v8/src/platform-cygwin.cc
danno@chromium.org ed3809c318 Maintain API compatibility with older versions of V8.
Revert "Allow recording individual samples in addition to the aggregated CPU profiles"
Revert "Isolatify CPU profiler"
Revert "Isolatify HeapProfiler"
Revert "Deprecate HeapSnapshot type"
Revert "Isolatify CPU profiler public API"
Revert "MSVS compilation fix after r14006"
Revert "Add methods to allow resuming execution after calling TerminateExecution()."

R=jkummerow@chromium.org,mstarzinger@chromium.org

Review URL: https://codereview.chromium.org/12475016

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14031 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-03-21 14:42:17 +00:00

780 lines
22 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Cygwin goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdarg.h>
#include <strings.h> // index
#include <sys/time.h>
#include <sys/mman.h> // mmap & munmap
#include <unistd.h> // sysconf
#undef MAP_TYPE
#include "v8.h"
#include "platform-posix.h"
#include "platform.h"
#include "v8threads.h"
#include "vm-state-inl.h"
#include "win32-headers.h"
namespace v8 {
namespace internal {
// 0 is never a valid thread id
static const pthread_t kNoThread = (pthread_t) 0;
double ceiling(double x) {
return ceil(x);
}
static Mutex* limit_mutex = NULL;
void OS::PostSetUp() {
POSIXPostSetUp();
}
uint64_t OS::CpuFeaturesImpliedByPlatform() {
return 0; // Nothing special about Cygwin.
}
int OS::ActivationFrameAlignment() {
// With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
return 16;
}
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
__asm__ __volatile__("" : : : "memory");
// An x86 store acts as a release barrier.
*ptr = value;
}
const char* OS::LocalTimezone(double time) {
if (isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return tzname[0]; // The location of the timezone string on Cygwin.
}
double OS::LocalTimeOffset() {
// On Cygwin, struct tm does not contain a tm_gmtoff field.
time_t utc = time(NULL);
ASSERT(utc != -1);
struct tm* loc = localtime(&utc);
ASSERT(loc != NULL);
// time - localtime includes any daylight savings offset, so subtract it.
return static_cast<double>((mktime(loc) - utc) * msPerSecond -
(loc->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, i.e., not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
ASSERT(limit_mutex != NULL);
ScopedLock lock(limit_mutex);
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
size_t OS::AllocateAlignment() {
return sysconf(_SC_PAGESIZE);
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
void OS::ProtectCode(void* address, const size_t size) {
DWORD old_protect;
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
}
void OS::Guard(void* address, const size_t size) {
DWORD oldprotect;
VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
}
void OS::Sleep(int milliseconds) {
unsigned int ms = static_cast<unsigned int>(milliseconds);
usleep(1000 * ms);
}
int OS::NumberOfCores() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination.
abort();
}
void OS::DebugBreak() {
asm("int $3");
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
virtual int size() { return size_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
FILE* file = fopen(name, "r+");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
int size = ftell(file);
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
int result = fwrite(initial, size, 1, file);
if (result < 1) {
fclose(file);
return NULL;
}
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
// This function assumes that the layout of the file is as follows:
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
// If we encounter an unexpected situation we abort scanning further entries.
FILE* fp = fopen("/proc/self/maps", "r");
if (fp == NULL) return;
// Allocate enough room to be able to store a full file name.
const int kLibNameLen = FILENAME_MAX + 1;
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
i::Isolate* isolate = ISOLATE;
// This loop will terminate once the scanning hits an EOF.
while (true) {
uintptr_t start, end;
char attr_r, attr_w, attr_x, attr_p;
// Parse the addresses and permission bits at the beginning of the line.
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
int c;
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
// Found a read-only executable entry. Skip characters until we reach
// the beginning of the filename or the end of the line.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n') && (c != '/'));
if (c == EOF) break; // EOF: Was unexpected, just exit.
// Process the filename if found.
if (c == '/') {
ungetc(c, fp); // Push the '/' back into the stream to be read below.
// Read to the end of the line. Exit if the read fails.
if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
// Drop the newline character read by fgets. We do not need to check
// for a zero-length string because we know that we at least read the
// '/' character.
lib_name[strlen(lib_name) - 1] = '\0';
} else {
// No library name found, just record the raw address range.
snprintf(lib_name, kLibNameLen,
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
}
LOG(isolate, SharedLibraryEvent(lib_name, start, end));
} else {
// Entry not describing executable data. Skip to end of line to set up
// reading the next entry.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n'));
if (c == EOF) break;
}
}
free(lib_name);
fclose(fp);
}
void OS::SignalCodeMovingGC() {
// Nothing to do on Cygwin.
