v8/src/macro-assembler-arm.cc
iposva@chromium.org ba6502bd64 - ip register cannot be used when accessing large constants in the instruction
stream. Enhance the debug code to save and restore the unused holder_reg
  at these points.
- Fix lint issues.

Review URL: http://codereview.chromium.org/8039

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@545 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 22:40:14 +00:00

884 lines
30 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"
namespace v8 { namespace internal {
// Give alias names to registers
Register cp = { 8 }; // JavaScript context pointer
Register pp = { 10 }; // parameter pointer
MacroAssembler::MacroAssembler(void* buffer, int size)
: Assembler(buffer, size),
unresolved_(0),
generating_stub_(false),
allow_stub_calls_(true) {
}
// We always generate arm code, never thumb code, even if V8 is compiled to
// thumb, so we require inter-working support
#if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
#error "flag -mthumb-interwork missing"
#endif
// We do not support thumb inter-working with an arm architecture not supporting
// the blx instruction (below v5t)
#if defined(__THUMB_INTERWORK__)
#if !defined(__ARM_ARCH_5T__) && !defined(__ARM_ARCH_5TE__)
// add tests for other versions above v5t as required
#error "for thumb inter-working we require architecture v5t or above"
#endif
#endif
// Using blx may yield better code, so use it when required or when available
#if defined(__THUMB_INTERWORK__) || defined(__ARM_ARCH_5__)
#define USE_BLX 1
#endif
// Using bx does not yield better code, so use it only when required
#if defined(__THUMB_INTERWORK__)
#define USE_BX 1
#endif
void MacroAssembler::Jump(Register target, Condition cond) {
#if USE_BX
bx(target, cond);
#else
mov(pc, Operand(target), LeaveCC, cond);
#endif
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
#if USE_BX
mov(ip, Operand(target, rmode), LeaveCC, cond);
bx(ip, cond);
#else
mov(pc, Operand(target, rmode), LeaveCC, cond);
#endif
}
void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
// 'code' is always generated ARM code, never THUMB code
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
void MacroAssembler::Call(Register target, Condition cond) {
#if USE_BLX
blx(target, cond);
#else
// set lr for return at current pc + 8
mov(lr, Operand(pc), LeaveCC, cond);
mov(pc, Operand(target), LeaveCC, cond);
#endif
}
void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
#if !defined(__arm__)
if (rmode == RelocInfo::RUNTIME_ENTRY) {
mov(r2, Operand(target, rmode), LeaveCC, cond);
// Set lr for return at current pc + 8.
mov(lr, Operand(pc), LeaveCC, cond);
// Emit a ldr<cond> pc, [pc + offset of target in constant pool].
// Notify the simulator of the transition to C code.
swi(assembler::arm::call_rt_r2);
} else {
// set lr for return at current pc + 8
mov(lr, Operand(pc), LeaveCC, cond);
// emit a ldr<cond> pc, [pc + offset of target in constant pool]
mov(pc, Operand(target, rmode), LeaveCC, cond);
}
#else
// Set lr for return at current pc + 8.
mov(lr, Operand(pc), LeaveCC, cond);
// Emit a ldr<cond> pc, [pc + offset of target in constant pool].
mov(pc, Operand(target, rmode), LeaveCC, cond);
#endif // !defined(__arm__)
// If USE_BLX is defined, we could emit a 'mov ip, target', followed by a
// 'blx ip'; however, the code would not be shorter than the above sequence
// and the target address of the call would be referenced by the first
// instruction rather than the second one, which would make it harder to patch
// (two instructions before the return address, instead of one).
ASSERT(kTargetAddrToReturnAddrDist == sizeof(Instr));
}
void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Call(reinterpret_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
// 'code' is always generated ARM code, never THUMB code
Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
void MacroAssembler::Ret() {
#if USE_BX
bx(lr);
#else
mov(pc, Operand(lr));
#endif
}
// Will clobber 4 registers: object, offset, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object, Register offset,
Register scratch) {
// This is how much we shift the remembered set bit offset to get the
// offset of the word in the remembered set. We divide by kBitsPerInt (32,
// shift right 5) and then multiply by kIntSize (4, shift left 2).
const int kRSetWordShift = 3;
Label fast, done;
// First, test that the object is not in the new space. We cannot set
// remembered set bits in the new space.
// object: heap object pointer (with tag)
// offset: offset to store location from the object
and_(scratch, object, Operand(Heap::NewSpaceMask()));
cmp(scratch, Operand(ExternalReference::new_space_start()));
b(eq, &done);
// Compute the bit offset in the remembered set.
// object: heap object pointer (with tag)
