// isn't lazily compiled. The extension structures are only
|
|
// accessible while parsing the first time not when reparsing
|
|
// because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
|
|
// TODO(1240846): It's weird that native function declarations are
|
|
// introduced dynamically when we meet their declarations, whereas
|
|
// other functions are set up when entering the surrounding scope.
|
|
Declaration* decl = DeclareVariable(name, VAR, pos, CHECK_OK);
|
|
NativeFunctionLiteral* lit =
|
|
factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition);
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, decl->proxy(), lit,
|
|
kNoSourcePosition),
|
|
pos);
|
|
}
|
|
|
|
ZoneList<const AstRawString*>* Parser::DeclareLabel(
|
|
ZoneList<const AstRawString*>* labels, VariableProxy* var, bool* ok) {
|
|
const AstRawString* label = var->raw_name();
|
|
// TODO(1240780): We don't check for redeclaration of labels
|
|
// during preparsing since keeping track of the set of active
|
|
// labels requires nontrivial changes to the way scopes are
|
|
// structured. However, these are probably changes we want to
|
|
// make later anyway so we should go back and fix this then.
|
|
if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) {
|
|
ReportMessage(MessageTemplate::kLabelRedeclaration, label);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
if (labels == nullptr) {
|
|
labels = new (zone()) ZoneList<const AstRawString*>(1, zone());
|
|
}
|
|
labels->Add(label, zone());
|
|
// Remove the "ghost" variable that turned out to be a label
|
|
// from the top scope. This way, we don't try to resolve it
|
|
// during the scope processing.
|
|
scope()->RemoveUnresolved(var);
|
|
return labels;
|
|
}
|
|
|
|
bool Parser::ContainsLabel(ZoneList<const AstRawString*>* labels,
|
|
const AstRawString* label) {
|
|
DCHECK_NOT_NULL(label);
|
|
if (labels != nullptr) {
|
|
for (int i = labels->length(); i-- > 0;) {
|
|
if (labels->at(i) == label) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Expression* Parser::RewriteReturn(Expression* return_value, int pos) {
|
|
if (IsSubclassConstructor(function_state_->kind())) {
|
|
// For subclass constructors we need to return this in case of undefined
|
|
// return a Smi (transformed into an exception in the ConstructStub)
|
|
// for a non object.
|
|
//
|
|
// return expr;
|
|
//
|
|
// Is rewritten as:
|
|
//
|
|
// return (temp = expr) === undefined ? this :
|
|
// %_IsJSReceiver(temp) ? temp : 1;
|
|
|
|
// temp = expr
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
Assignment* assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
|
|
|
|
// %_IsJSReceiver(temp)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(factory()->NewVariableProxy(temp), zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %_IsJSReceiver(temp) ? temp : 1;
|
|
Expression* is_object_conditional = factory()->NewConditional(
|
|
is_spec_object_call, factory()->NewVariableProxy(temp),
|
|
factory()->NewSmiLiteral(1, pos), pos);
|
|
|
|
// temp === undefined
|
|
Expression* is_undefined = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, assign,
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
|
|
|
|
// is_undefined ? this : is_object_conditional
|
|
return_value = factory()->NewConditional(is_undefined, ThisExpression(pos),
|
|
is_object_conditional, pos);
|
|
}
|
|
if (is_generator()) {
|
|
return_value = BuildIteratorResult(return_value, true);
|
|
} else if (is_async_function()) {
|
|
return_value = BuildResolvePromise(return_value, return_value->position());
|
|
}
|
|
return return_value;
|
|
}
|
|
|
|
Expression* Parser::RewriteDoExpression(Block* body, int pos, bool* ok) {
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
DoExpression* expr = factory()->NewDoExpression(body, result, pos);
|
|
if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) {
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
Statement* Parser::RewriteSwitchStatement(Expression* tag,
|
|
SwitchStatement* switch_statement,
|
|
ZoneList<CaseClause*>* cases,
|
|
Scope* scope) {
|
|
// In order to get the CaseClauses to execute in their own lexical scope,
|
|
// but without requiring downstream code to have special scope handling
|
|
// code for switch statements, desugar into blocks as follows:
|
|
// { // To group the statements--harmless to evaluate Expression in scope
|
|
// .tag_variable = Expression;
|
|
// { // To give CaseClauses a scope
|
|
// switch (.tag_variable) { CaseClause* }
|
|
// }
|
|
// }
|
|
|
|
Block* switch_block = factory()->NewBlock(NULL, 2, false, kNoSourcePosition);
|
|
|
|
Variable* tag_variable =
|
|
NewTemporary(ast_value_factory()->dot_switch_tag_string());
|
|
Assignment* tag_assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
|
|
tag->position());
|
|
Statement* tag_statement =
|
|
factory()->NewExpressionStatement(tag_assign, kNoSourcePosition);
|
|
switch_block->statements()->Add(tag_statement, zone());
|
|
|
|
// make statement: undefined;
|
|
// This is needed so the tag isn't returned as the value, in case the switch
|
|
// statements don't have a value.
|
|
switch_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
|
|
Expression* tag_read = factory()->NewVariableProxy(tag_variable);
|
|
switch_statement->Initialize(tag_read, cases);
|
|
Block* cases_block = factory()->NewBlock(NULL, 1, false, kNoSourcePosition);
|
|
cases_block->statements()->Add(switch_statement, zone());
|
|
cases_block->set_scope(scope);
|
|
switch_block->statements()->Add(cases_block, zone());
|
|
return switch_block;
|
|
}
|
|
|
|
void Parser::RewriteCatchPattern(CatchInfo* catch_info, bool* ok) {
|
|
if (catch_info->name == nullptr) {
|
|
DCHECK_NOT_NULL(catch_info->pattern);
|
|
catch_info->name = ast_value_factory()->dot_catch_string();
|
|
}
|
|
catch_info->variable = catch_info->scope->DeclareLocal(
|
|
catch_info->name, VAR, kCreatedInitialized, NORMAL_VARIABLE);
|
|
if (catch_info->pattern != nullptr) {
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
descriptor.scope = scope();
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = catch_info->pattern->position();
|
|
descriptor.initialization_pos = catch_info->pattern->position();
|
|
|
|
// Initializer position for variables declared by the pattern.
|
|
const int initializer_position = position();
|
|
|
|
DeclarationParsingResult::Declaration decl(
|
|
catch_info->pattern, initializer_position,
|
|
factory()->NewVariableProxy(catch_info->variable));
|
|
|
|
catch_info->init_block =
|
|
factory()->NewBlock(nullptr, 8, true, kNoSourcePosition);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
this, catch_info->init_block, &descriptor, &decl,
|
|
&catch_info->bound_names, ok);
|
|
} else {
|
|
catch_info->bound_names.Add(catch_info->name, zone());
|
|
}
|
|
}
|
|
|
|
void Parser::ValidateCatchBlock(const CatchInfo& catch_info, bool* ok) {
|
|
// Check for `catch(e) { let e; }` and similar errors.
|
|
Scope* inner_block_scope = catch_info.inner_block->scope();
|
|
if (inner_block_scope != nullptr) {
|
|
Declaration* decl = inner_block_scope->CheckLexDeclarationsConflictingWith(
|
|
catch_info.bound_names);
|
|
if (decl != nullptr) {
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block,
|
|
Block* finally_block,
|
|
const CatchInfo& catch_info, int pos) {
|
|
// Simplify the AST nodes by converting:
|
|
// 'try B0 catch B1 finally B2'
|
|
// to:
|
|
// 'try { try B0 catch B1 } finally B2'
|
|
|
|
if (catch_block != nullptr && finally_block != nullptr) {
|
|
// If we have both, create an inner try/catch.
|
|
DCHECK_NOT_NULL(catch_info.scope);
|
|
DCHECK_NOT_NULL(catch_info.variable);
|
|
TryCatchStatement* statement;
|
|
if (catch_info.for_promise_reject) {
|
|
statement = factory()->NewTryCatchStatementForPromiseReject(
|
|
try_block, catch_info.scope, catch_info.variable, catch_block,
|
|
kNoSourcePosition);
|
|
} else {
|
|
statement = factory()->NewTryCatchStatement(
|
|
try_block, catch_info.scope, catch_info.variable, catch_block,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
try_block = factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
try_block->statements()->Add(statement, zone());
|
|
catch_block = nullptr; // Clear to indicate it's been handled.
|
|
}
|
|
|
|
if (catch_block != nullptr) {
|
|
// For a try-catch construct append return expressions from the catch block
|
|
// to the list of return expressions.
|
|
function_state_->tail_call_expressions().Append(
|
|
catch_info.tail_call_expressions);
|
|
|
|
DCHECK_NULL(finally_block);
|
|
DCHECK_NOT_NULL(catch_info.scope);
|
|
DCHECK_NOT_NULL(catch_info.variable);
|
|
return factory()->NewTryCatchStatement(
|
|
try_block, catch_info.scope, catch_info.variable, catch_block, pos);
|
|
} else {
|
|
DCHECK_NOT_NULL(finally_block);
|
|
return factory()->NewTryFinallyStatement(try_block, finally_block, pos);
|
|
}
|
|
}
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* Parser::BuildIteratorNextResult(Expression* iterator,
|
|
Variable* result, int pos) {
|
|
Expression* next_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->next_string(), kNoSourcePosition);
|
|
Expression* next_property =
|
|
factory()->NewProperty(iterator, next_literal, kNoSourcePosition);
|
|
ZoneList<Expression*>* next_arguments =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
Expression* next_call =
|
|
factory()->NewCall(next_property, next_arguments, pos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
Expression* left =
|
|
factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
|
|
|
|
// %_IsJSReceiver(...)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(left, zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* result_proxy_again = factory()->NewVariableProxy(result);
|
|
ZoneList<Expression*>* throw_arguments =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
throw_arguments->Add(result_proxy_again, zone());
|
|
Expression* throw_call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
|
|
|
|
return factory()->NewBinaryOperation(
|
|
Token::AND,
|
|
factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
|
|
throw_call, pos);
|
|
}
|
|
|
|
Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt,
|
|
Expression* each,
|
|
Expression* subject,
|
|
Statement* body,
|
|
int each_keyword_pos) {
|
|
ForOfStatement* for_of = stmt->AsForOfStatement();
|
|
if (for_of != NULL) {
|
|
const bool finalize = true;
|
|
return InitializeForOfStatement(for_of, each, subject, body, finalize,
|
|
each_keyword_pos);
|
|
} else {
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Expression* assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, factory()->NewAssignment(Token::ASSIGN, each, temp_proxy,
|
|
kNoSourcePosition),
|
|
scope());
|
|
auto block = factory()->NewBlock(nullptr, 2, false, kNoSourcePosition);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assign_each, kNoSourcePosition),
|
|
zone());
|
|
block->statements()->Add(body, zone());
|
|
body = block;
|
|
each = factory()->NewVariableProxy(temp);
|
|
}
|
|
stmt->AsForInStatement()->Initialize(each, subject, body);
|
|
}
|
|
return stmt;
|
|
}
|
|
|
|
// Special case for legacy for
|
|
//
|
|
// for (var x = initializer in enumerable) body
|
|
//
|
|
// An initialization block of the form
|
|
//
|
|
// {
|
|
// x = initializer;
|
|
// }
|
|
//
|
|
// is returned in this case. It has reserved space for two statements,
|
|
// so that (later on during parsing), the equivalent of
|
|
//
|
|
// for (x in enumerable) body
|
|
//
|
|
// is added as a second statement to it.
|
|
Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) {
|
|
const DeclarationParsingResult::Declaration& decl =
|
|
for_info.parsing_result.declarations[0];
|
|
if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) &&
|
|
decl.pattern->IsVariableProxy() && decl.initializer != nullptr) {
|
|
++use_counts_[v8::Isolate::kForInInitializer];
|
|
const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name();
|
|
VariableProxy* single_var = NewUnresolved(name);
|
|
Block* init_block = factory()->NewBlock(
|
|
nullptr, 2, true, for_info.parsing_result.descriptor.declaration_pos);
|
|
init_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::ASSIGN, single_var,
|
|
decl.initializer, kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
return init_block;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Rewrite a for-in/of statement of the form
|
|
//
|
|
// for (let/const/var x in/of e) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// <let x' be a temporary variable>
|
|
// for (x' in/of e) {
|
|
// let/const/var x;
|
|
// x = x';
|
|
// b;
|
|
// }
|
|
// let x; // for TDZ
|
|
// }
|
|
void Parser::DesugarBindingInForEachStatement(ForInfo* for_info,
|
|
Block** body_block,
|
|
Expression** each_variable,
|
|
bool* ok) {
|
|
DeclarationParsingResult::Declaration& decl =
|
|
for_info->parsing_result.declarations[0];
|
|
Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
|
|
auto each_initialization_block =
|
|
factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
{
|
|
auto descriptor = for_info->parsing_result.descriptor;
|
|
descriptor.declaration_pos = kNoSourcePosition;
|
|
descriptor.initialization_pos = kNoSourcePosition;
|
|
decl.initializer = factory()->NewVariableProxy(temp);
|
|
|
|
bool is_for_var_of =
|
|
for_info->mode == ForEachStatement::ITERATE &&
|
|
for_info->parsing_result.descriptor.mode == VariableMode::VAR;
|
|
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
this, each_initialization_block, &descriptor, &decl,
|
|
(IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) ||
|
|
is_for_var_of)
|
|
? &for_info->bound_names
|
|
: nullptr,
|
|
CHECK_OK_VOID);
|
|
|
|
// Annex B.3.5 prohibits the form
|
|
// `try {} catch(e) { for (var e of {}); }`
|
|
// So if we are parsing a statement like `for (var ... of ...)`
|
|
// we need to walk up the scope chain and look for catch scopes
|
|
// which have a simple binding, then compare their binding against
|
|
// all of the names declared in the init of the for-of we're
|
|
// parsing.
|
|
if (is_for_var_of) {
|
|
Scope* catch_scope = scope();
|
|
while (catch_scope != nullptr && !catch_scope->is_declaration_scope()) {
|
|
if (catch_scope->is_catch_scope()) {
|
|
auto name = catch_scope->catch_variable_name();
|
|
// If it's a simple binding and the name is declared in the for loop.
|
|
if (name != ast_value_factory()->dot_catch_string() &&
|
|
for_info->bound_names.Contains(name)) {
|
|
ReportMessageAt(for_info->parsing_result.bindings_loc,
|
|
MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
}
|
|
catch_scope = catch_scope->outer_scope();
|
|
}
|
|
}
|
|
}
|
|
|
|
*body_block = factory()->NewBlock(nullptr, 3, false, kNoSourcePosition);
|
|
(*body_block)->statements()->Add(each_initialization_block, zone());
|
|
*each_variable = factory()->NewVariableProxy(temp, for_info->position);
|
|
}
|
|
|
|
// Create a TDZ for any lexically-bound names in for in/of statements.
|
|
Block* Parser::CreateForEachStatementTDZ(Block* init_block,
|
|
const ForInfo& for_info, bool* ok) {
|
|
if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
|
|
DCHECK_NULL(init_block);
|
|
|
|
init_block = factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
|
|
for (int i = 0; i < for_info.bound_names.length(); ++i) {
|
|
// TODO(adamk): This needs to be some sort of special
|
|
// INTERNAL variable that's invisible to the debugger
|
|
// but visible to everything else.
|
|
Declaration* tdz_decl = DeclareVariable(for_info.bound_names[i], LET,
|
|
kNoSourcePosition, CHECK_OK);
|
|
tdz_decl->proxy()->var()->set_initializer_position(position());
|
|
}
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
Statement* Parser::InitializeForOfStatement(ForOfStatement* for_of,
|
|
Expression* each,
|
|
Expression* iterable,
|
|
Statement* body, bool finalize,
|
|
int next_result_pos) {
|
|
// Create the auxiliary expressions needed for iterating over the iterable,
|
|
// and initialize the given ForOfStatement with them.
|
|
// If finalize is true, also instrument the loop with code that performs the
|
|
// proper ES6 iterator finalization. In that case, the result is not
|
|
// immediately a ForOfStatement.
