v8/test/cctest/wasm/wasm-run-utils.h
titzer e97ca6ec47 [wasm] Refactor import handling for 0xC.
Imports and exports in 0xC can be much more than functions, including
tables, memories, and globals. This CL refactors the underlying
organization of imports and exports to support these new import types.

BUG=

Committed: https://crrev.com/599f8a83420346d9cba5ff97bd2a7520468207b6
Review-Url: https://codereview.chromium.org/2390113003
Cr-Original-Commit-Position: refs/heads/master@{#40033}
Cr-Commit-Position: refs/heads/master@{#40050}
2016-10-06 15:43:22 +00:00

791 lines
28 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef WASM_RUN_UTILS_H
#define WASM_RUN_UTILS_H
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include "src/base/utils/random-number-generator.h"
#include "src/zone/accounting-allocator.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/int64-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/wasm-compiler.h"
#include "src/compiler/zone-stats.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-js.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/zone/zone.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/call-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
static const uint32_t kMaxFunctions = 10;
enum WasmExecutionMode { kExecuteInterpreted, kExecuteCompiled };
// TODO(titzer): check traps more robustly in tests.
// Currently, in tests, we just return 0xdeadbeef from the function in which
// the trap occurs if the runtime context is not available to throw a JavaScript
// exception.
#define CHECK_TRAP32(x) \
CHECK_EQ(0xdeadbeef, (bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xdeadbeefdeadbeef, (bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
#define WASM_RUNNER_MAX_NUM_PARAMETERS 4
#define WASM_WRAPPER_RETURN_VALUE 8754
#define BUILD(r, ...) \
do { \
byte code[] = {__VA_ARGS__}; \
r.Build(code, code + arraysize(code)); \
} while (false)
namespace {
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
const uint32_t kMaxGlobalsSize = 128;
// A helper for module environments that adds the ability to allocate memory
// and global variables. Contains a built-in {WasmModule} and
// {WasmModuleInstance}.
class TestingModule : public ModuleEnv {
public:
explicit TestingModule(WasmExecutionMode mode = kExecuteCompiled)
: execution_mode_(mode),
instance_(&module_),
isolate_(CcTest::InitIsolateOnce()),
global_offset(0),
interpreter_(mode == kExecuteInterpreted
? new WasmInterpreter(&instance_, &allocator_)
: nullptr) {
module = &module_;
instance = &instance_;
instance->module = &module_;
instance->globals_start = global_data;
module_.globals_size = kMaxGlobalsSize;
instance->mem_start = nullptr;
instance->mem_size = 0;
origin = kWasmOrigin;
memset(global_data, 0, sizeof(global_data));
}
~TestingModule() {
if (instance->mem_start) {
free(instance->mem_start);
}
if (interpreter_) delete interpreter_;
}
byte* AddMemory(uint32_t size) {
CHECK_NULL(instance->mem_start);
CHECK_EQ(0, instance->mem_size);
instance->mem_start = reinterpret_cast<byte*>(malloc(size));
CHECK(instance->mem_start);
memset(instance->mem_start, 0, size);
instance->mem_size = size;
return raw_mem_start<byte>();
}
template <typename T>
T* AddMemoryElems(uint32_t count) {
AddMemory(count * sizeof(T));
return raw_mem_start<T>();
}
template <typename T>
T* AddGlobal(LocalType type) {
const WasmGlobal* global = AddGlobal(type);
return reinterpret_cast<T*>(instance->globals_start + global->offset);
}
byte AddSignature(FunctionSig* sig) {
module_.signatures.push_back(sig);
size_t size = module->signatures.size();
CHECK(size < 127);
return static_cast<byte>(size - 1);
}
template <typename T>
T* raw_mem_start() {
DCHECK(instance->mem_start);
return reinterpret_cast<T*>(instance->mem_start);
}
template <typename T>
T* raw_mem_end() {
DCHECK(instance->mem_start);
return reinterpret_cast<T*>(instance->mem_start + instance->mem_size);
}
template <typename T>
T raw_mem_at(int i) {
DCHECK(instance->mem_start);
return ReadMemory(&(reinterpret_cast<T*>(instance->mem_start)[i]));
}
template <typename T>
T raw_val_at(int i) {
return ReadMemory(reinterpret_cast<T*>(instance->mem_start + i));
}
template <typename T>
void WriteMemory(T* p, T val) {
WriteLittleEndianValue<T>(p, val);
}
template <typename T>
T ReadMemory(T* p) {
return ReadLittleEndianValue<T>(p);
}
// Zero-initialize the memory.