}
int OS::StackWalk(Vector<OS::StackFrame> frames) {
// Not supported on Cygwin.
return 0;
}
// The VirtualMemory implementation is taken from platform-win32.cc.
// The mmap-based virtual memory implementation as it is used on most posix
// platforms does not work well because Cygwin does not support MAP_FIXED.
// This causes VirtualMemory::Commit to not always commit the memory region
// specified.
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
VirtualMemory::VirtualMemory(size_t size) {
address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
}
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
return false;
}
UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return VirtualFree(address, size, MEM_DECOMMIT) != false;
}
bool VirtualMemory::Guard(void* address) {
if (NULL == VirtualAlloc(address,
OS::CommitPageSize(),
MEM_COMMIT,
PAGE_READONLY | PAGE_GUARD)) {
return false;
}
return true;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
class Thread::PlatformData : public Malloced {
public:
PlatformData() : thread_(kNoThread) {}
pthread_t thread_; // Thread handle for pthread.
};
Thread::Thread(const Options& options)
: data_(new PlatformData()),
stack_size_(options.stack_size()) {
set_name(options.name());
}
Thread::~Thread() {
delete data_;
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->data()->thread_ = pthread_self();
ASSERT(thread->data()->thread_ != kNoThread);
thread->Run();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
pthread_attr_t* attr_ptr = NULL;
pthread_attr_t attr;
if (stack_size_ > 0) {
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
attr_ptr = &attr;
}
pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
ASSERT(data_->thread_ != kNoThread);
}
void Thread::Join() {
pthread_join(data_->thread_, NULL);
}
static inline Thread::LocalStorageKey PthreadKeyToLocalKey(
pthread_key_t pthread_key) {
// We need to cast pthread_key_t to Thread::LocalStorageKey in two steps
// because pthread_key_t is a pointer type on Cygwin. This will probably not
// work on 64-bit platforms, but Cygwin doesn't support 64-bit anyway.
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = reinterpret_cast<intptr_t>(pthread_key);
return static_cast<Thread::LocalStorageKey>(ptr_key);
}
static inline pthread_key_t LocalKeyToPthreadKey(
Thread::LocalStorageKey local_key) {
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = static_cast<intptr_t>(local_key);
return reinterpret_cast<pthread_key_t>(ptr_key);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
USE(result);
ASSERT(result == 0);
return PthreadKeyToLocalKey(key);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_key_delete(pthread_key);
USE(result);
ASSERT(result == 0);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
pthread_setspecific(pthread_key, value);
}
void Thread::YieldCPU() {
sched_yield();
}
class CygwinMutex : public Mutex {
public:
CygwinMutex() {
pthread_mutexattr_t attrs;
memset(&attrs, 0, sizeof(attrs));
int result = pthread_mutexattr_init(&attrs);
ASSERT(result == 0);
result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
ASSERT(result == 0);
result = pthread_mutex_init(&mutex_, &attrs);
ASSERT(result == 0);
}
virtual ~CygwinMutex() { pthread_mutex_destroy(&mutex_); }
virtual int Lock() {
int result = pthread_mutex_lock(&mutex_);
return result;
}
virtual int Unlock() {
int result = pthread_mutex_unlock(&mutex_);
return result;
}
virtual bool TryLock() {
int result = pthread_mutex_trylock(&mutex_);
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
return true;
}
private:
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
};
Mutex* OS::CreateMutex() {
return new CygwinMutex();
}
class CygwinSemaphore : public Semaphore {
public:
explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); }
virtual ~CygwinSemaphore() { sem_destroy(&sem_); }
virtual void Wait();
virtual bool Wait(int timeout);
virtual void Signal() { sem_post(&sem_); }
private:
sem_t sem_;
};
void CygwinSemaphore::Wait() {
while (true) {
int result = sem_wait(&sem_);
if (result == 0) return; // Successfully got semaphore.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
} while (false)
#endif
bool CygwinSemaphore::Wait(int timeout) {
const long kOneSecondMicros = 1000000; // NOLINT
// Split timeout into second and nanosecond parts.
struct timeval delta;
delta.tv_usec = timeout % kOneSecondMicros;
delta.tv_sec = timeout / kOneSecondMicros;
struct timeval current_time;
// Get the current time.
if (gettimeofday(&current_time, NULL) == -1) {
return false;
}
// Calculate time for end of timeout.
struct timeval end_time;
timeradd(&current_time, &delta, &end_time);
struct timespec ts;
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
// Wait for semaphore signalled or timeout.
while (true) {
int result = sem_timedwait(&sem_, &ts);
if (result == 0) return true; // Successfully got semaphore.