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
auto avfactory = ast_value_factory();
|
|
|
|
Variable* iterator = NewTemporary(ast_value_factory()->dot_iterator_string());
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
Variable* completion = NewTemporary(avfactory->empty_string());
|
|
|
|
// iterator = iterable[Symbol.iterator]()
|
|
Expression* assign_iterator;
|
|
{
|
|
assign_iterator = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(iterator),
|
|
GetIterator(iterable, iterable->position()), iterable->position());
|
|
}
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* next_result;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
next_result =
|
|
BuildIteratorNextResult(iterator_proxy, result, next_result_pos);
|
|
}
|
|
|
|
// result.done
|
|
Expression* result_done;
|
|
{
|
|
Expression* done_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->done_string(), kNoSourcePosition);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_done =
|
|
factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition);
|
|
}
|
|
|
|
// result.value
|
|
Expression* result_value;
|
|
{
|
|
Expression* value_literal =
|
|
factory()->NewStringLiteral(avfactory->value_string(), nopos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_value = factory()->NewProperty(result_proxy, value_literal, nopos);
|
|
}
|
|
|
|
// {{completion = kAbruptCompletion;}}
|
|
Statement* set_completion_abrupt;
|
|
if (finalize) {
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
set_completion_abrupt = block;
|
|
}
|
|
|
|
// do { let tmp = #result_value; #set_completion_abrupt; tmp }
|
|
// Expression* result_value (gets overwritten)
|
|
if (finalize) {
|
|
Variable* var_tmp = NewTemporary(avfactory->empty_string());
|
|
Expression* tmp = factory()->NewVariableProxy(var_tmp);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, tmp, result_value, nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
block->statements()->Add(set_completion_abrupt, zone());
|
|
|
|
result_value = factory()->NewDoExpression(block, var_tmp, nopos);
|
|
}
|
|
|
|
// each = #result_value;
|
|
Expression* assign_each;
|
|
{
|
|
assign_each =
|
|
factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos);
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, assign_each->AsAssignment(), scope());
|
|
}
|
|
}
|
|
|
|
// {{completion = kNormalCompletion;}}
|
|
Statement* set_completion_normal;
|
|
if (finalize) {
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
set_completion_normal = block;
|
|
}
|
|
|
|
// { #loop-body; #set_completion_normal }
|
|
// Statement* body (gets overwritten)
|
|
if (finalize) {
|
|
Block* block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
block->statements()->Add(body, zone());
|
|
block->statements()->Add(set_completion_normal, zone());
|
|
body = block;
|
|
}
|
|
|
|
for_of->Initialize(body, iterator, assign_iterator, next_result, result_done,
|
|
assign_each);
|
|
return finalize ? FinalizeForOfStatement(for_of, completion, nopos) : for_of;
|
|
}
|
|
|
|
Statement* Parser::DesugarLexicalBindingsInForStatement(
|
|
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
|
|
Statement* body, Scope* inner_scope, const ForInfo& for_info, bool* ok) {
|
|
// ES6 13.7.4.8 specifies that on each loop iteration the let variables are
|
|
// copied into a new environment. Moreover, the "next" statement must be
|
|
// evaluated not in the environment of the just completed iteration but in
|
|
// that of the upcoming one. We achieve this with the following desugaring.
|
|
// Extra care is needed to preserve the completion value of the original loop.
|
|
//
|
|
// We are given a for statement of the form
|
|
//
|
|
// labels: for (let/const x = i; cond; next) body
|
|
//
|
|
// and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie.,
|
|
// blocks whose ignore_completion_value_ flag is set.
|
|
//
|
|
// {
|
|
// let/const x = i;
|
|
// temp_x = x;
|
|
// first = 1;
|
|
// undefined;
|
|
// outer: for (;;) {
|
|
// let/const x = temp_x;
|
|
// {{ if (first == 1) {
|
|
// first = 0;
|
|
// } else {
|
|
// next;
|
|
// }
|
|
// flag = 1;
|
|
// if (!cond) break;
|
|
// }}
|
|
// labels: for (; flag == 1; flag = 0, temp_x = x) {
|
|
// body
|
|
// }
|
|
// {{ if (flag == 1) // Body used break.
|
|
// break;
|
|
// }}
|
|
// }
|
|
// }
|
|
|
|
DCHECK(for_info.bound_names.length() > 0);
|
|
ZoneList<Variable*> temps(for_info.bound_names.length(), zone());
|
|
|
|
Block* outer_block = factory()->NewBlock(
|
|
nullptr, for_info.bound_names.length() + 4, false, kNoSourcePosition);
|
|
|
|
// Add statement: let/const x = i.
|
|
outer_block->statements()->Add(init, zone());
|
|
|
|
const AstRawString* temp_name = ast_value_factory()->dot_for_string();
|
|
|
|
// For each lexical variable x:
|
|
// make statement: temp_x = x.
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
VariableProxy* proxy = NewUnresolved(for_info.bound_names[i]);
|
|
Variable* temp = NewTemporary(temp_name);
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
|
|
proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
temps.Add(temp, zone());
|
|
}
|
|
|
|
Variable* first = NULL;
|
|
// Make statement: first = 1.
|
|
if (next) {
|
|
first = NewTemporary(temp_name);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// make statement: undefined;
|
|
outer_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
|
|
// Make statement: outer: for (;;)
|
|
// Note that we don't actually create the label, or set this loop up as an
|
|
// explicit break target, instead handing it directly to those nodes that
|
|
// need to know about it. This should be safe because we don't run any code
|
|
// in this function that looks up break targets.
|
|
ForStatement* outer_loop =
|
|
factory()->NewForStatement(NULL, kNoSourcePosition);
|
|
outer_block->statements()->Add(outer_loop, zone());
|
|
outer_block->set_scope(scope());
|
|
|
|
Block* inner_block = factory()->NewBlock(NULL, 3, false, kNoSourcePosition);
|
|
{
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
|
|
Block* ignore_completion_block = factory()->NewBlock(
|
|
nullptr, for_info.bound_names.length() + 3, true, kNoSourcePosition);
|
|
ZoneList<Variable*> inner_vars(for_info.bound_names.length(), zone());
|
|
// For each let variable x:
|
|
// make statement: let/const x = temp_x.
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
Declaration* decl = DeclareVariable(
|
|
for_info.bound_names[i], for_info.parsing_result.descriptor.mode,
|
|
kNoSourcePosition, CHECK_OK);
|
|
inner_vars.Add(decl->proxy()->var(), zone());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
DCHECK(init->position() != kNoSourcePosition);
|
|
decl->proxy()->var()->set_initializer_position(init->position());
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (first == 1) { first = 0; } else { next; }
|
|
if (next) {
|
|
DCHECK(first);
|
|
Expression* compare = NULL;
|
|
// Make compare expression: first == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* clear_first = NULL;
|
|
// Make statement: first = 0.
|
|
{
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
|
|
clear_first =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
}
|
|
Statement* clear_first_or_next = factory()->NewIfStatement(
|
|
compare, clear_first, next, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(clear_first_or_next, zone());
|
|
}
|
|
|
|
Variable* flag = NewTemporary(temp_name);
|
|
// Make statement: flag = 1.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (!cond) break.
|
|
if (cond) {
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* noop = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(
|
|
factory()->NewIfStatement(cond, noop, stop, cond->position()),
|
|
zone());
|
|
}
|
|
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
// Make cond expression for main loop: flag == 1.
|
|
Expression* flag_cond = NULL;
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
// Create chain of expressions "flag = 0, temp_x = x, ..."
|
|
Statement* compound_next_statement = NULL;
|
|
{
|
|
Expression* compound_next = NULL;
|
|
// Make expression: flag = 0.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
|
|
const0, kNoSourcePosition);
|
|
}
|
|
|
|
// Make the comma-separated list of temp_x = x assignments.
|
|
int inner_var_proxy_pos = scanner()->location().beg_pos;
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
|
|
compound_next = factory()->NewBinaryOperation(
|
|
Token::COMMA, compound_next, assignment, kNoSourcePosition);
|
|
}
|
|
|
|
compound_next_statement =
|
|
factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
|
|
}
|
|
|
|
// Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
|
|
// Note that we re-use the original loop node, which retains its labels
|
|
// and ensures that any break or continue statements in body point to
|
|
// the right place.
|
|
loop->Initialize(NULL, flag_cond, compound_next_statement, body);
|
|
inner_block->statements()->Add(loop, zone());
|
|
|
|
// Make statement: {{if (flag == 1) break;}}
|
|
{
|
|
Expression* compare = NULL;
|
|
// Make compare expresion: flag == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* empty = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
Statement* if_flag_break =
|
|
factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
|
|
Block* ignore_completion_block =
|
|
factory()->NewBlock(NULL, 1, true, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(if_flag_break, zone());
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
}
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
inner_block->set_scope(inner_scope);
|
|
}
|
|
|
|
outer_loop->Initialize(NULL, NULL, NULL, inner_block);
|
|
return outer_block;
|
|
}
|
|
|
|
void Parser::AddArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr, int end_pos,
|
|
bool* ok) {
|
|
// ArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
|
|
// Tail
|
|
// NonTailArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
|
|
// VariableProxy
|
|
// Tail ::
|
|
// VariableProxy
|
|
// Spread(VariableProxy)
|
|
//
|
|
// As we need to visit the parameters in left-to-right order, we recurse on
|
|
// the left-hand side of comma expressions.
|
|
//
|
|
if (expr->IsBinaryOperation()) {
|
|
BinaryOperation* binop = expr->AsBinaryOperation();
|
|
// The classifier has already run, so we know that the expression is a valid
|
|
// arrow function formals production.
|
|
DCHECK_EQ(binop->op(), Token::COMMA);
|
|
Expression* left = binop->left();
|
|
Expression* right = binop->right();
|
|
int comma_pos = binop->position();
|
|
AddArrowFunctionFormalParameters(parameters, left, comma_pos,
|
|
CHECK_OK_VOID);
|
|
// LHS of comma expression should be unparenthesized.
|
|
expr = right;
|
|
}
|
|
|
|
// Only the right-most expression may be a rest parameter.
|
|
DCHECK(!parameters->has_rest);
|
|
|
|
bool is_rest = expr->IsSpread();
|
|
if (is_rest) {
|
|
expr = expr->AsSpread()->expression();
|
|
parameters->has_rest = true;
|
|
}
|
|
if (parameters->is_simple) {
|
|
parameters->is_simple = !is_rest && expr->IsVariableProxy();
|
|
}
|
|
|
|
Expression* initializer = nullptr;
|
|
if (expr->IsAssignment()) {
|
|
Assignment* assignment = expr->AsAssignment();
|
|
DCHECK(!assignment->is_compound());
|
|
initializer = assignment->value();
|
|
expr = assignment->target();
|
|
}
|
|
|
|
AddFormalParameter(parameters, expr, initializer, end_pos, is_rest);
|
|
}
|
|
|
|
void Parser::DeclareArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr,
|
|
const Scanner::Location& params_loc, Scanner::Location* duplicate_loc,
|
|
bool* ok) {
|
|
if (expr->IsEmptyParentheses()) return;
|
|
|
|
AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos,
|
|
CHECK_OK_VOID);
|
|
|
|
if (parameters->arity > Code::kMaxArguments) {
|
|
ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
|
|
ExpressionClassifier classifier(this);
|
|
if (!parameters->is_simple) {
|
|
this->classifier()->RecordNonSimpleParameter();
|
|
}
|
|
for (int i = 0; i < parameters->arity; ++i) {
|
|
auto parameter = parameters->at(i);
|
|
DeclareFormalParameter(parameters->scope, parameter);
|
|
if (!this->classifier()
|
|
->is_valid_formal_parameter_list_without_duplicates() &&
|
|
!duplicate_loc->IsValid()) {
|
|
*duplicate_loc =
|
|
this->classifier()->duplicate_formal_parameter_error().location;
|
|
}
|
|
}
|
|
DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters());
|
|
}
|
|
|
|
void Parser::ReindexLiterals(const ParserFormalParameters& parameters) {
|
|
if (function_state_->materialized_literal_count() > 0) {
|
|
AstLiteralReindexer reindexer;
|
|
|
|
for (const auto p : parameters.params) {
|
|
if (p.pattern != nullptr) reindexer.Reindex(p.pattern);
|
|
if (p.initializer != nullptr) reindexer.Reindex(p.initializer);
|
|
}
|
|
|
|
DCHECK(reindexer.count() <= function_state_->materialized_literal_count());
|
|
}
|
|
}
|
|
|
|
void Parser::PrepareGeneratorVariables(FunctionState* function_state) {
|
|
// For generators, allocating variables in contexts is currently a win
|
|
// because it minimizes the work needed to suspend and resume an
|
|
// activation. The machine code produced for generators (by full-codegen)
|
|
// relies on this forced context allocation, but not in an essential way.
|
|
scope()->ForceContextAllocation();
|
|
|
|
// Calling a generator returns a generator object. That object is stored
|
|
// in a temporary variable, a definition that is used by "yield"
|
|
// expressions.
|
|
Variable* temp =
|
|
NewTemporary(ast_value_factory()->dot_generator_object_string());
|
|
function_state->set_generator_object_variable(temp);
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseFunctionLiteral(
|
|
const AstRawString* function_name, Scanner::Location function_name_location,
|
|
FunctionNameValidity function_name_validity, FunctionKind kind,
|
|
int function_token_pos, FunctionLiteral::FunctionType function_type,
|
|
LanguageMode language_mode, bool* ok) {
|
|
// Function ::
|
|
// '(' FormalParameterList? ')' '{' FunctionBody '}'
|
|
//
|
|
// Getter ::
|
|
// '(' ')' '{' FunctionBody '}'
|
|
//
|
|
// Setter ::
|
|
// '(' PropertySetParameterList ')' '{' FunctionBody '}'
|
|
|
|
int pos = function_token_pos == kNoSourcePosition ? peek_position()
|
|
: function_token_pos;
|
|
|
|
// Anonymous functions were passed either the empty symbol or a null
|
|
// handle as the function name. Remember if we were passed a non-empty
|
|
// handle to decide whether to invoke function name inference.
|
|
bool should_infer_name = function_name == NULL;
|
|
|
|
// We want a non-null handle as the function name.
|
|
if (should_infer_name) {
|
|
function_name = ast_value_factory()->empty_string();
|
|
}
|
|
|
|
FunctionLiteral::EagerCompileHint eager_compile_hint =
|
|
function_state_->next_function_is_parenthesized()
|
|
? FunctionLiteral::kShouldEagerCompile
|
|
: default_eager_compile_hint();
|
|
|
|
// Determine if the function can be parsed lazily. Lazy parsing is
|
|
// different from lazy compilation; we need to parse more eagerly than we
|
|
// compile.
|
|
|
|
// We can only parse lazily if we also compile lazily. The heuristics for lazy
|
|
// compilation are:
|
|
// - It must not have been prohibited by the caller to Parse (some callers
|
|
// need a full AST).
|
|
// - The outer scope must allow lazy compilation of inner functions.
|
|
// - The function mustn't be a function expression with an open parenthesis
|
|
// before; we consider that a hint that the function will be called
|
|
// immediately, and it would be a waste of time to make it lazily
|
|
// compiled.
|
|
// These are all things we can know at this point, without looking at the
|
|
// function itself.
|
|
|
|
// We separate between lazy parsing top level functions and lazy parsing inner
|
|
// functions, because the latter needs to do more work. In particular, we need
|
|
// to track unresolved variables to distinguish between these cases:
|
|
// (function foo() {
|
|
// bar = function() { return 1; }
|
|
// })();
|
|
// and
|
|
// (function foo() {
|
|
// var a = 1;
|
|
// bar = function() { return a; }
|
|
// })();
|
|
|
|
// Now foo will be parsed eagerly and compiled eagerly (optimization: assume
|
|
// parenthesis before the function means that it will be called
|
|
// immediately). bar can be parsed lazily, but we need to parse it in a mode
|
|
// that tracks unresolved variables.