void BlankMemory() {
byte* raw = raw_mem_start<byte>();
memset(raw, 0, instance->mem_size);
}
// Pseudo-randomly intialize the memory.
void RandomizeMemory(unsigned int seed = 88) {
byte* raw = raw_mem_start<byte>();
byte* end = raw_mem_end<byte>();
v8::base::RandomNumberGenerator rng;
rng.SetSeed(seed);
rng.NextBytes(raw, end - raw);
}
uint32_t AddFunction(FunctionSig* sig, Handle<Code> code) {
if (module->functions.size() == 0) {
// TODO(titzer): Reserving space here to avoid the underlying WasmFunction
// structs from moving.
module_.functions.reserve(kMaxFunctions);
}
uint32_t index = static_cast<uint32_t>(module->functions.size());
module_.functions.push_back({sig, index, 0, 0, 0, 0, 0, false, false});
instance->function_code.push_back(code);
if (interpreter_) {
const WasmFunction* function = &module->functions.back();
int interpreter_index = interpreter_->AddFunctionForTesting(function);
CHECK_EQ(index, static_cast<uint32_t>(interpreter_index));
}
DCHECK_LT(index, kMaxFunctions); // limited for testing.
return index;
}
uint32_t AddJsFunction(FunctionSig* sig, const char* source) {
Handle<JSFunction> jsfunc = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
uint32_t index = AddFunction(sig, Handle<Code>::null());
Handle<Code> code =
CompileWasmToJSWrapper(isolate_, jsfunc, sig, index,
Handle<String>::null(), Handle<String>::null());
instance->function_code[index] = code;
return index;
}
Handle<JSFunction> WrapCode(uint32_t index) {
// Wrap the code so it can be called as a JS function.
Handle<String> name = isolate_->factory()->NewStringFromStaticChars("main");
Handle<JSObject> module_object = Handle<JSObject>(0, isolate_);
Handle<Code> code = instance->function_code[index];
WasmJs::InstallWasmMapsIfNeeded(isolate_, isolate_->native_context());
Handle<Code> ret_code =
compiler::CompileJSToWasmWrapper(isolate_, this, code, index);
FunctionSig* funcSig = this->module->functions[index].sig;
Handle<ByteArray> exportedSig = isolate_->factory()->NewByteArray(
static_cast<int>(funcSig->parameter_count() + funcSig->return_count()),
TENURED);
exportedSig->copy_in(0, reinterpret_cast<const byte*>(funcSig->raw_data()),
exportedSig->length());
Handle<JSFunction> ret = WrapExportCodeAsJSFunction(
isolate_, ret_code, name,
static_cast<int>(this->module->functions[index].sig->parameter_count()),
exportedSig, module_object);
return ret;
}
void SetFunctionCode(uint32_t index, Handle<Code> code) {
instance->function_code[index] = code;
}
void AddIndirectFunctionTable(uint16_t* functions, uint32_t table_size) {
module_.function_tables.push_back(
{table_size, table_size, std::vector<int32_t>(), false, false});
for (uint32_t i = 0; i < table_size; ++i) {
module_.function_tables.back().values.push_back(functions[i]);
}
Handle<FixedArray> values = BuildFunctionTable(
isolate_, static_cast<int>(module_.function_tables.size() - 1),
&module_);
instance->function_tables.push_back(values);
}
void PopulateIndirectFunctionTable() {
for (uint32_t i = 0; i < instance->function_tables.size(); i++) {
PopulateFunctionTable(instance->function_tables[i],
module_.function_tables[i].size,
&instance->function_code);
}
}
WasmFunction* GetFunctionAt(int index) { return &module_.functions[index]; }
WasmInterpreter* interpreter() { return interpreter_; }
WasmExecutionMode execution_mode() { return execution_mode_; }
private:
WasmExecutionMode execution_mode_;
WasmModule module_;
WasmModuleInstance instance_;
Isolate* isolate_;
v8::internal::AccountingAllocator allocator_;
uint32_t global_offset;
V8_ALIGNED(8) byte global_data[kMaxGlobalsSize]; // preallocated global data.
