6d706ae3a0
and split Smi out of objects.h into smi.h. Bug: v8:3770, v8:5402 Change-Id: I5ff7461495d29c785a76c79aca2616816a29ab1e Reviewed-on: https://chromium-review.googlesource.com/c/1313035 Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Hannes Payer <hpayer@chromium.org> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Toon Verwaest <verwaest@chromium.org> Reviewed-by: Deepti Gandluri <gdeepti@chromium.org> Commit-Queue: Jakob Kummerow <jkummerow@chromium.org> Cr-Commit-Position: refs/heads/master@{#57252}
249 lines
8.0 KiB
C++
249 lines
8.0 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_DATE_H_
|
|
#define V8_DATE_H_
|
|
|
|
#include "src/base/timezone-cache.h"
|
|
#include "src/globals.h"
|
|
#include "src/objects/smi.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
class DateCache {
|
|
public:
|
|
static const int kMsPerMin = 60 * 1000;
|
|
static const int kSecPerDay = 24 * 60 * 60;
|
|
static const int64_t kMsPerDay = kSecPerDay * 1000;
|
|
static const int64_t kMsPerMonth = kMsPerDay * 30;
|
|
|
|
// The largest time that can be passed to OS date-time library functions.
|
|
static const int kMaxEpochTimeInSec = kMaxInt;
|
|
static const int64_t kMaxEpochTimeInMs =
|
|
static_cast<int64_t>(kMaxInt) * 1000;
|
|
|
|
// The largest time that can be stored in JSDate.
|
|
static const int64_t kMaxTimeInMs =
|
|
static_cast<int64_t>(864000000) * 10000000;
|
|
|
|
// Conservative upper bound on time that can be stored in JSDate
|
|
// before UTC conversion.
|
|
static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth;
|
|
|
|
// Sentinel that denotes an invalid local offset.
|
|
static const int kInvalidLocalOffsetInMs = kMaxInt;
|
|
// Sentinel that denotes an invalid cache stamp.
|
|
// It is an invariant of DateCache that cache stamp is non-negative.
|
|
static const int kInvalidStamp = -1;
|
|
|
|
DateCache();
|
|
|
|
virtual ~DateCache() {
|
|
delete tz_cache_;
|
|
tz_cache_ = nullptr;
|
|
}
|
|
|
|
|
|
// Clears cached timezone information and increments the cache stamp.
|
|
void ResetDateCache();
|
|
|
|
|
|
// Computes floor(time_ms / kMsPerDay).
|
|
static int DaysFromTime(int64_t time_ms) {
|
|
if (time_ms < 0) time_ms -= (kMsPerDay - 1);
|
|
return static_cast<int>(time_ms / kMsPerDay);
|
|
}
|
|
|
|
|
|
// Computes modulo(time_ms, kMsPerDay) given that
|
|
// days = floor(time_ms / kMsPerDay).
|
|
static int TimeInDay(int64_t time_ms, int days) {
|
|
return static_cast<int>(time_ms - days * kMsPerDay);
|
|
}
|
|
|
|
// ECMA 262 - ES#sec-timeclip TimeClip (time)
|
|
static double TimeClip(double time);
|
|
|
|
// Given the number of days since the epoch, computes the weekday.
|
|
// ECMA 262 - 15.9.1.6.
|
|
int Weekday(int days) {
|
|
int result = (days + 4) % 7;
|
|
return result >= 0 ? result : result + 7;
|
|
}
|
|
|
|
|
|
bool IsLeap(int year) {
|
|
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
|
|
}
|
|
|
|
// ECMA 262 - ES#sec-local-time-zone-adjustment
|
|
int LocalOffsetInMs(int64_t time, bool is_utc) {
|
|
return GetLocalOffsetFromOS(time, is_utc);
|
|
}
|
|
|
|
|
|
const char* LocalTimezone(int64_t time_ms) {
|
|
if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) {
|
|
time_ms = EquivalentTime(time_ms);
|
|
}
|
|
bool is_dst = DaylightSavingsOffsetInMs(time_ms) != 0;
|
|
const char** name = is_dst ? &dst_tz_name_ : &tz_name_;
|
|
if (*name == nullptr) {
|
|
*name = tz_cache_->LocalTimezone(static_cast<double>(time_ms));
|
|
}
|
|
return *name;
|
|
}
|
|
|
|
// ECMA 262 - 15.9.5.26
|
|
int TimezoneOffset(int64_t time_ms) {
|
|
int64_t local_ms = ToLocal(time_ms);
|
|
return static_cast<int>((time_ms - local_ms) / kMsPerMin);
|
|
}
|
|
|
|
// ECMA 262 - ES#sec-localtime-t
|
|
// LocalTime(t) = t + LocalTZA(t, true)
|
|
int64_t ToLocal(int64_t time_ms) {
|
|
return time_ms + LocalOffsetInMs(time_ms, true);
|
|
}
|
|
|
|
// ECMA 262 - ES#sec-utc-t
|
|
// UTC(t) = t - LocalTZA(t, false)
|
|
int64_t ToUTC(int64_t time_ms) {
|
|
return time_ms - LocalOffsetInMs(time_ms, false);
|
|
}
|
|
|
|
|
|
// Computes a time equivalent to the given time according
|
|
// to ECMA 262 - 15.9.1.9.