|
|
DCHECK_IMPLIES(parse_lazily(), FLAG_lazy);
|
|
DCHECK_IMPLIES(parse_lazily(), allow_lazy());
|
|
DCHECK_IMPLIES(parse_lazily(), extension_ == nullptr);
|
|
|
|
bool can_preparse = parse_lazily() &&
|
|
eager_compile_hint == FunctionLiteral::kShouldLazyCompile;
|
|
|
|
bool is_lazy_top_level_function =
|
|
can_preparse && impl()->AllowsLazyParsingWithoutUnresolvedVariables();
|
|
|
|
RuntimeCallTimerScope runtime_timer(runtime_call_stats_,
|
|
&RuntimeCallStats::ParseFunctionLiteral);
|
|
|
|
// Determine whether we can still lazy parse the inner function.
|
|
// The preconditions are:
|
|
// - Lazy compilation has to be enabled.
|
|
// - Neither V8 natives nor native function declarations can be allowed,
|
|
// since parsing one would retroactively force the function to be
|
|
// eagerly compiled.
|
|
// - The invoker of this parser can't depend on the AST being eagerly
|
|
// built (either because the function is about to be compiled, or
|
|
// because the AST is going to be inspected for some reason).
|
|
// - Because of the above, we can't be attempting to parse a
|
|
// FunctionExpression; even without enclosing parentheses it might be
|
|
// immediately invoked.
|
|
// - The function literal shouldn't be hinted to eagerly compile.
|
|
// - For asm.js functions the body needs to be available when module
|
|
// validation is active, because we examine the entire module at once.
|
|
|
|
// Inner functions will be parsed using a temporary Zone. After parsing, we
|
|
// will migrate unresolved variable into a Scope in the main Zone.
|
|
// TODO(marja): Refactor parsing modes: simplify this.
|
|
bool use_temp_zone =
|
|
(FLAG_lazy_inner_functions
|
|
? can_preparse
|
|
: (is_lazy_top_level_function ||
|
|
(allow_lazy() && function_type == FunctionLiteral::kDeclaration &&
|
|
eager_compile_hint == FunctionLiteral::kShouldLazyCompile))) &&
|
|
!(FLAG_validate_asm && scope()->IsAsmModule());
|
|
bool is_lazy_inner_function =
|
|
use_temp_zone && FLAG_lazy_inner_functions && !is_lazy_top_level_function;
|
|
|
|
// This Scope lives in the main zone. We'll migrate data into that zone later.
|
|
DeclarationScope* scope = NewFunctionScope(kind);
|
|
SetLanguageMode(scope, language_mode);
|
|
#ifdef DEBUG
|
|
scope->SetScopeName(function_name);
|
|
#endif
|
|
|
|
ZoneList<Statement*>* body = nullptr;
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
bool should_be_used_once_hint = false;
|
|
int num_parameters = -1;
|
|
int function_length = -1;
|
|
bool has_duplicate_parameters = false;
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
scope->set_start_position(scanner()->location().beg_pos);
|
|
|
|
{
|
|
// Temporary zones can nest. When we migrate free variables (see below), we
|
|
// need to recreate them in the previous Zone.
|
|
AstNodeFactory previous_zone_ast_node_factory(ast_value_factory());
|
|
previous_zone_ast_node_factory.set_zone(zone());
|
|
|
|
// Open a new zone scope, which sets our AstNodeFactory to allocate in the
|
|
// new temporary zone if the preconditions are satisfied, and ensures that
|
|
// the previous zone is always restored after parsing the body. To be able
|
|
// to do scope analysis correctly after full parsing, we migrate needed
|
|
// information when the function is parsed.
|
|
Zone temp_zone(zone()->allocator(), ZONE_NAME);
|
|
DiscardableZoneScope zone_scope(this, &temp_zone, use_temp_zone);
|
|
#ifdef DEBUG
|
|
if (use_temp_zone) scope->set_needs_migration();
|
|
#endif
|
|
|
|
// Eager or lazy parse? If is_lazy_top_level_function, we'll parse
|
|
// lazily. We'll call SkipFunction, which may decide to
|
|
// abort lazy parsing if it suspects that wasn't a good idea. If so (in
|
|
// which case the parser is expected to have backtracked), or if we didn't
|
|
// try to lazy parse in the first place, we'll have to parse eagerly.
|
|
if (is_lazy_top_level_function || is_lazy_inner_function) {
|
|
Scanner::BookmarkScope bookmark(scanner());
|
|
bookmark.Set();
|
|
LazyParsingResult result =
|
|
SkipFunction(kind, scope, &num_parameters, &function_length,
|
|
&has_duplicate_parameters, &materialized_literal_count,
|
|
&expected_property_count, is_lazy_inner_function,
|
|
is_lazy_top_level_function, CHECK_OK);
|
|
|
|
if (result == kLazyParsingAborted) {
|
|
DCHECK(is_lazy_top_level_function);
|
|
bookmark.Apply();
|
|
// Trigger eager (re-)parsing, just below this block.
|
|
is_lazy_top_level_function = false;
|
|
|
|
// This is probably an initialization function. Inform the compiler it
|
|
// should also eager-compile this function, and that we expect it to be
|
|
// used once.
|
|
eager_compile_hint = FunctionLiteral::kShouldEagerCompile;
|
|
should_be_used_once_hint = true;
|
|
scope->ResetAfterPreparsing(ast_value_factory(), true);
|
|
zone_scope.Reset();
|
|
use_temp_zone = false;
|
|
}
|
|
}
|
|
|
|
if (!is_lazy_top_level_function && !is_lazy_inner_function) {
|
|
body = ParseFunction(
|
|
function_name, pos, kind, function_type, scope, &num_parameters,
|
|
&function_length, &has_duplicate_parameters,
|
|
&materialized_literal_count, &expected_property_count, CHECK_OK);
|
|
}
|
|
|
|
DCHECK(use_temp_zone || !is_lazy_top_level_function);
|
|
if (use_temp_zone) {
|
|
// If the preconditions are correct the function body should never be
|
|
// accessed, but do this anyway for better behaviour if they're wrong.
|
|
body = nullptr;
|
|
scope->AnalyzePartially(&previous_zone_ast_node_factory);
|
|
}
|
|
|
|
if (FLAG_trace_preparse) {
|
|
PrintF(" [%s]: %i-%i %.*s\n",
|
|
is_lazy_top_level_function
|
|
? "Preparse no-resolution"
|
|
: (use_temp_zone ? "Preparse resolution" : "Full parse"),
|
|
scope->start_position(), scope->end_position(),
|
|
function_name->byte_length(), function_name->raw_data());
|
|
if (is_lazy_top_level_function) {
|
|
CHANGE_CURRENT_RUNTIME_COUNTER(runtime_call_stats_,
|
|
PreParseNoVariableResolution);
|
|
} else if (use_temp_zone) {
|
|
CHANGE_CURRENT_RUNTIME_COUNTER(runtime_call_stats_,
|
|
PreParseWithVariableResolution);
|
|
}
|
|
}
|
|
|
|
// Validate function name. We can do this only after parsing the function,
|
|
// since the function can declare itself strict.
|
|
language_mode = scope->language_mode();
|
|
CheckFunctionName(language_mode, function_name, function_name_validity,
|
|
function_name_location, CHECK_OK);
|
|
|
|
if (is_strict(language_mode)) {
|
|
CheckStrictOctalLiteral(scope->start_position(), scope->end_position(),
|
|
CHECK_OK);
|
|
CheckDecimalLiteralWithLeadingZero(scope->start_position(),
|
|
scope->end_position());
|
|
}
|
|
CheckConflictingVarDeclarations(scope, CHECK_OK);
|
|
} // DiscardableZoneScope goes out of scope.
|
|
|
|
FunctionLiteral::ParameterFlag duplicate_parameters =
|
|
has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
|
|
: FunctionLiteral::kNoDuplicateParameters;
|
|
|
|
// Note that the FunctionLiteral needs to be created in the main Zone again.
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
function_name, scope, body, materialized_literal_count,
|
|
expected_property_count, num_parameters, function_length,
|
|
duplicate_parameters, function_type, eager_compile_hint, pos, true);
|
|
function_literal->set_function_token_position(function_token_pos);
|
|
if (should_be_used_once_hint)
|
|
function_literal->set_should_be_used_once_hint();
|
|
|
|
if (should_infer_name) {
|
|
DCHECK_NOT_NULL(fni_);
|
|
fni_->AddFunction(function_literal);
|
|
}
|
|
return function_literal;
|
|
}
|
|
|
|
Parser::LazyParsingResult Parser::SkipFunction(
|
|
FunctionKind kind, DeclarationScope* function_scope, int* num_parameters,
|
|
int* function_length, bool* has_duplicate_parameters,
|
|
int* materialized_literal_count, int* expected_property_count,
|
|
bool is_inner_function, bool may_abort, bool* ok) {
|
|
DCHECK_NE(kNoSourcePosition, function_scope->start_position());
|
|
if (produce_cached_parse_data()) CHECK(log_);
|
|
|
|
DCHECK_IMPLIES(IsArrowFunction(kind),
|
|
scanner()->current_token() == Token::ARROW);
|
|
|
|
// Inner functions are not part of the cached data.
|
|
if (!is_inner_function && consume_cached_parse_data() &&
|
|
!cached_parse_data_->rejected()) {
|
|
// If we have cached data, we use it to skip parsing the function. The data
|
|
// contains the information we need to construct the lazy function.
|
|
FunctionEntry entry =
|
|
cached_parse_data_->GetFunctionEntry(function_scope->start_position());
|
|
// Check that cached data is valid. If not, mark it as invalid (the embedder
|
|
// handles it). Note that end position greater than end of stream is safe,
|
|
// and hard to check.
|
|
if (entry.is_valid() &&
|
|
entry.end_pos() > function_scope->start_position()) {
|
|
total_preparse_skipped_ += entry.end_pos() - position();
|
|
function_scope->set_end_position(entry.end_pos());
|
|
scanner()->SeekForward(entry.end_pos() - 1);
|
|
Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
|
|
*num_parameters = entry.num_parameters();
|
|
*function_length = entry.function_length();
|
|
*has_duplicate_parameters = entry.has_duplicate_parameters();
|
|
*materialized_literal_count = entry.literal_count();
|
|
*expected_property_count = entry.property_count();
|
|
SetLanguageMode(function_scope, entry.language_mode());
|
|
if (entry.uses_super_property())
|
|
function_scope->RecordSuperPropertyUsage();
|
|
if (entry.calls_eval()) function_scope->RecordEvalCall();
|
|
return kLazyParsingComplete;
|
|
}
|
|
cached_parse_data_->Reject();
|
|
}
|
|
|
|
// With no cached data, we partially parse the function, without building an
|
|
// AST. This gathers the data needed to build a lazy function.
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
|
|
|
|
if (reusable_preparser_ == NULL) {
|
|
reusable_preparser_ = new PreParser(zone(), &scanner_, ast_value_factory(),
|
|
&pending_error_handler_,
|
|
runtime_call_stats_, stack_limit_);
|
|
reusable_preparser_->set_allow_lazy(true);
|
|
#define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name());
|
|
SET_ALLOW(natives);
|
|
SET_ALLOW(harmony_do_expressions);
|
|
SET_ALLOW(harmony_function_sent);
|
|
SET_ALLOW(harmony_async_await);
|
|
SET_ALLOW(harmony_trailing_commas);
|
|
SET_ALLOW(harmony_class_fields);
|
|
#undef SET_ALLOW
|
|
}
|
|
// Aborting inner function preparsing would leave scopes in an inconsistent
|
|
// state; we don't parse inner functions in the abortable mode anyway.
|
|
DCHECK(!is_inner_function || !may_abort);
|
|
|
|
PreParser::PreParseResult result = reusable_preparser_->PreParseFunction(
|
|
kind, function_scope, parsing_module_, is_inner_function, may_abort,
|
|
use_counts_);
|
|
|
|
// Return immediately if pre-parser decided to abort parsing.
|
|
if (result == PreParser::kPreParseAbort) return kLazyParsingAborted;
|
|
if (result == PreParser::kPreParseStackOverflow) {
|
|
// Propagate stack overflow.
|
|
set_stack_overflow();
|
|
*ok = false;
|
|
return kLazyParsingComplete;
|
|
}
|
|
if (pending_error_handler_.has_pending_error()) {
|
|
*ok = false;
|
|
return kLazyParsingComplete;
|
|
}
|
|
PreParserLogger* logger = reusable_preparser_->logger();
|
|
function_scope->set_end_position(logger->end());
|
|
Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
|
|
total_preparse_skipped_ +=
|
|
function_scope->end_position() - function_scope->start_position();
|
|
*num_parameters = logger->num_parameters();
|
|
*function_length = logger->function_length();
|
|
*has_duplicate_parameters = logger->has_duplicate_parameters();
|
|
*materialized_literal_count = logger->literals();
|
|
*expected_property_count = logger->properties();
|
|
if (!is_inner_function && produce_cached_parse_data()) {
|
|
DCHECK(log_);
|
|
log_->LogFunction(
|
|
function_scope->start_position(), function_scope->end_position(),
|
|
*num_parameters, *function_length, *has_duplicate_parameters,
|
|
*materialized_literal_count, *expected_property_count, language_mode(),
|
|
function_scope->uses_super_property(), function_scope->calls_eval());
|
|
}
|
|
return kLazyParsingComplete;
|
|
}
|
|
|
|
|
|
Statement* Parser::BuildAssertIsCoercible(Variable* var) {
|
|
// if (var === null || var === undefined)
|
|
// throw /* type error kNonCoercible) */;
|
|
|
|
Expression* condition = factory()->NewBinaryOperation(
|
|
Token::OR,
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewNullLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
Expression* throw_type_error =
|
|
NewThrowTypeError(MessageTemplate::kNonCoercible,
|
|
ast_value_factory()->empty_string(), kNoSourcePosition);
|
|
IfStatement* if_statement = factory()->NewIfStatement(
|
|
condition,
|
|
factory()->NewExpressionStatement(throw_type_error, kNoSourcePosition),
|
|
factory()->NewEmptyStatement(kNoSourcePosition), kNoSourcePosition);
|
|
return if_statement;
|
|
}
|
|
|
|
|
|
class InitializerRewriter final
|
|
: public AstTraversalVisitor<InitializerRewriter> {
|
|
public:
|
|
InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser,
|
|
Scope* scope)
|
|
: AstTraversalVisitor(stack_limit, root),
|
|
parser_(parser),
|
|
scope_(scope) {}
|
|
|
|
private:
|
|
// This is required so that the overriden Visit* methods can be
|
|
// called by the base class (template).
|
|
friend class AstTraversalVisitor<InitializerRewriter>;
|
|
|
|
// Just rewrite destructuring assignments wrapped in RewritableExpressions.
|
|
void VisitRewritableExpression(RewritableExpression* to_rewrite) {
|
|
if (to_rewrite->is_rewritten()) return;
|
|
Parser::PatternRewriter::RewriteDestructuringAssignment(parser_, to_rewrite,
|
|
scope_);
|
|
}
|
|
|
|
// Code in function literals does not need to be eagerly rewritten, it will be
|
|
// rewritten when scheduled.
