v8/src/math.js
machenbach eb0024d1db Revert of Hook up more import/exports in natives. (patchset #3 id:40001 of https://codereview.chromium.org/1154483002/)
Reason for revert:
[Sheriff] Speculative revert for gc stress failures:
http://build.chromium.org/p/client.v8/builders/V8%20Linux64%20GC%20Stress%20-%20custom%20snapshot/builds/481

Original issue's description:
> Hook up more import/exports in natives.
>
> R=jkummerow@chromium.org
>
> Committed: https://crrev.com/7a918ac9658d11778f39593bfcc19d7c506defd9
> Cr-Commit-Position: refs/heads/master@{#28573}
>
> Committed: https://crrev.com/e13a39dd7f4062898709d7c68900677df0513995
> Cr-Commit-Position: refs/heads/master@{#28578}

TBR=jkummerow@chromium.org,erik.corry@gmail.com,yangguo@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true

Review URL: https://codereview.chromium.org/1154743003

Cr-Commit-Position: refs/heads/master@{#28584}
2015-05-22 11:21:17 +00:00

366 lines
9.3 KiB
JavaScript

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
var rngstate; // Initialized to a Uint32Array during genesis.
(function(global, utils) {
"use strict";
%CheckIsBootstrapping();
// -------------------------------------------------------------------
// Imports
var GlobalObject = global.Object;
var InternalArray = utils.InternalArray;
//-------------------------------------------------------------------
// ECMA 262 - 15.8.2.1
function MathAbs(x) {
x = +x;
return (x > 0) ? x : 0 - x;
}
// ECMA 262 - 15.8.2.2
function MathAcosJS(x) {
return %_MathAcos(+x);
}
// ECMA 262 - 15.8.2.3
function MathAsinJS(x) {
return %_MathAsin(+x);
}
// ECMA 262 - 15.8.2.4
function MathAtanJS(x) {
return %_MathAtan(+x);
}
// ECMA 262 - 15.8.2.5
// The naming of y and x matches the spec, as does the order in which
// ToNumber (valueOf) is called.
function MathAtan2JS(y, x) {
y = +y;
x = +x;
return %_MathAtan2(y, x);
}
// ECMA 262 - 15.8.2.6
function MathCeil(x) {
return -%_MathFloor(-x);
}
// ECMA 262 - 15.8.2.8
function MathExp(x) {
return %MathExpRT(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.9
function MathFloorJS(x) {
return %_MathFloor(+x);
}
// ECMA 262 - 15.8.2.10
function MathLog(x) {
return %_MathLogRT(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.11
function MathMax(arg1, arg2) { // length == 2
var length = %_ArgumentsLength();
if (length == 2) {
arg1 = TO_NUMBER_INLINE(arg1);
arg2 = TO_NUMBER_INLINE(arg2);
if (arg2 > arg1) return arg2;
if (arg1 > arg2) return arg1;
if (arg1 == arg2) {
// Make sure -0 is considered less than +0.
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1;
}
// All comparisons failed, one of the arguments must be NaN.
return NAN;
}
var r = -INFINITY;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
n = TO_NUMBER_INLINE(n);
// Make sure +0 is considered greater than -0.
if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) {
r = n;
}
}
return r;
}
// ECMA 262 - 15.8.2.12
function MathMin(arg1, arg2) { // length == 2
var length = %_ArgumentsLength();
if (length == 2) {
arg1 = TO_NUMBER_INLINE(arg1);
arg2 = TO_NUMBER_INLINE(arg2);
if (arg2 > arg1) return arg1;
if (arg1 > arg2) return arg2;
if (arg1 == arg2) {
// Make sure -0 is considered less than +0.
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2;
}
// All comparisons failed, one of the arguments must be NaN.
return NAN;
}
var r = INFINITY;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
n = TO_NUMBER_INLINE(n);
// Make sure -0 is considered less than +0.
if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) {
r = n;
}
}
return r;
}
// ECMA 262 - 15.8.2.13
function MathPowJS(x, y) {
return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
}
// ECMA 262 - 15.8.2.14
function MathRandom() {
var r0 = (MathImul(18030, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
rngstate[0] = r0;
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
rngstate[1] = r1;
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
// Division by 0x100000000 through multiplication by reciprocal.
return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
}
// ECMA 262 - 15.8.2.15
function MathRound(x) {
return %RoundNumber(TO_NUMBER_INLINE(x));
}
// ECMA 262 - 15.8.2.17
function MathSqrtJS(x) {
return %_MathSqrt(+x);
}
// Non-standard extension.
function MathImul(x, y) {
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
}
// ES6 draft 09-27-13, section 20.2.2.28.
function MathSign(x) {
x = +x;
if (x > 0) return 1;
if (x < 0) return -1;
// -0, 0 or NaN.
return x;
}
// ES6 draft 09-27-13, section 20.2.2.34.
function MathTrunc(x) {
x = +x;
if (x > 0) return %_MathFloor(x);
if (x < 0) return -%_MathFloor(-x);
// -0, 0 or NaN.
return x;
}
// ES6 draft 09-27-13, section 20.2.2.33.
function MathTanh(x) {
x = TO_NUMBER_INLINE(x);
// Idempotent for +/-0.
if (x === 0) return x;
// Returns +/-1 for +/-Infinity.
if (!NUMBER_IS_FINITE(x)) return MathSign(x);