WasmInterpreter* interpreter_;
const WasmGlobal* AddGlobal(LocalType type) {
byte size = WasmOpcodes::MemSize(WasmOpcodes::MachineTypeFor(type));
global_offset = (global_offset + size - 1) & ~(size - 1); // align
module_.globals.push_back(
{type, true, WasmInitExpr(), global_offset, false, false});
global_offset += size;
// limit number of globals.
CHECK_LT(global_offset, kMaxGlobalsSize);
return &module->globals.back();
}
};
inline void TestBuildingGraph(Zone* zone, JSGraph* jsgraph, ModuleEnv* module,
FunctionSig* sig,
SourcePositionTable* source_position_table,
const byte* start, const byte* end) {
compiler::WasmGraphBuilder builder(zone, jsgraph, sig, source_position_table);
DecodeResult result =
BuildTFGraph(zone->allocator(), &builder, module, sig, start, end);
if (result.failed()) {
if (!FLAG_trace_wasm_decoder) {
// Retry the compilation with the tracing flag on, to help in debugging.
FLAG_trace_wasm_decoder = true;
result =
BuildTFGraph(zone->allocator(), &builder, module, sig, start, end);
}
ptrdiff_t pc = result.error_pc - result.start;
ptrdiff_t pt = result.error_pt - result.start;
std::ostringstream str;
str << "Verification failed: " << result.error_code << " pc = +" << pc;
if (result.error_pt) str << ", pt = +" << pt;
str << ", msg = " << result.error_msg.get();
FATAL(str.str().c_str());
}
builder.Int64LoweringForTesting();
if (FLAG_trace_turbo_graph) {
OFStream os(stdout);
os << AsRPO(*jsgraph->graph());
}
}
template <typename ReturnType>
class WasmFunctionWrapper : public HandleAndZoneScope,
private GraphAndBuilders {
public:
WasmFunctionWrapper()
: GraphAndBuilders(main_zone()),
inner_code_node_(nullptr),
signature_(nullptr) {
// One additional parameter for the pointer to the return value memory.
Signature<MachineType>::Builder sig_builder(
zone(), 1, WASM_RUNNER_MAX_NUM_PARAMETERS + 1);
sig_builder.AddReturn(MachineType::Int32());
for (int i = 0; i < WASM_RUNNER_MAX_NUM_PARAMETERS + 1; i++) {
sig_builder.AddParam(MachineType::Pointer());
}
signature_ = sig_builder.Build();
}
void Init(CallDescriptor* descriptor, MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None()) {
// Create the TF graph for the wrapper. The wrapper always takes four
// pointers as parameters, but may not pass the values of all pointers to
// the actual test function.
// Function, effect, and control.
Node** parameters =
zone()->template NewArray<Node*>(WASM_RUNNER_MAX_NUM_PARAMETERS + 3);
graph()->SetStart(graph()->NewNode(common()->Start(6)));
Node* effect = graph()->start();
int parameter_count = 0;
// Dummy node which gets replaced in SetInnerCode.
inner_code_node_ = graph()->NewNode(common()->Int32Constant(0));
parameters[parameter_count++] = inner_code_node_;
if (p0 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(0), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p1 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(1), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p2 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(2), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p3 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(3), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
parameters[parameter_count++] = effect;
parameters[parameter_count++] = graph()->start();
Node* call = graph()->NewNode(common()->Call(descriptor), parameter_count,
parameters);
effect = graph()->NewNode(
machine()->Store(
StoreRepresentation(MachineTypeForC<ReturnType>().representation(),
WriteBarrierKind::kNoWriteBarrier)),
graph()->NewNode(common()->Parameter(WASM_RUNNER_MAX_NUM_PARAMETERS),
graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), call, effect,
graph()->start());
Node* r = graph()->NewNode(
common()->Return(),
graph()->NewNode(common()->Int32Constant(WASM_WRAPPER_RETURN_VALUE)),
effect, graph()->start());
graph()->SetEnd(graph()->NewNode(common()->End(2), r, graph()->start()));
}
void SetInnerCode(Handle<Code> code_handle) {
NodeProperties::ChangeOp(inner_code_node_,
common()->HeapConstant(code_handle));
}
Handle<Code> GetWrapperCode() {
if (code_.is_null()) {
Isolate* isolate = CcTest::InitIsolateOnce();
CallDescriptor* descriptor =
Linkage::GetSimplifiedCDescriptor(zone(), signature_, true);
if (kPointerSize == 4) {
// One additional parameter for the pointer of the return value.