|
|
void VisitFunctionLiteral(FunctionLiteral* expr) {}
|
|
|
|
Parser* parser_;
|
|
Scope* scope_;
|
|
};
|
|
|
|
|
|
void Parser::RewriteParameterInitializer(Expression* expr, Scope* scope) {
|
|
InitializerRewriter rewriter(stack_limit_, expr, this, scope);
|
|
rewriter.Run();
|
|
}
|
|
|
|
|
|
Block* Parser::BuildParameterInitializationBlock(
|
|
const ParserFormalParameters& parameters, bool* ok) {
|
|
DCHECK(!parameters.is_simple);
|
|
DCHECK(scope()->is_function_scope());
|
|
Block* init_block = factory()->NewBlock(NULL, 1, true, kNoSourcePosition);
|
|
for (int i = 0; i < parameters.params.length(); ++i) {
|
|
auto parameter = parameters.params[i];
|
|
if (parameter.is_rest && parameter.pattern->IsVariableProxy()) break;
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
|
|
descriptor.scope = scope();
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = parameter.pattern->position();
|
|
// The position that will be used by the AssignmentExpression
|
|
// which copies from the temp parameter to the pattern.
|
|
//
|
|
// TODO(adamk): Should this be kNoSourcePosition, since
|
|
// it's just copying from a temp var to the real param var?
|
|
descriptor.initialization_pos = parameter.pattern->position();
|
|
Expression* initial_value =
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i));
|
|
if (parameter.initializer != nullptr) {
|
|
// IS_UNDEFINED($param) ? initializer : $param
|
|
|
|
// Ensure initializer is rewritten
|
|
RewriteParameterInitializer(parameter.initializer, scope());
|
|
|
|
auto condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT,
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i)),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
|
|
initial_value = factory()->NewConditional(
|
|
condition, parameter.initializer, initial_value, kNoSourcePosition);
|
|
descriptor.initialization_pos = parameter.initializer->position();
|
|
}
|
|
|
|
Scope* param_scope = scope();
|
|
Block* param_block = init_block;
|
|
if (!parameter.is_simple() && scope()->calls_sloppy_eval()) {
|
|
param_scope = NewVarblockScope();
|
|
param_scope->set_start_position(descriptor.initialization_pos);
|
|
param_scope->set_end_position(parameter.initializer_end_position);
|
|
param_scope->RecordEvalCall();
|
|
param_block = factory()->NewBlock(NULL, 8, true, kNoSourcePosition);
|
|
param_block->set_scope(param_scope);
|
|
descriptor.hoist_scope = scope();
|
|
// Pass the appropriate scope in so that PatternRewriter can appropriately
|
|
// rewrite inner initializers of the pattern to param_scope
|
|
descriptor.scope = param_scope;
|
|
// Rewrite the outer initializer to point to param_scope
|
|
ReparentParameterExpressionScope(stack_limit(), initial_value,
|
|
param_scope);
|
|
}
|
|
|
|
BlockState block_state(&scope_state_, param_scope);
|
|
DeclarationParsingResult::Declaration decl(
|
|
parameter.pattern, parameter.initializer_end_position, initial_value);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
this, param_block, &descriptor, &decl, nullptr, CHECK_OK);
|
|
|
|
if (param_block != init_block) {
|
|
param_scope = block_state.FinalizedBlockScope();
|
|
if (param_scope != nullptr) {
|
|
CheckConflictingVarDeclarations(param_scope, CHECK_OK);
|
|
}
|
|
init_block->statements()->Add(param_block, zone());
|
|
}
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
Block* Parser::BuildRejectPromiseOnException(Block* inner_block, bool* ok) {
|
|
// .promise = %AsyncFunctionPromiseCreate();
|
|
// try {
|
|
// <inner_block>
|
|
// } catch (.catch) {
|
|
// %RejectPromise(.promise, .catch);
|
|
// return .promise;
|
|
// } finally {
|
|
// %AsyncFunctionPromiseRelease(.promise);
|
|
// }
|
|
Block* result = factory()->NewBlock(nullptr, 2, true, kNoSourcePosition);
|
|
|
|
// .promise = %AsyncFunctionPromiseCreate();
|
|
Statement* set_promise;
|
|
{
|
|
Expression* create_promise = factory()->NewCallRuntime(
|
|
Context::ASYNC_FUNCTION_PROMISE_CREATE_INDEX,
|
|
new (zone()) ZoneList<Expression*>(0, zone()), kNoSourcePosition);
|
|
Assignment* assign_promise = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(PromiseVariable()),
|
|
create_promise, kNoSourcePosition);
|
|
set_promise =
|
|
factory()->NewExpressionStatement(assign_promise, kNoSourcePosition);
|
|
}
|
|
result->statements()->Add(set_promise, zone());
|
|
|
|
// catch (.catch) { return %RejectPromise(.promise, .catch), .promise }
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
catch_scope->set_is_hidden();
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, NORMAL_VARIABLE);
|
|
Block* catch_block = factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
|
|
Expression* promise_reject = BuildRejectPromise(
|
|
factory()->NewVariableProxy(catch_variable), kNoSourcePosition);
|
|
ReturnStatement* return_promise_reject =
|
|
factory()->NewReturnStatement(promise_reject, kNoSourcePosition);
|
|
catch_block->statements()->Add(return_promise_reject, zone());
|
|
|
|
TryStatement* try_catch_statement =
|
|
factory()->NewTryCatchStatementForAsyncAwait(inner_block, catch_scope,
|
|
catch_variable, catch_block,
|
|
kNoSourcePosition);
|
|
|
|
// There is no TryCatchFinally node, so wrap it in an outer try/finally
|
|
Block* outer_try_block =
|
|
factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
outer_try_block->statements()->Add(try_catch_statement, zone());
|
|
|
|
// finally { %AsyncFunctionPromiseRelease(.promise) }
|
|
Block* finally_block =
|
|
factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
{
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
|
|
Expression* call_promise_release = factory()->NewCallRuntime(
|
|
Context::ASYNC_FUNCTION_PROMISE_RELEASE_INDEX, args, kNoSourcePosition);
|
|
Statement* promise_release = factory()->NewExpressionStatement(
|
|
call_promise_release, kNoSourcePosition);
|
|
finally_block->statements()->Add(promise_release, zone());
|
|
}
|
|
|
|
Statement* try_finally_statement = factory()->NewTryFinallyStatement(
|
|
outer_try_block, finally_block, kNoSourcePosition);
|
|
|
|
result->statements()->Add(try_finally_statement, zone());
|
|
return result;
|
|
}
|
|
|
|
Expression* Parser::BuildCreateJSGeneratorObject(int pos, FunctionKind kind) {
|
|
DCHECK_NOT_NULL(function_state_->generator_object_variable());
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewThisFunction(pos), zone());
|
|
args->Add(IsArrowFunction(kind) ? GetLiteralUndefined(pos)
|
|
: ThisExpression(kNoSourcePosition),
|
|
zone());
|
|
return factory()->NewCallRuntime(Runtime::kCreateJSGeneratorObject, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* Parser::BuildResolvePromise(Expression* value, int pos) {
|
|
// %ResolvePromise(.promise, value), .promise
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
|
|
args->Add(value, zone());
|
|
Expression* call_runtime =
|
|
factory()->NewCallRuntime(Context::PROMISE_RESOLVE_INDEX, args, pos);
|
|
return factory()->NewBinaryOperation(
|
|
Token::COMMA, call_runtime,
|
|
factory()->NewVariableProxy(PromiseVariable()), pos);
|
|
}
|
|
|
|
Expression* Parser::BuildRejectPromise(Expression* value, int pos) {
|
|
// %RejectPromiseNoDebugEvent(.promise, value, true), .promise
|
|
// The NoDebugEvent variant disables the additional debug event for the
|
|
// rejection since a debug event already happened for the exception that got
|
|
// us here.
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
|
|
args->Add(value, zone());
|
|
Expression* call_runtime = factory()->NewCallRuntime(
|
|
Context::REJECT_PROMISE_NO_DEBUG_EVENT_INDEX, args, pos);
|
|
return factory()->NewBinaryOperation(
|
|
Token::COMMA, call_runtime,
|
|
factory()->NewVariableProxy(PromiseVariable()), pos);
|
|
}
|
|
|
|
Variable* Parser::PromiseVariable() {
|
|
// Based on the various compilation paths, there are many different code
|
|
// paths which may be the first to access the Promise temporary. Whichever
|
|
// comes first should create it and stash it in the FunctionState.
|
|
Variable* promise = function_state_->promise_variable();
|
|
if (function_state_->promise_variable() == nullptr) {
|
|
promise = scope()->NewTemporary(ast_value_factory()->empty_string());
|
|
function_state_->set_promise_variable(promise);
|
|
}
|
|
return promise;
|
|
}
|
|
|
|
Expression* Parser::BuildInitialYield(int pos, FunctionKind kind) {
|
|
Expression* allocation = BuildCreateJSGeneratorObject(pos, kind);
|
|
VariableProxy* init_proxy =
|
|
factory()->NewVariableProxy(function_state_->generator_object_variable());
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, init_proxy, allocation, kNoSourcePosition);
|
|
VariableProxy* get_proxy =
|
|
factory()->NewVariableProxy(function_state_->generator_object_variable());
|
|
// The position of the yield is important for reporting the exception
|
|
// caused by calling the .throw method on a generator suspended at the
|
|
// initial yield (i.e. right after generator instantiation).
|
|
return factory()->NewYield(get_proxy, assignment, scope()->start_position(),
|
|
Yield::kOnExceptionThrow);
|
|
}
|
|
|
|
ZoneList<Statement*>* Parser::ParseFunction(
|
|
const AstRawString* function_name, int pos, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type,
|
|
DeclarationScope* function_scope, int* num_parameters, int* function_length,
|
|
bool* has_duplicate_parameters, int* materialized_literal_count,
|
|
int* expected_property_count, bool* ok) {
|
|
FunctionState function_state(&function_state_, &scope_state_, function_scope);
|
|
|
|
DuplicateFinder duplicate_finder(scanner()->unicode_cache());
|
|
ExpressionClassifier formals_classifier(this, &duplicate_finder);
|
|
|
|
if (IsGeneratorFunction(kind)) PrepareGeneratorVariables(&function_state);
|
|
|
|
ParserFormalParameters formals(function_scope);
|
|
ParseFormalParameterList(&formals, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
int formals_end_position = scanner()->location().end_pos;
|
|
*num_parameters = formals.num_parameters();
|
|
*function_length = formals.function_length;
|
|
|
|
CheckArityRestrictions(formals.arity, kind, formals.has_rest,
|
|
function_scope->start_position(), formals_end_position,
|
|
CHECK_OK);
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
ZoneList<Statement*>* body = ParseEagerFunctionBody(
|
|
function_name, pos, formals, kind, function_type, ok);
|
|
|
|
// Validate parameter names. We can do this only after parsing the function,
|
|
// since the function can declare itself strict.
|
|
const bool allow_duplicate_parameters =
|
|
is_sloppy(function_scope->language_mode()) && formals.is_simple &&
|
|
!IsConciseMethod(kind);
|
|
ValidateFormalParameters(function_scope->language_mode(),
|
|
allow_duplicate_parameters, CHECK_OK);
|
|
|
|
RewriteDestructuringAssignments();
|
|
|
|
*has_duplicate_parameters =
|
|
!classifier()->is_valid_formal_parameter_list_without_duplicates();
|
|
|
|
*materialized_literal_count = function_state.materialized_literal_count();
|
|
*expected_property_count = function_state.expected_property_count();
|
|
return body;
|
|
}
|
|
|
|
ZoneList<Statement*>* Parser::ParseEagerFunctionBody(
|
|
const AstRawString* function_name, int pos,
|
|
const ParserFormalParameters& parameters, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type, bool* ok) {
|
|
ParsingModeScope mode(this, allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY);
|
|
ZoneList<Statement*>* result = new(zone()) ZoneList<Statement*>(8, zone());
|
|
|
|
static const int kFunctionNameAssignmentIndex = 0;
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
DCHECK(function_name != NULL);
|
|
// If we have a named function expression, we add a local variable
|
|
// declaration to the body of the function with the name of the
|
|
// function and let it refer to the function itself (closure).
|
|
// Not having parsed the function body, the language mode may still change,
|
|
// so we reserve a spot and create the actual const assignment later.
|
|
DCHECK_EQ(kFunctionNameAssignmentIndex, result->length());
|
|
result->Add(NULL, zone());
|
|
}
|
|
|
|
ZoneList<Statement*>* body = result;
|
|
DeclarationScope* function_scope = scope()->AsDeclarationScope();
|
|
DeclarationScope* inner_scope = function_scope;
|
|
Block* inner_block = nullptr;
|
|
if (!parameters.is_simple) {
|
|
inner_scope = NewVarblockScope();
|
|
inner_scope->set_start_position(scanner()->location().beg_pos);
|
|
inner_block = factory()->NewBlock(NULL, 8, true, kNoSourcePosition);
|
|
inner_block->set_scope(inner_scope);
|
|
body = inner_block->statements();
|
|
}
|
|
|
|
{
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
|
|
if (IsGeneratorFunction(kind)) {
|
|
// We produce:
|
|
//
|
|
// try { InitialYield; ...body...; return {value: undefined, done: true} }
|
|
// finally { %_GeneratorClose(generator) }
|
|
//
|
|
// - InitialYield yields the actual generator object.
|
|
// - Any return statement inside the body will have its argument wrapped
|
|
// in a "done" iterator result object.
|
|
// - If the generator terminates for whatever reason, we must close it.
|
|
// Hence the finally clause.
|
|
|
|
Block* try_block =
|
|
factory()->NewBlock(nullptr, 3, false, kNoSourcePosition);
|
|
Expression* initial_yield = BuildInitialYield(pos, kind);
|
|
try_block->statements()->Add(
|
|
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
|
|
zone());
|
|
ParseStatementList(try_block->statements(), Token::RBRACE, CHECK_OK);
|
|
|
|
Statement* final_return = factory()->NewReturnStatement(
|
|
BuildIteratorResult(nullptr, true), kNoSourcePosition);
|
|
try_block->statements()->Add(final_return, zone());
|
|
|
|
Block* finally_block =
|
|
factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
VariableProxy* call_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
args->Add(call_proxy, zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kInlineGeneratorClose, args, kNoSourcePosition);
|
|
finally_block->statements()->Add(
|
|
factory()->NewExpressionStatement(call, kNoSourcePosition), zone());
|
|
|
|
body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
|
|
kNoSourcePosition),
|
|
zone());
|
|
} else if (IsAsyncFunction(kind)) {
|
|
const bool accept_IN = true;
|
|
ParseAsyncFunctionBody(inner_scope, body, kind, FunctionBodyType::kNormal,
|
|
accept_IN, pos, CHECK_OK);
|
|
} else {
|
|
ParseStatementList(body, Token::RBRACE, CHECK_OK);
|
|
}
|
|
|
|
if (IsSubclassConstructor(kind)) {
|
|
body->Add(factory()->NewReturnStatement(ThisExpression(kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
scope()->set_end_position(scanner()->location().end_pos);
|
|
|
|
if (!parameters.is_simple) {
|
|
DCHECK_NOT_NULL(inner_scope);
|
|
DCHECK_EQ(function_scope, scope());
|
|
DCHECK_EQ(function_scope, inner_scope->outer_scope());
|
|
DCHECK_EQ(body, inner_block->statements());
|
|
SetLanguageMode(function_scope, inner_scope->language_mode());
|
|
Block* init_block = BuildParameterInitializationBlock(parameters, CHECK_OK);
|
|
|
|
if (is_sloppy(inner_scope->language_mode())) {
|
|
InsertSloppyBlockFunctionVarBindings(inner_scope);
|
|
}
|
|
|
|
// TODO(littledan): Merge the two rejection blocks into one
|
|
if (IsAsyncFunction(kind)) {
|
|
init_block = BuildRejectPromiseOnException(init_block, CHECK_OK);
|
|
}
|
|
|
|
DCHECK_NOT_NULL(init_block);
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
if (inner_scope->FinalizeBlockScope() != nullptr) {
|
|
CheckConflictingVarDeclarations(inner_scope, CHECK_OK);
|
|
InsertShadowingVarBindingInitializers(inner_block);
|
|
}
|
|
inner_scope = nullptr;
|
|
|
|
result->Add(init_block, zone());
|
|
result->Add(inner_block, zone());
|
|
} else {
|
|
DCHECK_EQ(inner_scope, function_scope);
|
|
if (is_sloppy(function_scope->language_mode())) {
|
|
InsertSloppyBlockFunctionVarBindings(function_scope);
|
|
}
|
|
}
|
|
|
|
if (!IsArrowFunction(kind)) {
|
|
// Declare arguments after parsing the function since lexical 'arguments'
|
|
// masks the arguments object. Declare arguments before declaring the
|
|
// function var since the arguments object masks 'function arguments'.