var exp1 = MathExp(x);
var exp2 = MathExp(-x);
return (exp1 - exp2) / (exp1 + exp2);
}
// ES6 draft 09-27-13, section 20.2.2.5.
function MathAsinh(x) {
x = TO_NUMBER_INLINE(x);
// Idempotent for NaN, +/-0 and +/-Infinity.
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
if (x > 0) return MathLog(x + %_MathSqrt(x * x + 1));
// This is to prevent numerical errors caused by large negative x.
return -MathLog(-x + %_MathSqrt(x * x + 1));
}
// ES6 draft 09-27-13, section 20.2.2.3.
function MathAcosh(x) {
x = TO_NUMBER_INLINE(x);
if (x < 1) return NAN;
// Idempotent for NaN and +Infinity.
if (!NUMBER_IS_FINITE(x)) return x;
return MathLog(x + %_MathSqrt(x + 1) * %_MathSqrt(x - 1));
}
// ES6 draft 09-27-13, section 20.2.2.7.
function MathAtanh(x) {
x = TO_NUMBER_INLINE(x);
// Idempotent for +/-0.
if (x === 0) return x;
// Returns NaN for NaN and +/- Infinity.
if (!NUMBER_IS_FINITE(x)) return NAN;
return 0.5 * MathLog((1 + x) / (1 - x));
}
// ES6 draft 09-27-13, section 20.2.2.17.
function MathHypot(x, y) { // Function length is 2.
// We may want to introduce fast paths for two arguments and when
// normalization to avoid overflow is not necessary. For now, we
// simply assume the general case.
var length = %_ArgumentsLength();
var args = new InternalArray(length);
var max = 0;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
n = TO_NUMBER_INLINE(n);
if (n === INFINITY || n === -INFINITY) return INFINITY;
n = MathAbs(n);
if (n > max) max = n;
args[i] = n;
}
// Kahan summation to avoid rounding errors.
// Normalize the numbers to the largest one to avoid overflow.
if (max === 0) max = 1;
var sum = 0;
var compensation = 0;
for (var i = 0; i < length; i++) {
var n = args[i] / max;
var summand = n * n - compensation;
var preliminary = sum + summand;
compensation = (preliminary - sum) - summand;
sum = preliminary;
}
return %_MathSqrt(sum) * max;
}
// ES6 draft 09-27-13, section 20.2.2.16.
function MathFroundJS(x) {
return %MathFround(TO_NUMBER_INLINE(x));
}
// ES6 draft 07-18-14, section 20.2.2.11
function MathClz32JS(x) {
return %_MathClz32(x >>> 0);
}
// ES6 draft 09-27-13, section 20.2.2.9.
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
// of Newton's method.
function MathCbrt(x) {
x = TO_NUMBER_INLINE(x);
if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
}
macro NEWTON_ITERATION_CBRT(x, approx)
(1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
endmacro
function CubeRoot(x) {
var approx_hi = MathFloorJS(%_DoubleHi(x) / 3) + 0x2A9F7893;
var approx = %_ConstructDouble(approx_hi, 0);
approx = NEWTON_ITERATION_CBRT(x, approx);
approx = NEWTON_ITERATION_CBRT(x, approx);
approx = NEWTON_ITERATION_CBRT(x, approx);
return NEWTON_ITERATION_CBRT(x, approx);
}
// -------------------------------------------------------------------
// Instance class name can only be set on functions. That is the only
// purpose for MathConstructor.
function MathConstructor() {}
var Math = new MathConstructor();
%InternalSetPrototype(Math, GlobalObject.prototype);
%AddNamedProperty(global, "Math", Math, DONT_ENUM);
%FunctionSetInstanceClassName(MathConstructor, 'Math');
%AddNamedProperty(Math, symbolToStringTag, "Math", READ_ONLY | DONT_ENUM);
// Set up math constants.
$installConstants(Math, [
// ECMA-262, section 15.8.1.1.
"E", 2.7182818284590452354,
// ECMA-262, section 15.8.1.2.
"LN10", 2.302585092994046,
// ECMA-262, section 15.8.1.3.
"LN2", 0.6931471805599453,
// ECMA-262, section 15.8.1.4.
"LOG2E", 1.4426950408889634,
"LOG10E", 0.4342944819032518,
"PI", 3.1415926535897932,
"SQRT1_2", 0.7071067811865476,
"SQRT2", 1.4142135623730951
]);
// Set up non-enumerable functions of the Math object and
// set their names.
$installFunctions(Math, DONT_ENUM, [
"random", MathRandom,
"abs", MathAbs,
"acos", MathAcosJS,
"asin", MathAsinJS,
"atan", MathAtanJS,
"ceil", MathCeil,
"exp", MathExp,
"floor", MathFloorJS,
"log", MathLog,
"round", MathRound,
"sqrt", MathSqrtJS,
"atan2", MathAtan2JS,
"pow", MathPowJS,
"max", MathMax,
"min", MathMin,
"imul", MathImul,
"sign", MathSign,
"trunc", MathTrunc,
"tanh", MathTanh,
"asinh", MathAsinh,
"acosh", MathAcosh,
"atanh", MathAtanh,
"hypot", MathHypot,
"fround", MathFroundJS,
"clz32", MathClz32JS,
"cbrt", MathCbrt
]);
%SetForceInlineFlag(MathAbs);
%SetForceInlineFlag(MathAcosJS);
%SetForceInlineFlag(MathAsinJS);
%SetForceInlineFlag(MathAtanJS);
%SetForceInlineFlag(MathAtan2JS);
%SetForceInlineFlag(MathCeil);
%SetForceInlineFlag(MathClz32JS);
%SetForceInlineFlag(MathFloorJS);
%SetForceInlineFlag(MathRandom);
%SetForceInlineFlag(MathSign);
%SetForceInlineFlag(MathSqrtJS);
%SetForceInlineFlag(MathTrunc);
// -------------------------------------------------------------------
// Exports
utils.Export(function(to) {
to.MathAbs = MathAbs;
to.MathExp = MathExp;
to.MathFloor = MathFloorJS;
to.MathMax = MathMax;
to.MathMin = MathMin;
});
})