|
|
// The issue here is that some library calls don't work right for dates
|
|
// that cannot be represented using a non-negative signed 32 bit integer
|
|
// (measured in whole seconds based on the 1970 epoch).
|
|
// We solve this by mapping the time to a year with same leap-year-ness
|
|
// and same starting day for the year. The ECMAscript specification says
|
|
// we must do this, but for compatibility with other browsers, we use
|
|
// the actual year if it is in the range 1970..2037
|
|
int64_t EquivalentTime(int64_t time_ms) {
|
|
int days = DaysFromTime(time_ms);
|
|
int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay);
|
|
int year, month, day;
|
|
YearMonthDayFromDays(days, &year, &month, &day);
|
|
int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1;
|
|
return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms;
|
|
}
|
|
|
|
// Returns an equivalent year in the range [2008-2035] matching
|
|
// - leap year,
|
|
// - week day of first day.
|
|
// ECMA 262 - 15.9.1.9.
|
|
int EquivalentYear(int year) {
|
|
int week_day = Weekday(DaysFromYearMonth(year, 0));
|
|
int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28;
|
|
// Find the year in the range 2008..2037 that is equivalent mod 28.
|
|
// Add 3*28 to give a positive argument to the modulus operator.
|
|
return 2008 + (recent_year + 3 * 28 - 2008) % 28;
|
|
}
|
|
|
|
// Given the number of days since the epoch, computes
|
|
// the corresponding year, month, and day.
|
|
void YearMonthDayFromDays(int days, int* year, int* month, int* day);
|
|
|
|
// Computes the number of days since the epoch for
|
|
// the first day of the given month in the given year.
|
|
int DaysFromYearMonth(int year, int month);
|
|
|
|
// Breaks down the time value.
|
|
void BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
|
|
int* weekday, int* hour, int* min, int* sec, int* ms);
|
|
|
|
// Cache stamp is used for invalidating caches in JSDate.
|
|
// We increment the stamp each time when the timezone information changes.
|
|
// JSDate objects perform stamp check and invalidate their caches if
|
|
// their saved stamp is not equal to the current stamp.
|
|
Smi stamp() { return stamp_; }
|
|
void* stamp_address() { return &stamp_; }
|
|
|
|
// These functions are virtual so that we can override them when testing.
|
|
virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) {
|
|
double time_ms = static_cast<double>(time_sec * 1000);
|
|
return static_cast<int>(tz_cache_->DaylightSavingsOffset(time_ms));
|
|
}
|
|
|
|
virtual int GetLocalOffsetFromOS(int64_t time_ms, bool is_utc);
|
|
|
|
private:
|
|
// The implementation relies on the fact that no time zones have
|
|
// more than one daylight savings offset change per 19 days.
|
|
// In Egypt in 2010 they decided to suspend DST during Ramadan. This
|
|
// led to a short interval where DST is in effect from September 10 to
|
|
// September 30.
|
|
static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay;
|
|
|
|
// Size of the Daylight Savings Time cache.
|
|
static const int kDSTSize = 32;
|
|
|
|
// Daylight Savings Time segment stores a segment of time where
|
|
// daylight savings offset does not change.
|
|
struct DST {
|
|
int start_sec;
|
|
int end_sec;
|
|
int offset_ms;
|
|
int last_used;
|
|
};
|
|
|
|
// Computes the daylight savings offset for the given time.
|
|
// ECMA 262 - 15.9.1.8
|
|
int DaylightSavingsOffsetInMs(int64_t time_ms);
|
|
|
|
// Sets the before_ and the after_ segments from the DST cache such that
|
|
// the before_ segment starts earlier than the given time and
|
|
// the after_ segment start later than the given time.
|
|
// Both segments might be invalid.
|
|
// The last_used counters of the before_ and after_ are updated.
|
|
void ProbeDST(int time_sec);
|
|
|
|
// Finds the least recently used segment from the DST cache that is not
|
|
// equal to the given 'skip' segment.
|
|
DST* LeastRecentlyUsedDST(DST* skip);
|
|
|
|
// Extends the after_ segment with the given point or resets it
|
|
// if it starts later than the given time + kDefaultDSTDeltaInSec.
|
|
inline void ExtendTheAfterSegment(int time_sec, int offset_ms);
|
|
|
|
// Makes the given segment invalid.
|
|
inline void ClearSegment(DST* segment);
|
|
|
|
bool InvalidSegment(DST* segment) {
|
|
return segment->start_sec > segment->end_sec;
|
|
}
|
|
|
|
Smi stamp_;
|
|
|
|
// Daylight Saving Time cache.
|
|
DST dst_[kDSTSize];
|
|
int dst_usage_counter_;
|
|
DST* before_;
|
|
DST* after_;
|
|
|
|
int local_offset_ms_;
|
|
|
|
// Year/Month/Day cache.
|
|
bool ymd_valid_;
|
|
int ymd_days_;
|
|
int ymd_year_;
|
|
int ymd_month_;
|
|
int ymd_day_;
|
|
|
|
// Timezone name cache
|
|
const char* tz_name_;
|
|
const char* dst_tz_name_;
|
|
|
|
base::TimezoneCache* tz_cache_;
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_DATE_H_
|