|
|
function_scope->DeclareArguments(ast_value_factory());
|
|
}
|
|
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
Statement* statement;
|
|
if (function_scope->LookupLocal(function_name) == nullptr) {
|
|
// Now that we know the language mode, we can create the const assignment
|
|
// in the previously reserved spot.
|
|
DCHECK_EQ(function_scope, scope());
|
|
Variable* fvar = function_scope->DeclareFunctionVar(function_name);
|
|
VariableProxy* fproxy = factory()->NewVariableProxy(fvar);
|
|
statement = factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, fproxy,
|
|
factory()->NewThisFunction(pos),
|
|
kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
} else {
|
|
statement = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
}
|
|
result->Set(kFunctionNameAssignmentIndex, statement);
|
|
}
|
|
|
|
MarkCollectedTailCallExpressions();
|
|
return result;
|
|
}
|
|
|
|
Expression* Parser::InstallHomeObject(Expression* function_literal,
|
|
Expression* home_object) {
|
|
Block* do_block = factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
Variable* result_var =
|
|
scope()->NewTemporary(ast_value_factory()->empty_string());
|
|
DoExpression* do_expr =
|
|
factory()->NewDoExpression(do_block, result_var, kNoSourcePosition);
|
|
Assignment* init = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(result_var), function_literal,
|
|
kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(init, kNoSourcePosition), zone());
|
|
Property* home_object_property = factory()->NewProperty(
|
|
factory()->NewVariableProxy(result_var),
|
|
factory()->NewSymbolLiteral("home_object_symbol", kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, home_object_property, home_object, kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition), zone());
|
|
return do_expr;
|
|
}
|
|
|
|
const AstRawString* ClassFieldVariableName(bool is_name,
|
|
AstValueFactory* ast_value_factory,
|
|
int index) {
|
|
std::string name =
|
|
".class-field-" + std::to_string(index) + (is_name ? "-name" : "-func");
|
|
return ast_value_factory->GetOneByteString(name.c_str());
|
|
}
|
|
|
|
FunctionLiteral* Parser::SynthesizeClassFieldInitializer(int count) {
|
|
DCHECK(count > 0);
|
|
// Makes a function which reads the names and initializers for each class
|
|
// field out of deterministically named local variables and sets each property
|
|
// to the result of evaluating its corresponding initializer in turn.
|
|
|
|
// This produces a function which looks like
|
|
// function () {
|
|
// this[.class-field-0-name] = .class-field-0-func();
|
|
// this[.class-field-1-name] = .class-field-1-func();
|
|
// [...]
|
|
// this[.class-field-n-name] = .class-field-n-func();
|
|
// return this;
|
|
// }
|
|
// except that it performs defineProperty, so that instead of '=' it has
|
|
// %DefineDataPropertyInLiteral(this, .class-field-0-name,
|
|
// .class-field-0-func(),
|
|
// DONT_ENUM, false)
|
|
|
|
RaiseLanguageMode(STRICT);
|
|
FunctionKind kind = FunctionKind::kConciseMethod;
|
|
DeclarationScope* initializer_scope = NewFunctionScope(kind);
|
|
SetLanguageMode(initializer_scope, language_mode());
|
|
initializer_scope->set_start_position(scanner()->location().end_pos);
|
|
initializer_scope->set_end_position(scanner()->location().end_pos);
|
|
FunctionState initializer_state(&function_state_, &scope_state_,
|
|
initializer_scope);
|
|
ZoneList<Statement*>* body = new (zone()) ZoneList<Statement*>(count, zone());
|
|
for (int i = 0; i < count; ++i) {
|
|
const AstRawString* name =
|
|
ClassFieldVariableName(true, ast_value_factory(), i);
|
|
VariableProxy* name_proxy = scope()->NewUnresolved(factory(), name);
|
|
const AstRawString* function_name =
|
|
ClassFieldVariableName(false, ast_value_factory(), i);
|
|
VariableProxy* function_proxy =
|
|
scope()->NewUnresolved(factory(), function_name);
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(function_proxy, zone());
|
|
args->Add(ThisExpression(kNoSourcePosition), zone());
|
|
Expression* call = factory()->NewCallRuntime(Runtime::kInlineCall, args,
|
|
kNoSourcePosition);
|
|
ZoneList<Expression*>* define_property_args =
|
|
new (zone()) ZoneList<Expression*>(5, zone());
|
|
define_property_args->Add(ThisExpression(kNoSourcePosition), zone());
|
|
define_property_args->Add(name_proxy, zone());
|
|
define_property_args->Add(call, zone());
|
|
define_property_args->Add(
|
|
factory()->NewNumberLiteral(DONT_ENUM, kNoSourcePosition), zone());
|
|
define_property_args->Add(
|
|
factory()->NewNumberLiteral(
|
|
false, // TODO(bakkot) function name inference a la class { x =
|
|
// function(){}; static y = function(){}; }
|
|
kNoSourcePosition),
|
|
zone());
|
|
body->Add(factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(
|
|
Runtime::kDefineDataProperty,
|
|
define_property_args, // TODO(bakkot) verify that this is
|
|
// the same as object_define_property
|
|
kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
}
|
|
body->Add(factory()->NewReturnStatement(ThisExpression(kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
ast_value_factory()->empty_string(), initializer_scope, body,
|
|
initializer_state.materialized_literal_count(),
|
|
initializer_state.expected_property_count(), 0, count,
|
|
FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression,
|
|
FunctionLiteral::kShouldLazyCompile, initializer_scope->start_position(),
|
|
true);
|
|
function_literal->set_is_class_field_initializer(true);
|
|
return function_literal;
|
|
}
|
|
|
|
FunctionLiteral* Parser::InsertClassFieldInitializer(
|
|
FunctionLiteral* constructor) {
|
|
Statement* call_initializer = factory()->NewExpressionStatement(
|
|
CallClassFieldInitializer(
|
|
constructor->scope(),
|
|
constructor->scope()->NewUnresolved(
|
|
factory(), ast_value_factory()->this_string(), kNoSourcePosition,
|
|
THIS_VARIABLE)),
|
|
kNoSourcePosition);
|
|
constructor->body()->InsertAt(0, call_initializer, zone());
|
|
return constructor;
|
|
}
|
|
|
|
// If a class name is specified, this method declares the class variable
|
|
// and sets class_info->proxy to point to that name.
|
|
void Parser::DeclareClassVariable(const AstRawString* name, Scope* block_scope,
|
|
ClassInfo* class_info, int class_token_pos,
|
|
bool* ok) {
|
|
#ifdef DEBUG
|
|
scope()->SetScopeName(name);
|
|
#endif
|
|
|
|
if (name != nullptr) {
|
|
class_info->proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
|
|
Declaration* declaration = factory()->NewVariableDeclaration(
|
|
class_info->proxy, block_scope, class_token_pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, CONST,
|
|
Variable::DefaultInitializationFlag(CONST), ok);
|
|
}
|
|
}
|
|
|
|
// This method declares a property of the given class. It updates the
|
|
// following fields of class_info, as appropriate:
|
|
// - constructor
|
|
// - static_initializer_var
|
|
// - instance_field_initializers
|
|
// - properties
|
|
void Parser::DeclareClassProperty(const AstRawString* class_name,
|
|
ClassLiteralProperty* property,
|
|
ClassInfo* class_info, bool* ok) {
|
|
if (class_info->has_seen_constructor && class_info->constructor == nullptr) {
|
|
class_info->constructor = GetPropertyValue(property)->AsFunctionLiteral();
|
|
DCHECK_NOT_NULL(class_info->constructor);
|
|
class_info->constructor->set_raw_name(
|
|
class_name != nullptr ? class_name
|
|
: ast_value_factory()->empty_string());
|
|
return;
|
|
}
|
|
|
|
if (property->kind() == ClassLiteralProperty::FIELD) {
|
|
DCHECK(allow_harmony_class_fields());
|
|
if (property->is_static()) {
|
|
if (class_info->static_initializer_var == nullptr) {
|
|
class_info->static_initializer_var =
|
|
NewTemporary(ast_value_factory()->empty_string());
|
|
}
|
|
// TODO(bakkot) only do this conditionally
|
|
Expression* function = InstallHomeObject(
|
|
property->value(),
|
|
factory()->NewVariableProxy(class_info->static_initializer_var));
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(function, zone());
|
|
args->Add(factory()->NewVariableProxy(class_info->static_initializer_var),
|
|
zone());
|
|
Expression* call = factory()->NewCallRuntime(Runtime::kInlineCall, args,
|
|
kNoSourcePosition);
|
|
property->set_value(call);
|
|
} else {
|
|
// if (is_computed_name) { // TODO(bakkot) figure out why this is
|
|
// necessary for non-computed names in full-codegen
|
|
ZoneList<Expression*>* to_name_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
to_name_args->Add(property->key(), zone());
|
|
property->set_key(factory()->NewCallRuntime(
|
|
Runtime::kToName, to_name_args, kNoSourcePosition));
|
|
//}
|
|
const AstRawString* name = ClassFieldVariableName(
|
|
true, ast_value_factory(),
|
|
class_info->instance_field_initializers->length());
|
|
VariableProxy* name_proxy =
|
|
factory()->NewVariableProxy(name, NORMAL_VARIABLE);
|
|
Declaration* name_declaration = factory()->NewVariableDeclaration(
|
|
name_proxy, scope(), kNoSourcePosition);
|
|
Variable* name_var =
|
|
Declare(name_declaration, DeclarationDescriptor::NORMAL, CONST,
|
|
kNeedsInitialization, ok, scope());
|
|
DCHECK(*ok);
|
|
if (!*ok) return;
|
|
class_info->instance_field_initializers->Add(property->value(), zone());
|
|
property->set_value(factory()->NewVariableProxy(name_var));
|
|
}
|
|
}
|
|
class_info->properties->Add(property, zone());
|
|
}
|
|
|
|
// This method rewrites a class literal into a do-expression.
|
|
// It uses the following fields of class_info:
|
|
// - constructor (if missing, it updates it with a default constructor)
|
|
// - proxy
|
|
// - extends
|
|
// - static_initializer_var
|
|
// - instance_field_initializers
|
|
// - properties
|
|
Expression* Parser::RewriteClassLiteral(const AstRawString* name,
|
|
ClassInfo* class_info, int pos,
|
|
bool* ok) {
|
|
int end_pos = scanner()->location().end_pos;
|
|
Block* do_block = factory()->NewBlock(nullptr, 1, false, pos);
|
|
Variable* result_var = NewTemporary(ast_value_factory()->empty_string());
|
|
DoExpression* do_expr = factory()->NewDoExpression(do_block, result_var, pos);
|
|
|
|
bool has_extends = class_info->extends != nullptr;
|
|
bool has_instance_fields =
|
|
class_info->instance_field_initializers->length() > 0;
|
|
DCHECK(!has_instance_fields || allow_harmony_class_fields());
|
|
bool has_default_constructor = class_info->constructor == nullptr;
|
|
if (has_default_constructor) {
|
|
class_info->constructor =
|
|
DefaultConstructor(name, has_extends, has_instance_fields, pos, end_pos,
|
|
scope()->language_mode());
|
|
}
|
|
|
|
if (has_instance_fields && !has_extends) {
|
|
class_info->constructor =
|
|
InsertClassFieldInitializer(class_info->constructor);
|
|
class_info->constructor->set_requires_class_field_init(true);
|
|
} // The derived case is handled by rewriting super calls.
|
|
|
|
scope()->set_end_position(end_pos);
|
|
|
|
if (name != nullptr) {
|
|
DCHECK_NOT_NULL(class_info->proxy);
|
|
class_info->proxy->var()->set_initializer_position(end_pos);
|
|
}
|
|
|
|
ClassLiteral* class_literal = factory()->NewClassLiteral(
|
|
class_info->proxy, class_info->extends, class_info->constructor,
|
|
class_info->properties, pos, end_pos);
|
|
|
|
if (class_info->static_initializer_var != nullptr) {
|
|
class_literal->set_static_initializer_proxy(
|
|
factory()->NewVariableProxy(class_info->static_initializer_var));
|
|
}
|
|
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::ASSIGN,
|
|
factory()->NewVariableProxy(result_var),
|
|
class_literal, kNoSourcePosition),
|
|
pos),
|
|
zone());
|
|
if (allow_harmony_class_fields() &&
|
|
(has_instance_fields || (has_extends && !has_default_constructor))) {
|
|
// Default constructors for derived classes without fields will not try to
|
|
// read this variable, so there's no need to create it.
|
|
const AstRawString* init_fn_name =
|
|
ast_value_factory()->dot_class_field_init_string();
|
|
Variable* init_fn_var = scope()->DeclareLocal(
|
|
init_fn_name, CONST, kCreatedInitialized, NORMAL_VARIABLE);
|
|
Expression* initializer =
|
|
has_instance_fields
|
|
? static_cast<Expression*>(SynthesizeClassFieldInitializer(
|
|
class_info->instance_field_initializers->length()))
|
|
: factory()->NewBooleanLiteral(false, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(init_fn_var), initializer,
|
|
kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
for (int i = 0; i < class_info->instance_field_initializers->length(); ++i) {
|
|
const AstRawString* function_name =
|
|
ClassFieldVariableName(false, ast_value_factory(), i);
|
|
VariableProxy* function_proxy =
|
|
factory()->NewVariableProxy(function_name, NORMAL_VARIABLE);
|
|
Declaration* function_declaration = factory()->NewVariableDeclaration(
|
|
function_proxy, scope(), kNoSourcePosition);
|
|
Variable* function_var =
|
|
Declare(function_declaration, DeclarationDescriptor::NORMAL, CONST,
|
|
kNeedsInitialization, ok, scope());
|
|
if (!*ok) return nullptr;
|
|
Property* prototype_property = factory()->NewProperty(
|
|
factory()->NewVariableProxy(result_var),
|
|
factory()->NewStringLiteral(ast_value_factory()->prototype_string(),
|
|
kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
Expression* function_value = InstallHomeObject(
|
|
class_info->instance_field_initializers->at(i),
|
|
prototype_property); // TODO(bakkot) ideally this would be conditional,
|
|
// especially in trivial cases
|
|
Assignment* function_assignment = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(function_var), function_value,
|
|
kNoSourcePosition);
|
|
do_block->statements()->Add(factory()->NewExpressionStatement(
|
|
function_assignment, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
do_block->set_scope(scope()->FinalizeBlockScope());
|
|
do_expr->set_represented_function(class_info->constructor);
|
|
AddFunctionForNameInference(class_info->constructor);
|
|
|
|
return do_expr;
|
|
}
|
|
|
|
Literal* Parser::GetLiteralUndefined(int position) {
|
|
return factory()->NewUndefinedLiteral(position);
|
|
}
|
|
|
|
|
|
void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) {
|
|
Declaration* decl = scope->CheckConflictingVarDeclarations();
|
|
if (decl != NULL) {
|
|
// In ES6, conflicting variable bindings are early errors.