Signature<MachineRepresentation>::Builder rep_builder(
zone(), 1, WASM_RUNNER_MAX_NUM_PARAMETERS + 1);
rep_builder.AddReturn(MachineRepresentation::kWord32);
for (int i = 0; i < WASM_RUNNER_MAX_NUM_PARAMETERS + 1; i++) {
rep_builder.AddParam(MachineRepresentation::kWord32);
}
Int64Lowering r(graph(), machine(), common(), zone(),
rep_builder.Build());
r.LowerGraph();
}
CompilationInfo info(ArrayVector("testing"), isolate, graph()->zone(),
Code::ComputeFlags(Code::STUB));
code_ =
Pipeline::GenerateCodeForTesting(&info, descriptor, graph(), nullptr);
CHECK(!code_.is_null());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code_->Disassemble("wasm wrapper", os);
}
#endif
}
return code_;
}
Signature<MachineType>* signature() const { return signature_; }
private:
Node* inner_code_node_;
Handle<Code> code_;
Signature<MachineType>* signature_;
};
// A helper for compiling WASM functions for testing. This class can create a
// standalone function if {module} is NULL or a function within a
// {TestingModule}. It contains the internal state for compilation (i.e.
// TurboFan graph) and interpretation (by adding to the interpreter manually).
class WasmFunctionCompiler : public HandleAndZoneScope,
private GraphAndBuilders {
public:
explicit WasmFunctionCompiler(
FunctionSig* sig, WasmExecutionMode mode,
Vector<const char> debug_name = ArrayVector("<WASM UNNAMED>"))
: GraphAndBuilders(main_zone()),
execution_mode_(mode),
jsgraph(this->isolate(), this->graph(), this->common(), nullptr,
nullptr, this->machine()),
sig(sig),
descriptor_(nullptr),
testing_module_(nullptr),
debug_name_(debug_name),
local_decls(main_zone(), sig),
source_position_table_(this->graph()),
interpreter_(nullptr) {
// Create our own function.
function_ = new WasmFunction();
function_->sig = sig;
function_->func_index = 0;
function_->sig_index = 0;
if (mode == kExecuteInterpreted) {
interpreter_ = new WasmInterpreter(nullptr, zone()->allocator());
int index = interpreter_->AddFunctionForTesting(function_);
CHECK_EQ(0, index);
}
}
explicit WasmFunctionCompiler(
FunctionSig* sig, TestingModule* module,
Vector<const char> debug_name = ArrayVector("<WASM UNNAMED>"))
: GraphAndBuilders(main_zone()),
execution_mode_(module->execution_mode()),
jsgraph(this->isolate(), this->graph(), this->common(), nullptr,
nullptr, this->machine()),
sig(sig),
descriptor_(nullptr),
testing_module_(module),
debug_name_(debug_name),
local_decls(main_zone(), sig),
source_position_table_(this->graph()),
interpreter_(module->interpreter()) {
// Get a new function from the testing module.
int index = module->AddFunction(sig, Handle<Code>::null());
function_ = testing_module_->GetFunctionAt(index);
}
~WasmFunctionCompiler() {
if (testing_module_) return; // testing module owns the below things.
delete function_;
if (interpreter_) delete interpreter_;
}
WasmExecutionMode execution_mode_;
JSGraph jsgraph;
FunctionSig* sig;
// The call descriptor is initialized when the function is compiled.