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
Semaphore* OS::CreateSemaphore(int count) {
return new CygwinSemaphore(count);
}
// ----------------------------------------------------------------------------
// Cygwin profiler support.
//
// On Cygwin we use the same sampler implementation as on win32.
class Sampler::PlatformData : public Malloced {
public:
// Get a handle to the calling thread. This is the thread that we are
// going to profile. We need to make a copy of the handle because we are
// going to use it in the sampler thread. Using GetThreadHandle() will
// not work in this case. We're using OpenThread because DuplicateHandle
// for some reason doesn't work in Chrome's sandbox.
PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME |
THREAD_QUERY_INFORMATION,
false,
GetCurrentThreadId())) {}
~PlatformData() {
if (profiled_thread_ != NULL) {
CloseHandle(profiled_thread_);
profiled_thread_ = NULL;
}
}
HANDLE profiled_thread() { return profiled_thread_; }
private:
HANDLE profiled_thread_;
};
class SamplerThread : public Thread {
public:
static const int kSamplerThreadStackSize = 64 * KB;
explicit SamplerThread(int interval)
: Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)),
interval_(interval) {}
static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); }
static void TearDown() { delete mutex_; }
static void AddActiveSampler(Sampler* sampler) {
ScopedLock lock(mutex_);
SamplerRegistry::AddActiveSampler(sampler);
if (instance_ == NULL) {
instance_ = new SamplerThread(sampler->interval());
instance_->Start();
} else {
ASSERT(instance_->interval_ == sampler->interval());
}
}
static void RemoveActiveSampler(Sampler* sampler) {
ScopedLock lock(mutex_);
SamplerRegistry::RemoveActiveSampler(sampler);
if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
delete instance_;
instance_ = NULL;
}
}
// Implement Thread::Run().
virtual void Run() {
SamplerRegistry::State state;
while ((state = SamplerRegistry::GetState()) !=
SamplerRegistry::HAS_NO_SAMPLERS) {
// When CPU profiling is enabled both JavaScript and C++ code is
// profiled. We must not suspend.
if (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS) {
SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this);
} else {
if (RuntimeProfiler::WaitForSomeIsolateToEnterJS()) continue;
}
OS::Sleep(interval_);
}
}
static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
if (!sampler->isolate()->IsInitialized()) return;
if (!sampler->IsProfiling()) return;
SamplerThread* sampler_thread =
reinterpret_cast<SamplerThread*>(raw_sampler_thread);
sampler_thread->SampleContext(sampler);
}
void SampleContext(Sampler* sampler) {
HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
if (profiled_thread == NULL) return;
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
TickSample sample_obj;
TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
if (sample == NULL) sample = &sample_obj;
static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
if (SuspendThread(profiled_thread) == kSuspendFailed) return;
sample->state = sampler->isolate()->current_vm_state();
context.ContextFlags = CONTEXT_FULL;
if (GetThreadContext(profiled_thread, &context) != 0) {
#if V8_HOST_ARCH_X64
sample->pc = reinterpret_cast<Address>(context.Rip);
sample->sp = reinterpret_cast<Address>(context.Rsp);
sample->fp = reinterpret_cast<Address>(context.Rbp);
#else
sample->pc = reinterpret_cast<Address>(context.Eip);
sample->sp = reinterpret_cast<Address>(context.Esp);
sample->fp = reinterpret_cast<Address>(context.Ebp);
#endif
sampler->SampleStack(sample);
sampler->Tick(sample);
}
ResumeThread(profiled_thread);
}
const int interval_;
// Protects the process wide state below.
static Mutex* mutex_;
static SamplerThread* instance_;
private:
DISALLOW_COPY_AND_ASSIGN(SamplerThread);
};
Mutex* SamplerThread::mutex_ = NULL;
SamplerThread* SamplerThread::instance_ = NULL;
void OS::SetUp() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly can cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
SamplerThread::SetUp();
}
void OS::TearDown() {
SamplerThread::TearDown();
delete limit_mutex;
}
Sampler::Sampler(Isolate* isolate, int interval)
: isolate_(isolate),
interval_(interval),
profiling_(false),
active_(false),
samples_taken_(0) {
data_ = new PlatformData;
}
Sampler::~Sampler() {
ASSERT(!IsActive());
delete data_;
}
void Sampler::Start() {
ASSERT(!IsActive());
SetActive(true);
SamplerThread::AddActiveSampler(this);
}
void Sampler::Stop() {
ASSERT(IsActive());
SamplerThread::RemoveActiveSampler(this);
SetActive(false);
}
} } // namespace v8::internal