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
|
|
// For each var-binding that shadows a parameter, insert an assignment
|
|
// initializing the variable with the parameter.
|
|
Scope* inner_scope = inner_block->scope();
|
|
DCHECK(inner_scope->is_declaration_scope());
|
|
Scope* function_scope = inner_scope->outer_scope();
|
|
DCHECK(function_scope->is_function_scope());
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
for (Declaration* decl : *inner_scope->declarations()) {
|
|
if (decl->proxy()->var()->mode() != VAR || !decl->IsVariableDeclaration()) {
|
|
continue;
|
|
}
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
Variable* parameter = function_scope->LookupLocal(name);
|
|
if (parameter == nullptr) continue;
|
|
VariableProxy* to = NewUnresolved(name);
|
|
VariableProxy* from = factory()->NewVariableProxy(parameter);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
|
|
Statement* statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
inner_block->statements()->InsertAt(0, statement, zone());
|
|
}
|
|
}
|
|
|
|
void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
|
|
// For the outermost eval scope, we cannot hoist during parsing: let
|
|
// declarations in the surrounding scope may prevent hoisting, but the
|
|
// information is unaccessible during parsing. In this case, we hoist later in
|
|
// DeclarationScope::Analyze.
|
|
if (scope->is_eval_scope() && scope->outer_scope() == original_scope_) {
|
|
return;
|
|
}
|
|
scope->HoistSloppyBlockFunctions(factory());
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parser support
|
|
|
|
bool Parser::TargetStackContainsLabel(const AstRawString* label) {
|
|
for (ParserTarget* t = target_stack_; t != NULL; t = t->previous()) {
|
|
if (ContainsLabel(t->statement()->labels(), label)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (ParserTarget* t = target_stack_; t != NULL; t = t->previous()) {
|
|
BreakableStatement* stat = t->statement();
|
|
if ((anonymous && stat->is_target_for_anonymous()) ||
|
|
(!anonymous && ContainsLabel(stat->labels(), label))) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
IterationStatement* Parser::LookupContinueTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (ParserTarget* t = target_stack_; t != NULL; t = t->previous()) {
|
|
IterationStatement* stat = t->statement()->AsIterationStatement();
|
|
if (stat == NULL) continue;
|
|
|
|
DCHECK(stat->is_target_for_anonymous());
|
|
if (anonymous || ContainsLabel(stat->labels(), label)) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
|
|
Handle<String> source_url = scanner_.SourceUrl(isolate);
|
|
if (!source_url.is_null()) {
|
|
script->set_source_url(*source_url);
|
|
}
|
|
Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
|
|
if (!source_mapping_url.is_null()) {
|
|
script->set_source_mapping_url(*source_mapping_url);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::Internalize(Isolate* isolate, Handle<Script> script, bool error) {
|
|
// Internalize strings and values.
|
|
ast_value_factory()->Internalize(isolate);
|
|
|
|
// Error processing.
|
|
if (error) {
|
|
if (stack_overflow()) {
|
|
isolate->StackOverflow();
|
|
} else {
|
|
DCHECK(pending_error_handler_.has_pending_error());
|
|
pending_error_handler_.ThrowPendingError(isolate, script);
|
|
}
|
|
}
|
|
|
|
// Move statistics to Isolate.
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
if (use_counts_[feature] > 0) {
|
|
isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
|
|
}
|
|
}
|
|
if (scanner_.FoundHtmlComment()) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlComment);
|
|
if (script->line_offset() == 0 && script->column_offset() == 0) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
|
|
}
|
|
}
|
|
isolate->counters()->total_preparse_skipped()->Increment(
|
|
total_preparse_skipped_);
|
|
if (!parsing_on_main_thread_ &&
|
|
FLAG_runtime_stats ==
|
|
v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE) {
|
|
// Copy over the counters from the background thread to the main counters on
|
|
// the isolate.
|
|
// TODO(cbruni,lpy): properly attach the runtime stats to the trace for
|
|
// background parsing.
|
|
isolate->counters()->runtime_call_stats()->Add(runtime_call_stats_);
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The Parser interface.
|
|
|
|
|
|
bool Parser::ParseStatic(ParseInfo* info) {
|
|
Parser parser(info);
|
|
if (parser.Parse(info)) {
|
|
info->set_language_mode(info->literal()->language_mode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Parser::Parse(ParseInfo* info) {
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
// Ok to use Isolate here; this function is only called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
Isolate* isolate = info->isolate();
|
|
|
|
if (info->is_toplevel()) {
|
|
SetCachedData(info);
|
|
result = ParseProgram(isolate, info);
|
|
} else {
|
|
result = ParseFunction(isolate, info);
|
|
}
|
|
info->set_literal(result);
|
|
|
|
Internalize(isolate, info->script(), result == NULL);
|
|
return (result != NULL);
|
|
}
|
|
|
|
|
|
void Parser::ParseOnBackground(ParseInfo* info) {
|
|
parsing_on_main_thread_ = false;
|
|
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
|
|
ParserLogger logger;
|
|
if (produce_cached_parse_data()) log_ = &logger;
|
|
if (FLAG_runtime_stats) {
|
|
// Create separate runtime stats for background parsing.
|
|
runtime_call_stats_ = new (zone()) RuntimeCallStats();
|
|
}
|
|
|
|
std::unique_ptr<Utf16CharacterStream> stream;
|
|
Utf16CharacterStream* stream_ptr;
|
|
if (info->character_stream()) {
|
|
DCHECK(info->source_stream() == nullptr);
|
|
stream_ptr = info->character_stream();
|
|
} else {
|
|
DCHECK(info->character_stream() == nullptr);
|
|
stream.reset(ScannerStream::For(info->source_stream(),
|
|
info->source_stream_encoding()));
|
|
stream_ptr = stream.get();
|
|
}
|
|
DCHECK(info->maybe_outer_scope_info().is_null());
|
|
|
|
DCHECK(original_scope_);
|
|
|
|
// When streaming, we don't know the length of the source until we have parsed
|
|
// it. The raw data can be UTF-8, so we wouldn't know the source length until
|
|
// we have decoded it anyway even if we knew the raw data length (which we
|
|
// don't). We work around this by storing all the scopes which need their end
|
|
// position set at the end of the script (the top scope and possible eval
|
|
// scopes) and set their end position after we know the script length.
|
|
if (info->is_toplevel()) {
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
scanner_.Initialize(stream_ptr);
|
|
result = DoParseProgram(info);
|
|
} else {
|
|
result = DoParseFunction(info, info->function_name(), stream_ptr);
|
|
}
|
|
|
|
info->set_literal(result);
|
|
|
|
// We cannot internalize on a background thread; a foreground task will take
|
|
// care of calling Parser::Internalize just before compilation.
|
|
|
|
if (produce_cached_parse_data()) {
|
|
if (result != NULL) *info->cached_data() = logger.GetScriptData();
|
|
log_ = NULL;
|
|
}
|
|
if (FLAG_runtime_stats) {
|
|
// TODO(cbruni,lpy): properly attach the runtime stats to the trace for
|
|
// background parsing.
|
|
}
|
|
}
|
|
|
|
Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
|
|
return new (zone()) TemplateLiteral(zone(), pos);
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateSpan(TemplateLiteralState* state, bool tail) {
|
|
int pos = scanner()->location().beg_pos;
|
|
int end = scanner()->location().end_pos - (tail ? 1 : 2);
|
|
const AstRawString* tv = scanner()->CurrentSymbol(ast_value_factory());
|
|
const AstRawString* trv = scanner()->CurrentRawSymbol(ast_value_factory());
|
|
Literal* cooked = factory()->NewStringLiteral(tv, pos);
|
|
Literal* raw = factory()->NewStringLiteral(trv, pos);
|
|
(*state)->AddTemplateSpan(cooked, raw, end, zone());
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateExpression(TemplateLiteralState* state,
|
|
Expression* expression) {
|
|
(*state)->AddExpression(expression, zone());
|
|
}
|
|
|
|
|
|
Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
|
|
Expression* tag) {
|
|
TemplateLiteral* lit = *state;
|
|
int pos = lit->position();
|
|
const ZoneList<Expression*>* cooked_strings = lit->cooked();
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
const ZoneList<Expression*>* expressions = lit->expressions();
|
|
DCHECK_EQ(cooked_strings->length(), raw_strings->length());
|
|
DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
|
|
|
|
if (!tag) {
|
|
// Build tree of BinaryOps to simplify code-generation
|
|
Expression* expr = cooked_strings->at(0);
|
|
int i = 0;
|
|
while (i < expressions->length()) {
|
|
Expression* sub = expressions->at(i++);
|
|
Expression* cooked_str = cooked_strings->at(i);
|
|
|
|
// Let middle be ToString(sub).
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(sub, zone());
|
|
Expression* middle = factory()->NewCallRuntime(Runtime::kInlineToString,
|
|
args, sub->position());
|
|
|
|
expr = factory()->NewBinaryOperation(
|
|
Token::ADD, factory()->NewBinaryOperation(
|
|
Token::ADD, expr, middle, expr->position()),
|
|
cooked_str, sub->position());
|
|
}
|
|
return expr;
|
|
} else {
|
|
uint32_t hash = ComputeTemplateLiteralHash(lit);
|
|
|
|
int cooked_idx = function_state_->NextMaterializedLiteralIndex();
|
|
int raw_idx = function_state_->NextMaterializedLiteralIndex();
|
|
|
|
// $getTemplateCallSite
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(4, zone());
|
|
args->Add(factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(cooked_strings),
|
|
cooked_idx, pos),
|
|
zone());
|
|
args->Add(
|
|
factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(raw_strings), raw_idx, pos),
|
|
zone());
|
|
|
|
// Truncate hash to Smi-range.
|
|
Smi* hash_obj = Smi::cast(Internals::IntToSmi(static_cast<int>(hash)));
|
|
args->Add(factory()->NewNumberLiteral(hash_obj->value(), pos), zone());
|
|
|
|
Expression* call_site = factory()->NewCallRuntime(
|
|
Context::GET_TEMPLATE_CALL_SITE_INDEX, args, start);
|
|
|
|
// Call TagFn
|
|
ZoneList<Expression*>* call_args =
|
|
new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone());
|
|
call_args->Add(call_site, zone());
|
|
call_args->AddAll(*expressions, zone());
|
|
return factory()->NewCall(tag, call_args, pos);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) {
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
int total = raw_strings->length();
|
|
DCHECK(total);
|
|
|
|
uint32_t running_hash = 0;
|
|
|
|
for (int index = 0; index < total; ++index) {
|
|
if (index) {
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, "${}", 3);
|
|
}
|
|
|
|
const AstRawString* raw_string =
|
|
raw_strings->at(index)->AsLiteral()->raw_value()->AsString();
|
|
if (raw_string->is_one_byte()) {
|
|
const char* data = reinterpret_cast<const char*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, data, raw_string->length());
|
|
} else {
|
|
const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHash(running_hash, data,
|
|
raw_string->length());
|
|
}
|
|
}
|
|
|
|
return running_hash;
|
|
}
|
|
|
|
ZoneList<Expression*>* Parser::PrepareSpreadArguments(
|
|
ZoneList<Expression*>* list) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
if (list->length() == 1) {
|
|
// Spread-call with single spread argument produces an InternalArray
|
|
// containing the values from the array.
|
|
//
|
|
// Function is called or constructed with the produced array of arguments
|
|
//
|
|
// EG: Apply(Func, Spread(spread0))
|
|
ZoneList<Expression*>* spread_list =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
spread_list->Add(list->at(0)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Runtime::kSpreadIterablePrepare,
|
|
spread_list, kNoSourcePosition),
|
|
zone());
|
|
return args;
|
|
} else {
|
|
// Spread-call with multiple arguments produces array literals for each
|
|
// sequences of unspread arguments, and converts each spread iterable to
|
|
// an Internal array. Finally, all of these produced arrays are flattened
|
|
// into a single InternalArray, containing the arguments for the call.
|
|
//
|
|
// EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0),
|
|
// Spread(spread1), [unspread2, unspread3]))
|
|
int i = 0;
|
|
int n = list->length();
|
|
while (i < n) {
|
|
if (!list->at(i)->IsSpread()) {
|
|
ZoneList<Expression*>* unspread =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
|
|
// Push array of unspread parameters
|
|
while (i < n && !list->at(i)->IsSpread()) {
|
|
unspread->Add(list->at(i++), zone());
|
|
}
|
|
int literal_index = function_state_->NextMaterializedLiteralIndex();
|
|
args->Add(factory()->NewArrayLiteral(unspread, literal_index,
|
|
kNoSourcePosition),
|
|
zone());
|
|
|
|
if (i == n) break;
|
|
}
|
|
|
|
// Push eagerly spread argument
|
|
ZoneList<Expression*>* spread_list =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
spread_list->Add(list->at(i++)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
|
|
spread_list, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
list = new (zone()) ZoneList<Expression*>(1, zone());
|
|
list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args,
|
|
kNoSourcePosition),
|
|
zone());
|
|
return list;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Expression* Parser::SpreadCall(Expression* function,
|
|
ZoneList<Expression*>* args, int pos) {
|
|
if (function->IsSuperCallReference()) {
|
|
// Super calls
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct($super_constructor, args, new.target)
|
|
ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(function->AsSuperCallReference()->this_function_var(), zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->InsertAt(0, super_constructor, zone());
|
|
args->Add(function->AsSuperCallReference()->new_target_var(), zone());
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args,
|
|
pos);
|
|
} else {
|
|
if (function->IsProperty()) {
|
|
// Method calls
|
|
if (function->AsProperty()->IsSuperAccess()) {
|
|
Expression* home = ThisExpression(kNoSourcePosition);
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, home, zone());
|
|
} else {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* obj = factory()->NewVariableProxy(temp);
|
|
Assignment* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, obj, function->AsProperty()->obj(),
|
|
kNoSourcePosition);
|
|
function = factory()->NewProperty(
|
|
assign_obj, function->AsProperty()->key(), kNoSourcePosition);
|
|
args->InsertAt(0, function, zone());
|
|
obj = factory()->NewVariableProxy(temp);
|
|
args->InsertAt(1, obj, zone());
|
|
}
|
|
} else {
|
|
// Non-method calls
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, factory()->NewUndefinedLiteral(kNoSourcePosition),
|
|
zone());
|
|
}
|
|
return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
|
|
}
|
|
}
|
|
|
|
Expression* Parser::SpreadCallNew(Expression* function,
|
|
ZoneList<Expression*>* args, int pos) {
|
|
args->InsertAt(0, function, zone());
|
|
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
}
|
|
|
|
|
|
void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
|
|
v8::Isolate::UseCounterFeature feature;
|
|
if (is_sloppy(mode))
|
|
feature = v8::Isolate::kSloppyMode;
|
|
else if (is_strict(mode))
|
|
feature = v8::Isolate::kStrictMode;
|
|
else
|
|
UNREACHABLE();
|
|
++use_counts_[feature];
|
|
scope->SetLanguageMode(mode);
|
|
}
|
|
|
|
void Parser::SetAsmModule() {
|
|
// Store the usage count; The actual use counter on the isolate is
|
|
// incremented after parsing is done.
|
|
++use_counts_[v8::Isolate::kUseAsm];
|
|
DCHECK(scope()->is_declaration_scope());
|
|
scope()->AsDeclarationScope()->set_asm_module();
|
|
}
|
|
|
|
void Parser::MarkCollectedTailCallExpressions() {
|
|
const ZoneList<Expression*>& tail_call_expressions =
|
|
function_state_->tail_call_expressions().expressions();
|
|
for (int i = 0; i < tail_call_expressions.length(); ++i) {
|
|
MarkTailPosition(tail_call_expressions[i]);
|
|
}
|
|
}
|
|
|
|
Expression* Parser::ExpressionListToExpression(ZoneList<Expression*>* args) {
|
|
Expression* expr = args->at(0);
|
|
for (int i = 1; i < args->length(); ++i) {
|
|
expr = factory()->NewBinaryOperation(Token::COMMA, expr, args->at(i),
|
|
expr->position());
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
// This method intoduces the line initializing the generator object
|
|
// when desugaring the body of async_function.
|
|
void Parser::PrepareAsyncFunctionBody(ZoneList<Statement*>* body,
|
|
FunctionKind kind, int pos) {
|
|
// function async_function() {
|
|
// .generator_object = %CreateGeneratorObject();
|
|
// BuildRejectPromiseOnException({
|
|
// ... block ...