CallDescriptor* descriptor_;
TestingModule* testing_module_;
Vector<const char> debug_name_;
WasmFunction* function_;
LocalDeclEncoder local_decls;
SourcePositionTable source_position_table_;
WasmInterpreter* interpreter_;
Isolate* isolate() { return main_isolate(); }
Graph* graph() const { return main_graph_; }
Zone* zone() const { return graph()->zone(); }
CommonOperatorBuilder* common() { return &main_common_; }
MachineOperatorBuilder* machine() { return &main_machine_; }
void InitializeDescriptor() {
if (descriptor_ == nullptr) {
descriptor_ = testing_module_->GetWasmCallDescriptor(main_zone(), sig);
}
}
CallDescriptor* descriptor() { return descriptor_; }
uint32_t function_index() { return function_->func_index; }
void Build(const byte* start, const byte* end) {
// Build the TurboFan graph.
local_decls.Prepend(main_zone(), &start, &end);
TestBuildingGraph(main_zone(), &jsgraph, testing_module_, sig,
&source_position_table_, start, end);
if (interpreter_) {
// Add the code to the interpreter.
CHECK(interpreter_->SetFunctionCodeForTesting(function_, start, end));
}
}
byte AllocateLocal(LocalType type) {
uint32_t index = local_decls.AddLocals(1, type);
byte result = static_cast<byte>(index);
DCHECK_EQ(index, result);
return result;
}
Handle<Code> Compile() {
InitializeDescriptor();
CallDescriptor* desc = descriptor_;
if (kPointerSize == 4) {
desc = testing_module_->GetI32WasmCallDescriptor(this->zone(), desc);
}
CompilationInfo info(debug_name_, this->isolate(), this->zone(),
Code::ComputeFlags(Code::WASM_FUNCTION));
std::unique_ptr<CompilationJob> job(Pipeline::NewWasmCompilationJob(
&info, graph(), desc, &source_position_table_));
if (job->ExecuteJob() != CompilationJob::SUCCEEDED ||
job->FinalizeJob() != CompilationJob::SUCCEEDED)
return Handle<Code>::null();
Handle<Code> code = info.code();
// Length is always 2, since usually <wasm_obj, func_index> is stored in
// the deopt data. Here, we only store the function index.
DCHECK(code->deoptimization_data() == nullptr ||
code->deoptimization_data()->length() == 0);
Handle<FixedArray> deopt_data =
isolate()->factory()->NewFixedArray(2, TENURED);
deopt_data->set(1, Smi::FromInt(static_cast<int>(function_index())));
deopt_data->set_length(2);
code->set_deoptimization_data(*deopt_data);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code->Disassemble("wasm code", os);
}
#endif
return code;
}
uint32_t CompileAndAdd(uint16_t sig_index = 0) {
CHECK(testing_module_);
function_->sig_index = sig_index;
Handle<Code> code = Compile();
testing_module_->SetFunctionCode(function_index(), code);
return function_index();
}
// Set the context, such that e.g. runtime functions can be called.
void SetModuleContext() {
if (!testing_module_->instance->context.is_null()) {
CHECK(testing_module_->instance->context.is_identical_to(
main_isolate()->native_context()));
return;
}
testing_module_->instance->context = main_isolate()->native_context();
}
};
// A helper class to build graphs from Wasm bytecode, generate machine
// code, and run that code.
template <typename ReturnType>
class WasmRunner {
public:
WasmRunner(WasmExecutionMode execution_mode,
MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: zone(&allocator_),
compiled_(false),
signature_(MachineTypeForC<ReturnType>() == MachineType::None() ? 0 : 1,
GetParameterCount(p0, p1, p2, p3), storage_),
compiler_(&signature_, execution_mode) {
InitSigStorage(p0, p1, p2, p3);
}
WasmRunner(TestingModule* module, MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: zone(&allocator_),
compiled_(false),
signature_(MachineTypeForC<ReturnType>() == MachineType::None() ? 0 : 1,
GetParameterCount(p0, p1, p2, p3), storage_),
compiler_(&signature_, module) {
DCHECK(module);
InitSigStorage(p0, p1, p2, p3);
}
void InitSigStorage(MachineType p0, MachineType p1, MachineType p2,
MachineType p3) {
int index = 0;
MachineType ret = MachineTypeForC<ReturnType>();
if (ret != MachineType::None()) {
storage_[index++] = WasmOpcodes::LocalTypeFor(ret);
}
if (p0 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p0);
if (p1 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p1);
if (p2 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p2);
if (p3 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p3);
compiler_.InitializeDescriptor();
wrapper_.Init(compiler_.descriptor(), p0, p1, p2, p3);
}
// Builds a graph from the given Wasm code and generates the machine
// code and call wrapper for that graph. This method must not be called
// more than once.
void Build(const byte* start, const byte* end) {
CHECK(!compiled_);
compiled_ = true;
compiler_.Build(start, end);
if (!interpret()) {
// Compile machine code and install it into the module.