|
|
// return %ResolvePromise(.promise, expr), .promise;
|
|
// })
|
|
// }
|
|
|
|
Variable* temp =
|
|
NewTemporary(ast_value_factory()->dot_generator_object_string());
|
|
function_state_->set_generator_object_variable(temp);
|
|
|
|
Expression* init_generator_variable = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(temp),
|
|
BuildCreateJSGeneratorObject(pos, kind), kNoSourcePosition);
|
|
body->Add(factory()->NewExpressionStatement(init_generator_variable,
|
|
kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
// This method completes the desugaring of the body of async_function.
|
|
void Parser::RewriteAsyncFunctionBody(ZoneList<Statement*>* body, Block* block,
|
|
Expression* return_value, bool* ok) {
|
|
// function async_function() {
|
|
// .generator_object = %CreateGeneratorObject();
|
|
// BuildRejectPromiseOnException({
|
|
// ... block ...
|
|
// return %ResolvePromise(.promise, expr), .promise;
|
|
// })
|
|
// }
|
|
|
|
return_value = BuildResolvePromise(return_value, return_value->position());
|
|
block->statements()->Add(
|
|
factory()->NewReturnStatement(return_value, return_value->position()),
|
|
zone());
|
|
block = BuildRejectPromiseOnException(block, CHECK_OK_VOID);
|
|
body->Add(block, zone());
|
|
}
|
|
|
|
Expression* Parser::RewriteAwaitExpression(Expression* value, int await_pos) {
|
|
// yield do {
|
|
// tmp = <operand>;
|
|
// %AsyncFunctionAwait(.generator_object, tmp, .promise);
|
|
// .promise
|
|
// }
|
|
// The value of the expression is returned to the caller of the async
|
|
// function for the first yield statement; for this, .promise is the
|
|
// appropriate return value, being a Promise that will be fulfilled or
|
|
// rejected with the appropriate value by the desugaring. Subsequent yield
|
|
// occurrences will return to the AsyncFunctionNext call within the
|
|
// implemementation of the intermediate throwaway Promise's then handler.
|
|
// This handler has nothing useful to do with the value, as the Promise is
|
|
// ignored. If we yielded the value of the throwawayPromise that
|
|
// AsyncFunctionAwait creates as an intermediate, it would create a memory
|
|
// leak; we must return .promise instead;
|
|
// The operand needs to be evaluated on a separate statement in order to get
|
|
// a break location, and the .promise needs to be read earlier so that it
|
|
// doesn't insert a false location.
|
|
// TODO(littledan): investigate why this ordering is needed in more detail.
|
|
Variable* generator_object_variable =
|
|
function_state_->generator_object_variable();
|
|
|
|
// If generator_object_variable is null,
|
|
// TODO(littledan): Is this necessary?
|
|
if (!generator_object_variable) return value;
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
Block* do_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
|
|
Variable* promise = PromiseVariable();
|
|
|
|
// Wrap value evaluation to provide a break location.
|
|
Variable* temp_var = NewTemporary(ast_value_factory()->empty_string());
|
|
Expression* value_assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp_var), value, nopos);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(value_assignment, value->position()),
|
|
zone());
|
|
|
|
ZoneList<Expression*>* async_function_await_args =
|
|
new (zone()) ZoneList<Expression*>(3, zone());
|
|
Expression* generator_object =
|
|
factory()->NewVariableProxy(generator_object_variable);
|
|
async_function_await_args->Add(generator_object, zone());
|
|
async_function_await_args->Add(factory()->NewVariableProxy(temp_var), zone());
|
|
async_function_await_args->Add(factory()->NewVariableProxy(promise), zone());
|
|
|
|
// The parser emits calls to AsyncFunctionAwaitCaught, but the
|
|
// AstNumberingVisitor will rewrite this to AsyncFunctionAwaitUncaught
|
|
// if there is no local enclosing try/catch block.
|
|
Expression* async_function_await =
|
|
factory()->NewCallRuntime(Context::ASYNC_FUNCTION_AWAIT_CAUGHT_INDEX,
|
|
async_function_await_args, nopos);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(async_function_await, await_pos),
|
|
zone());
|
|
|
|
// Wrap await to provide a break location between value evaluation and yield.
|
|
Expression* do_expr = factory()->NewDoExpression(do_block, promise, nopos);
|
|
|
|
generator_object = factory()->NewVariableProxy(generator_object_variable);
|
|
return factory()->NewYield(generator_object, do_expr, nopos,
|
|
Yield::kOnExceptionRethrow);
|
|
}
|
|
|
|
class NonPatternRewriter : public AstExpressionRewriter {
|
|
public:
|
|
NonPatternRewriter(uintptr_t stack_limit, Parser* parser)
|
|
: AstExpressionRewriter(stack_limit), parser_(parser) {}
|
|
~NonPatternRewriter() override {}
|
|
|
|
private:
|
|
bool RewriteExpression(Expression* expr) override {
|
|
if (expr->IsRewritableExpression()) return true;
|
|
// Rewrite only what could have been a pattern but is not.
|
|
if (expr->IsArrayLiteral()) {
|
|
// Spread rewriting in array literals.
|
|
ArrayLiteral* lit = expr->AsArrayLiteral();
|
|
VisitExpressions(lit->values());
|
|
replacement_ = parser_->RewriteSpreads(lit);
|
|
return false;
|
|
}
|
|
if (expr->IsObjectLiteral()) {
|
|
return true;
|
|
}
|
|
if (expr->IsBinaryOperation() &&
|
|
expr->AsBinaryOperation()->op() == Token::COMMA) {
|
|
return true;
|
|
}
|
|
// Everything else does not need rewriting.
|
|
return false;
|
|
}
|
|
|
|
void VisitLiteralProperty(LiteralProperty* property) override {
|
|
if (property == nullptr) return;
|
|
// Do not rewrite (computed) key expressions
|
|
AST_REWRITE_PROPERTY(Expression, property, value);
|
|
}
|
|
|
|
Parser* parser_;
|
|
};
|
|
|
|
void Parser::RewriteNonPattern(bool* ok) {
|
|
ValidateExpression(CHECK_OK_VOID);
|
|
auto non_patterns_to_rewrite = function_state_->non_patterns_to_rewrite();
|
|
int begin = classifier()->GetNonPatternBegin();
|
|
int end = non_patterns_to_rewrite->length();
|
|
if (begin < end) {
|
|
NonPatternRewriter rewriter(stack_limit_, this);
|
|
for (int i = begin; i < end; i++) {
|
|
DCHECK(non_patterns_to_rewrite->at(i)->IsRewritableExpression());
|
|
rewriter.Rewrite(non_patterns_to_rewrite->at(i));
|
|
}
|
|
non_patterns_to_rewrite->Rewind(begin);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::RewriteDestructuringAssignments() {
|
|
const auto& assignments =
|
|
function_state_->destructuring_assignments_to_rewrite();
|
|
for (int i = assignments.length() - 1; i >= 0; --i) {
|
|
// Rewrite list in reverse, so that nested assignment patterns are rewritten
|
|
// correctly.
|
|
const DestructuringAssignment& pair = assignments.at(i);
|
|
RewritableExpression* to_rewrite =
|
|
pair.assignment->AsRewritableExpression();
|
|
DCHECK_NOT_NULL(to_rewrite);
|
|
if (!to_rewrite->is_rewritten()) {
|
|
PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite,
|
|
pair.scope);
|
|
}
|
|
}
|
|
}
|
|
|
|
Expression* Parser::RewriteExponentiation(Expression* left, Expression* right,
|
|
int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(left, zone());
|
|
args->Add(right, zone());
|
|
return factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
}
|
|
|
|
Expression* Parser::RewriteAssignExponentiation(Expression* left,
|
|
Expression* right, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
if (left->IsVariableProxy()) {
|
|
VariableProxy* lhs = left->AsVariableProxy();
|
|
|
|
Expression* result;
|
|
DCHECK_NOT_NULL(lhs->raw_name());
|
|
result = ExpressionFromIdentifier(lhs->raw_name(), lhs->position());
|
|
args->Add(left, zone());
|
|
args->Add(right, zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
return factory()->NewAssignment(Token::ASSIGN, result, call, pos);
|
|
} else if (left->IsProperty()) {
|
|
Property* prop = left->AsProperty();
|
|
auto temp_obj = NewTemporary(ast_value_factory()->empty_string());
|
|
auto temp_key = NewTemporary(ast_value_factory()->empty_string());
|
|
Expression* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp_obj), prop->obj(),
|
|
kNoSourcePosition);
|
|
Expression* assign_key = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp_key), prop->key(),
|
|
kNoSourcePosition);
|
|
args->Add(factory()->NewProperty(factory()->NewVariableProxy(temp_obj),
|
|
factory()->NewVariableProxy(temp_key),
|
|
left->position()),
|
|
zone());
|
|
args->Add(right, zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
Expression* target = factory()->NewProperty(
|
|
factory()->NewVariableProxy(temp_obj),
|
|
factory()->NewVariableProxy(temp_key), kNoSourcePosition);
|
|
Expression* assign =
|
|
factory()->NewAssignment(Token::ASSIGN, target, call, pos);
|
|
return factory()->NewBinaryOperation(
|
|
Token::COMMA, assign_obj,
|
|
factory()->NewBinaryOperation(Token::COMMA, assign_key, assign, pos),
|
|
pos);
|
|
}
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
|
|
Expression* Parser::RewriteSpreads(ArrayLiteral* lit) {
|
|
// Array literals containing spreads are rewritten using do expressions, e.g.
|
|
// [1, 2, 3, ...x, 4, ...y, 5]
|
|
// is roughly rewritten as:
|
|
// do {
|
|
// $R = [1, 2, 3];
|
|
// for ($i of x) %AppendElement($R, $i);
|
|
// %AppendElement($R, 4);
|
|
// for ($j of y) %AppendElement($R, $j);
|
|
// %AppendElement($R, 5);
|
|
// $R
|
|
// }
|
|
// where $R, $i and $j are fresh temporary variables.
|
|
ZoneList<Expression*>::iterator s = lit->FirstSpread();
|
|
if (s == lit->EndValue()) return nullptr; // no spread, no rewriting...
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
// NOTE: The value assigned to R is the whole original array literal,
|
|
// spreads included. This will be fixed before the rewritten AST is returned.
|
|
// $R = lit
|
|
Expression* init_result = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(result), lit, kNoSourcePosition);
|
|
Block* do_block = factory()->NewBlock(nullptr, 16, false, kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(init_result, kNoSourcePosition),
|
|
zone());
|
|
// Traverse the array literal starting from the first spread.
|
|
while (s != lit->EndValue()) {
|
|
Expression* value = *s++;
|
|
Spread* spread = value->AsSpread();
|
|
if (spread == nullptr) {
|
|
// If the element is not a spread, we're adding a single:
|
|
// %AppendElement($R, value)
|
|
// or, in case of a hole,
|
|
// ++($R.length)
|
|
if (!value->IsLiteral() ||
|
|
!value->AsLiteral()->raw_value()->IsTheHole()) {
|
|
ZoneList<Expression*>* append_element_args = NewExpressionList(2);
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(value, zone());
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args,
|
|
kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
} else {
|
|
Property* length_property = factory()->NewProperty(
|
|
factory()->NewVariableProxy(result),
|
|
factory()->NewStringLiteral(ast_value_factory()->length_string(),
|
|
kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
CountOperation* count_op = factory()->NewCountOperation(
|
|
Token::INC, true /* prefix */, length_property, kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(count_op, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
} else {
|
|
// If it's a spread, we're adding a for/of loop iterating through it.
|
|
Variable* each = NewTemporary(ast_value_factory()->dot_for_string());
|
|
Expression* subject = spread->expression();
|
|
// %AppendElement($R, each)
|
|
Statement* append_body;
|
|
{
|
|
ZoneList<Expression*>* append_element_args = NewExpressionList(2);
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(factory()->NewVariableProxy(each), zone());
|
|
append_body = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args, kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
}
|
|
// for (each of spread) %AppendElement($R, each)
|
|
ForEachStatement* loop = factory()->NewForEachStatement(
|
|
ForEachStatement::ITERATE, nullptr, kNoSourcePosition);
|
|
const bool finalize = false;
|
|
InitializeForOfStatement(loop->AsForOfStatement(),
|
|
factory()->NewVariableProxy(each), subject,
|
|
append_body, finalize);
|
|
do_block->statements()->Add(loop, zone());
|
|
}
|
|
}
|
|
// Now, rewind the original array literal to truncate everything from the
|
|
// first spread (included) until the end. This fixes $R's initialization.
|
|
lit->RewindSpreads();
|
|
return factory()->NewDoExpression(do_block, result, lit->position());
|
|
}
|
|
|
|
void Parser::QueueDestructuringAssignmentForRewriting(Expression* expr) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
function_state_->AddDestructuringAssignment(
|
|
DestructuringAssignment(expr, scope()));
|
|
}
|
|
|
|
void Parser::QueueNonPatternForRewriting(Expression* expr, bool* ok) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
function_state_->AddNonPatternForRewriting(expr, ok);
|
|
}
|
|
|
|
void Parser::AddAccessorPrefixToFunctionName(bool is_get,
|
|
FunctionLiteral* function,
|
|
const AstRawString* name) {
|
|
DCHECK_NOT_NULL(name);
|
|
const AstRawString* prefix = is_get ? ast_value_factory()->get_space_string()
|
|
: ast_value_factory()->set_space_string();
|
|
function->set_raw_name(ast_value_factory()->NewConsString(prefix, name));
|
|
}
|
|
|
|
void Parser::SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
|
|
const AstRawString* name) {
|
|
DCHECK(property->kind() != ObjectLiteralProperty::GETTER);
|
|
DCHECK(property->kind() != ObjectLiteralProperty::SETTER);
|
|
|
|
// Computed name setting must happen at runtime.
|
|
DCHECK(!property->is_computed_name());
|
|
|
|
// Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
|
|
// of an object literal.
|
|
if (property->kind() == ObjectLiteralProperty::PROTOTYPE) return;
|
|
|
|
Expression* value = property->value();
|
|
|
|
DCHECK(!value->IsAnonymousFunctionDefinition() ||
|
|
property->kind() == ObjectLiteralProperty::COMPUTED);
|
|
SetFunctionName(value, name);
|
|
}
|
|
|
|
void Parser::SetFunctionNameFromIdentifierRef(Expression* value,
|
|
Expression* identifier) {
|
|
if (!identifier->IsVariableProxy()) return;
|
|
SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
|
|
}
|
|
|
|
void Parser::SetFunctionName(Expression* value, const AstRawString* name) {
|
|
DCHECK_NOT_NULL(name);
|
|
if (!value->IsAnonymousFunctionDefinition()) return;
|
|
auto function = value->AsFunctionLiteral();
|
|
if (function != nullptr) {
|
|
function->set_raw_name(name);
|
|
} else {
|
|
DCHECK(value->IsDoExpression());
|
|
value->AsDoExpression()->represented_function()->set_raw_name(name);
|
|
}
|
|
}
|
|
|
|
|
|
// Desugaring of yield*
|
|
// ====================
|
|
//
|
|
// With the help of do-expressions and function.sent, we desugar yield* into a
|
|
// loop containing a "raw" yield (a yield that doesn't wrap an iterator result
|
|
// object around its argument). Concretely, "yield* iterable" turns into
|
|
// roughly the following code:
|
|
//
|
|
// do {
|
|
// const kNext = 0;
|
|
// const kReturn = 1;
|
|
// const kThrow = 2;
|
|
//
|
|
// let input = function.sent;
|
|
// let mode = kNext;
|
|
// let output = undefined;
|
|
//
|
|
// let iterator = iterable[Symbol.iterator]();
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
//
|
|
// while (true) {
|
|
// // From the generator to the iterator:
|
|
// // Forward input according to resume mode and obtain output.
|
|
// switch (mode) {
|
|
// case kNext:
|
|
// output = iterator.next(input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// case kReturn:
|
|
// IteratorClose(iterator, input, output); // See below.
|
|
// break;
|
|
// case kThrow:
|
|
// let iteratorThrow = iterator.throw;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow)) {
|
|
// IteratorClose(iterator); // See below.
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// }
|
|
// if (output.done) break;
|
|
//
|
|
// // From the generator to its user:
|
|
// // Forward output, receive new input, and determine resume mode.
|
|
// mode = kReturn;
|
|
// try {
|
|
// try {
|
|
// RawYield(output); // See explanation above.
|
|
// mode = kNext;
|
|
// } catch (error) {
|
|
// mode = kThrow;
|
|
// }
|
|
// } finally {
|
|
// input = function.sent;
|
|
// continue;
|
|
// }
|
|
// }
|
|
//
|
|
// if (mode === kReturn) {
|
|
// return {value: output.value, done: true};
|
|
// }
|
|
// output.value
|
|
// }
|
|
//
|
|
// IteratorClose(iterator) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
//
|
|
// IteratorClose(iterator, input, output) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return input;
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
|
|
Expression* Parser::RewriteYieldStar(Expression* generator,
|
|
Expression* iterable, int pos) {
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// Forward definition for break/continue statements.
|
|
WhileStatement* loop = factory()->NewWhileStatement(nullptr, nopos);
|
|
|
|
// let input = undefined;
|
|
Variable* var_input = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_input;
|
|
{
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, input_proxy,
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_input = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let mode = kNext;
|
|
Variable* var_mode = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_mode;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
initialize_mode = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let output = undefined;
|
|
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_output;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy,
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_output = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let iterator = iterable[Symbol.iterator];
|
|
Variable* var_iterator = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_iterator;
|
|
{
|
|
Expression* iterator = GetIterator(iterable, nopos);
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, iterator_proxy, iterator, nopos);
|
|
get_iterator = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
Statement* validate_iterator;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_iterator), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
Expression* call =
|
|
NewThrowTypeError(MessageTemplate::kSymbolIteratorInvalid,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_iterator = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// output = iterator.next(input);
|
|
Statement* call_next;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->next_string(), nopos);
|
|
Expression* next_property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(input_proxy, zone());
|
|
Expression* call = factory()->NewCall(next_property, args, nopos);
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_next = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_next_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_next_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// let iteratorThrow = iterator.throw;
|
|
Variable* var_throw = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_throw;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->throw_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* throw_proxy = factory()->NewVariableProxy(var_throw);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, throw_proxy, property, nopos);
|
|
get_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow) {
|
|
// IteratorClose(iterator);
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
Statement* check_throw;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_throw),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
Expression* call =
|
|
NewThrowTypeError(MessageTemplate::kThrowMethodMissing,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
Statement* throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
|
|
Block* then = factory()->NewBlock(nullptr, 4 + 1, false, nopos);
|
|
BuildIteratorCloseForCompletion(
|
|
then->statements(), var_iterator,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos));
|
|
then->statements()->Add(throw_call, zone());
|
|
check_throw = factory()->NewIfStatement(
|
|
condition, then, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
Statement* call_throw;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(3, zone());
|
|
args->Add(factory()->NewVariableProxy(var_throw), zone());
|
|
args->Add(factory()->NewVariableProxy(var_iterator), zone());
|
|
args->Add(factory()->NewVariableProxy(var_input), zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(var_output), call, nopos);
|
|
call_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_throw_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_throw_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// if (output.done) break;
|
|
Statement* if_done;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->done_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
BreakStatement* break_loop = factory()->NewBreakStatement(loop, nopos);
|
|
if_done = factory()->NewIfStatement(
|
|
property, break_loop, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
|
|
// mode = kReturn;
|
|
Statement* set_mode_return;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, kreturn, nopos);
|
|
set_mode_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// Yield(output);
|
|
Statement* yield_output;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Yield* yield = factory()->NewYield(generator, output_proxy, nopos,
|
|
Yield::kOnExceptionThrow);
|
|
yield_output = factory()->NewExpressionStatement(yield, nopos);
|
|
}
|
|
|
|
// mode = kNext;
|
|
Statement* set_mode_next;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
set_mode_next = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// mode = kThrow;
|
|
Statement* set_mode_throw;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kthrow =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kThrow, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, kthrow, nopos);
|
|
set_mode_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// input = function.sent;
|
|
Statement* get_input;
|
|
{
|
|
Expression* function_sent = FunctionSentExpression(nopos);
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, input_proxy, function_sent, nopos);
|
|
get_input = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (mode === kReturn) {
|
|
// return {value: output.value, done: true};
|
|
// }
|
|
Statement* maybe_return_value;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, mode_proxy, kreturn, nopos);
|
|
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->value_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
Statement* return_value = factory()->NewReturnStatement(
|
|
BuildIteratorResult(property, true), nopos);
|
|
|
|
maybe_return_value = factory()->NewIfStatement(
|
|
condition, return_value, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output.value
|
|
Statement* get_value;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->value_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
get_value = factory()->NewExpressionStatement(property, nopos);
|
|
}
|
|
|
|
// Now put things together.
|
|
|
|
// try { ... } catch(e) { ... }
|
|
Statement* try_catch;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
try_block->statements()->Add(yield_output, zone());
|
|
try_block->statements()->Add(set_mode_next, zone());
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
catch_block->statements()->Add(set_mode_throw, zone());
|
|
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
catch_scope->set_is_hidden();
|
|
const AstRawString* name = ast_value_factory()->dot_catch_string();
|
|
Variable* catch_variable = catch_scope->DeclareLocal(
|
|
name, VAR, kCreatedInitialized, NORMAL_VARIABLE);
|
|
|
|
try_catch = factory()->NewTryCatchStatementForDesugaring(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// try { ... } finally { ... }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
Block* finally = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
finally->statements()->Add(get_input, zone());
|
|
finally->statements()->Add(factory()->NewContinueStatement(loop, nopos),
|
|
zone());
|
|
|
|
try_finally = factory()->NewTryFinallyStatement(try_block, finally, nopos);
|
|
}
|
|
|
|
// switch (mode) { ... }
|
|
SwitchStatement* switch_mode = factory()->NewSwitchStatement(nullptr, nopos);
|
|
{
|
|
auto case_next = new (zone()) ZoneList<Statement*>(3, zone());
|
|
case_next->Add(call_next, zone());
|
|
case_next->Add(validate_next_output, zone());
|
|
case_next->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto case_return = new (zone()) ZoneList<Statement*>(5, zone());
|
|
BuildIteratorClose(case_return, var_iterator, var_input, var_output);
|
|
case_return->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto case_throw = new (zone()) ZoneList<Statement*>(5, zone());
|
|
case_throw->Add(get_throw, zone());
|
|
case_throw->Add(check_throw, zone());
|
|
case_throw->Add(call_throw, zone());
|
|
case_throw->Add(validate_throw_output, zone());
|
|
case_throw->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto cases = new (zone()) ZoneList<CaseClause*>(3, zone());
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* kthrow =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kThrow, nopos);
|
|
cases->Add(factory()->NewCaseClause(knext, case_next, nopos), zone());
|
|
cases->Add(factory()->NewCaseClause(kreturn, case_return, nopos), zone());
|
|
cases->Add(factory()->NewCaseClause(kthrow, case_throw, nopos), zone());
|
|
|
|
switch_mode->Initialize(factory()->NewVariableProxy(var_mode), cases);
|
|
}
|
|
|
|
// while (true) { ... }
|
|
// Already defined earlier: WhileStatement* loop = ...
|
|
{
|
|
Block* loop_body = factory()->NewBlock(nullptr, 4, false, nopos);
|
|
loop_body->statements()->Add(switch_mode, zone());
|
|
loop_body->statements()->Add(if_done, zone());
|
|
loop_body->statements()->Add(set_mode_return, zone());
|
|
loop_body->statements()->Add(try_finally, zone());
|
|
|
|
loop->Initialize(factory()->NewBooleanLiteral(true, nopos), loop_body);
|
|
}
|
|
|
|
// do { ... }
|
|
DoExpression* yield_star;
|
|
{
|
|
// The rewriter needs to process the get_value statement only, hence we
|
|
// put the preceding statements into an init block.
|
|
|
|
Block* do_block_ = factory()->NewBlock(nullptr, 7, true, nopos);
|
|
do_block_->statements()->Add(initialize_input, zone());
|
|
do_block_->statements()->Add(initialize_mode, zone());
|
|
do_block_->statements()->Add(initialize_output, zone());
|
|
do_block_->statements()->Add(get_iterator, zone());
|
|
do_block_->statements()->Add(validate_iterator, zone());
|
|
do_block_->statements()->Add(loop, zone());
|
|
do_block_->statements()->Add(maybe_return_value, zone());
|
|
|
|
Block* do_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
do_block->statements()->Add(do_block_, zone());
|
|
do_block->statements()->Add(get_value, zone());
|
|
|
|
Variable* dot_result =
|
|
NewTemporary(ast_value_factory()->dot_result_string());
|
|
yield_star = factory()->NewDoExpression(do_block, dot_result, nopos);
|
|
Rewriter::Rewrite(this, GetClosureScope(), yield_star, ast_value_factory());
|
|
}
|
|
|
|
return yield_star;
|
|
}
|
|
|
|
Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
|
|
const int nopos = kNoSourcePosition;
|
|
Statement* validate_var;
|
|
{
|
|
Expression* type_of = factory()->NewUnaryOperation(
|
|
Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
|
|
Expression* function_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->function_string(), nopos);
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, type_of, function_literal, nopos);
|
|
|
|
Statement* throw_call = factory()->NewExpressionStatement(error, pos);
|
|
|
|
validate_var = factory()->NewIfStatement(
|
|
condition, factory()->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
return validate_var;
|
|
}
|
|
|
|
void Parser::BuildIteratorClose(ZoneList<Statement*>* statements,
|
|
Variable* iterator, Variable* input,
|
|
Variable* var_output) {
|
|
//
|
|
// This function adds four statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = var_output; // Reusing the output variable.
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
Statement* check_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
Expression* value = factory()->NewVariableProxy(input);
|
|
|
|
Statement* return_input =
|
|
factory()->NewReturnStatement(BuildIteratorResult(value, true), nopos);
|
|
|
|
check_return = factory()->NewIfStatement(
|
|
condition, return_input, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(3, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
args->Add(factory()->NewVariableProxy(input), zone());
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
|
|
Statement* validate_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(check_return, zone());
|
|
statements->Add(call_return, zone());
|
|
statements->Add(validate_output, zone());
|
|
}
|
|
|
|
void Parser::FinalizeIteratorUse(Variable* completion, Expression* condition,
|
|
Variable* iter, Block* iterator_use,
|
|
Block* target) {
|
|
//
|
|
// This function adds two statements to [target], corresponding to the
|
|
// following code:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// iterator_use
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// completion = kNormalCompletion;
|
|
Statement* initialize_completion;
|
|
{
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
initialize_completion =
|
|
factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
Statement* set_completion_throw;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(completion),
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
Statement* statement = factory()->NewExpressionStatement(assignment, nopos);
|
|
set_completion_throw = factory()->NewIfStatement(
|
|
condition, statement, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
Block* maybe_close;
|
|
{
|
|
Block* block = factory()->NewBlock(nullptr, 2, true, nopos);
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
BuildIteratorCloseForCompletion(block->statements(), iter, proxy);
|
|
DCHECK(block->statements()->length() == 2);
|
|
|
|
maybe_close = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
maybe_close->statements()->Add(
|
|
factory()->NewIfStatement(condition, block,
|
|
factory()->NewEmptyStatement(nopos), nopos),
|
|
zone());
|
|
}
|
|
|
|
// try { #try_block }
|
|
// catch(e) {
|
|
// #set_completion_throw;
|
|
// %ReThrow(e);
|
|
// }
|
|
Statement* try_catch;
|
|
{
|
|
Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, NORMAL_VARIABLE);
|
|
catch_scope->set_is_hidden();
|
|
|
|
Statement* rethrow;
|
|
// We use %ReThrow rather than the ordinary throw because we want to
|
|
// preserve the original exception message. This is also why we create a
|
|
// TryCatchStatementForReThrow below (which does not clear the pending
|
|
// message), rather than a TryCatchStatement.
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(catch_variable), zone());
|
|
rethrow = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos);
|
|
}
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
catch_block->statements()->Add(set_completion_throw, zone());
|
|
catch_block->statements()->Add(rethrow, zone());
|
|
|
|
try_catch = factory()->NewTryCatchStatementForReThrow(
|
|
iterator_use, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// try { #try_catch } finally { #maybe_close }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
try_finally =
|
|
factory()->NewTryFinallyStatement(try_block, maybe_close, nopos);
|
|
}
|
|
|
|
target->statements()->Add(initialize_completion, zone());
|
|
target->statements()->Add(try_finally, zone());
|
|
}
|
|
|
|
void Parser::BuildIteratorCloseForCompletion(ZoneList<Statement*>* statements,
|
|
Variable* iterator,
|
|
Expression* completion) {
|
|
//
|
|
// This function adds two statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// if (completion === kThrowCompletion) {
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
// } else {
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
Statement* check_return_callable;
|
|
{
|
|
Expression* throw_expr =
|
|
NewThrowTypeError(MessageTemplate::kReturnMethodNotCallable,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
check_return_callable = CheckCallable(var_return, throw_expr, nopos);
|
|
}
|
|
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
Statement* try_call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(factory()->NewExpressionStatement(call, nopos),
|
|
zone());
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 0, false, nopos);
|
|
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, NORMAL_VARIABLE);
|
|
catch_scope->set_is_hidden();
|
|
|
|
try_call_return = factory()->NewTryCatchStatement(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIteratorResultNotAnObject(output);
|
|
// }
|
|
Block* validate_return;
|
|
{
|
|
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
Statement* check_return = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
|
|
validate_return = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
validate_return->statements()->Add(call_return, zone());
|
|
validate_return->statements()->Add(check_return, zone());
|
|
}
|
|
|
|
// if (completion === kThrowCompletion) {
|
|
// #check_return_callable;
|
|
// #try_call_return;
|
|
// } else {
|
|
// #validate_return;
|
|
// }
|
|
Statement* call_return_carefully;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, completion,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
|
|
Block* then_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
then_block->statements()->Add(check_return_callable, zone());
|
|
then_block->statements()->Add(try_call_return, zone());
|
|
|
|
call_return_carefully = factory()->NewIfStatement(condition, then_block,
|
|
validate_return, nopos);
|
|
}
|
|
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
|
|
Statement* maybe_call_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
maybe_call_return = factory()->NewIfStatement(
|
|
condition, factory()->NewEmptyStatement(nopos), call_return_carefully,
|
|
nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(maybe_call_return, zone());
|
|
}
|
|
|
|
Statement* Parser::FinalizeForOfStatement(ForOfStatement* loop,
|
|
Variable* var_completion, int pos) {
|
|
//
|
|
// This function replaces the loop with the following wrapping:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// #loop;
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (!(completion === kNormalCompletion || IS_UNDEFINED(#iterator))) {
|
|
// #BuildIteratorCloseForCompletion(#iterator, completion)
|
|
// }
|
|
// }
|
|
//
|
|
// Note that the loop's body and its assign_each already contain appropriate
|
|
// assignments to completion (see InitializeForOfStatement).
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// !(completion === kNormalCompletion || IS_UNDEFINED(#iterator))
|
|
Expression* closing_condition;
|
|
{
|
|
Expression* lhs = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var_completion),
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
Expression* rhs = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(loop->iterator()),
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
closing_condition = factory()->NewUnaryOperation(
|
|
Token::NOT, factory()->NewBinaryOperation(Token::OR, lhs, rhs, nopos),
|
|
nopos);
|
|
}
|
|
|
|
Block* final_loop = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(loop, zone());
|
|
|
|
FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
|
|
try_block, final_loop);
|
|
}
|
|
|
|
return final_loop;
|
|
}
|
|
|
|
#undef CHECK_OK
|
|
#undef CHECK_OK_VOID
|
|
#undef CHECK_FAILED
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|