Handle<Code> code = compiler_.Compile();
if (compiler_.testing_module_) {
// Update the table of function code in the module.
compiler_.testing_module_->SetFunctionCode(
compiler_.function_->func_index, code);
}
wrapper_.SetInnerCode(code);
}
}
ReturnType Call() {
if (interpret()) {
return CallInterpreter(Vector<WasmVal>(nullptr, 0));
} else {
return Call(0, 0, 0, 0);
}
}
template <typename P0>
ReturnType Call(P0 p0) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, 0, 0, 0);
}
}
template <typename P0, typename P1>
ReturnType Call(P0 p0, P1 p1) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, p1, 0, 0);
}
}
template <typename P0, typename P1, typename P2>
ReturnType Call(P0 p0, P1 p1, P2 p2) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1), WasmVal(p2)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, p1, p2, 0);
}
}
template <typename P0, typename P1, typename P2, typename P3>
ReturnType Call(P0 p0, P1 p1, P2 p2, P3 p3) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1), WasmVal(p2), WasmVal(p3)};
return CallInterpreter(ArrayVector(args));
} else {
CodeRunner<int32_t> runner(CcTest::InitIsolateOnce(),
wrapper_.GetWrapperCode(),
wrapper_.signature());
ReturnType return_value;
int32_t result = runner.Call<void*, void*, void*, void*, void*>(
&p0, &p1, &p2, &p3, &return_value);
CHECK_EQ(WASM_WRAPPER_RETURN_VALUE, result);
return return_value;
}
}
ReturnType CallInterpreter(Vector<WasmVal> args) {
CHECK_EQ(args.length(),
static_cast<int>(compiler_.function_->sig->parameter_count()));
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
thread->Reset();
thread->PushFrame(compiler_.function_, args.start());
if (thread->Run() == WasmInterpreter::FINISHED) {
WasmVal val = thread->GetReturnValue();
return val.to<ReturnType>();
} else if (thread->state() == WasmInterpreter::TRAPPED) {
// TODO(titzer): return the correct trap code
int64_t result = 0xdeadbeefdeadbeef;
return static_cast<ReturnType>(result);
} else {
// TODO(titzer): falling off end
ReturnType val = 0;
return val;
}
}
byte AllocateLocal(LocalType type) { return compiler_.AllocateLocal(type); }
WasmFunction* function() { return compiler_.function_; }
WasmInterpreter* interpreter() { return compiler_.interpreter_; }
protected:
v8::internal::AccountingAllocator allocator_;
Zone zone;
bool compiled_;
LocalType storage_[WASM_RUNNER_MAX_NUM_PARAMETERS];
FunctionSig signature_;
WasmFunctionCompiler compiler_;
WasmFunctionWrapper<ReturnType> wrapper_;
bool interpret() { return compiler_.execution_mode_ == kExecuteInterpreted; }
static size_t GetParameterCount(MachineType p0, MachineType p1,
MachineType p2, MachineType p3) {
if (p0 == MachineType::None()) return 0;
if (p1 == MachineType::None()) return 1;
if (p2 == MachineType::None()) return 2;
if (p3 == MachineType::None()) return 3;
return 4;
}
};
// A macro to define tests that run in different engine configurations.
// Currently only supports compiled tests, but a future
// RunWasmInterpreted_##name version will allow each test to also run in the
// interpreter.
#define WASM_EXEC_TEST(name) \
void RunWasm_##name(WasmExecutionMode execution_mode); \
TEST(RunWasmCompiled_##name) { RunWasm_##name(kExecuteCompiled); } \
TEST(RunWasmInterpreted_##name) { RunWasm_##name(kExecuteInterpreted); } \
void RunWasm_##name(WasmExecutionMode execution_mode)
} // namespace
#endif