// offset: offset to store location from the object
mov(ip, Operand(Page::kPageAlignmentMask)); // load mask only once
and_(scratch, object, Operand(ip)); // offset into page of the object
add(offset, scratch, Operand(offset)); // add offset into the object
mov(offset, Operand(offset, LSR, kObjectAlignmentBits));
// Compute the page address from the heap object pointer.
// object: heap object pointer (with tag)
// offset: bit offset of store position in the remembered set
bic(object, object, Operand(ip));
// If the bit offset lies beyond the normal remembered set range, it is in
// the extra remembered set area of a large object.
// object: page start
// offset: bit offset of store position in the remembered set
cmp(offset, Operand(Page::kPageSize / kPointerSize));
b(lt, &fast);
// Adjust the bit offset to be relative to the start of the extra
// remembered set and the start address to be the address of the extra
// remembered set.
sub(offset, offset, Operand(Page::kPageSize / kPointerSize));
// Load the array length into 'scratch' and multiply by four to get the
// size in bytes of the elements.
ldr(scratch, MemOperand(object, Page::kObjectStartOffset
+ FixedArray::kLengthOffset));
mov(scratch, Operand(scratch, LSL, kObjectAlignmentBits));
// Add the page header (including remembered set), array header, and array
// body size to the page address.
add(object, object, Operand(Page::kObjectStartOffset
+ Array::kHeaderSize));
add(object, object, Operand(scratch));
bind(&fast);
// Get address of the rset word.
// object: start of the remembered set (page start for the fast case)
// offset: bit offset of store position in the remembered set
bic(scratch, offset, Operand(kBitsPerInt - 1)); // clear the bit offset
add(object, object, Operand(scratch, LSR, kRSetWordShift));
// Get bit offset in the rset word.
// object: address of remembered set word
// offset: bit offset of store position
and_(offset, offset, Operand(kBitsPerInt - 1));
ldr(scratch, MemOperand(object));
mov(ip, Operand(1));
orr(scratch, scratch, Operand(ip, LSL, offset));
str(scratch, MemOperand(object));
bind(&done);
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
// r0-r3: preserved
stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
mov(ip, Operand(Smi::FromInt(type)));
push(ip);
mov(ip, Operand(0));
push(ip); // Push an empty code cache slot.
add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
// r0: preserved
// r1: preserved
// r2: preserved
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer and return address.
mov(sp, fp);
ldm(ia_w, sp, fp.bit() | lr.bit());
}
void MacroAssembler::EnterExitFrame(StackFrame::Type type) {
ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG);
// Compute parameter pointer before making changes and save it as ip
// register so that it is restored as sp register on exit, thereby
// popping the args.
// ip = sp + kPointerSize * #args;
add(ip, sp, Operand(r0, LSL, kPointerSizeLog2));
// Push in reverse order: caller_fp, sp_on_exit, and caller_pc.
stm(db_w, sp, fp.bit() | ip.bit() | lr.bit());
mov(fp, Operand(sp)); // setup new frame pointer
// Push debug marker.
mov(ip, Operand(type == StackFrame::EXIT_DEBUG ? 1 : 0));
push(ip);
// Save the frame pointer and the context in top.
mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
str(fp, MemOperand(ip));
mov(ip, Operand(ExternalReference(Top::k_context_address)));
str(cp, MemOperand(ip));
// Setup argc and the builtin function in callee-saved registers.
mov(r4, Operand(r0));
mov(r5, Operand(r1));
// Compute the argv pointer and keep it in a callee-saved register.
add(r6, fp, Operand(r4, LSL, kPointerSizeLog2));
add(r6, r6, Operand(ExitFrameConstants::kPPDisplacement - kPointerSize));
// Save the state of all registers to the stack from the memory
// location. This is needed to allow nested break points.
if (type == StackFrame::EXIT_DEBUG) {
// Use sp as base to push.
CopyRegistersFromMemoryToStack(sp, kJSCallerSaved);
}
}
void MacroAssembler::LeaveExitFrame(StackFrame::Type type) {
// Restore the memory copy of the registers by digging them out from
// the stack. This is needed to allow nested break points.
if (type == StackFrame::EXIT_DEBUG) {
// This code intentionally clobbers r2 and r3.
const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
const int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize;
add(r3, fp, Operand(kOffset));
CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved);
}
// Clear top frame.
mov(r3, Operand(0));
mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
str(r3, MemOperand(ip));
// Restore current context from top and clear it in debug mode.
mov(ip, Operand(ExternalReference(Top::k_context_address)));
ldr(cp, MemOperand(ip));
if (kDebug) {
str(r3, MemOperand(ip));
}
// Pop the arguments, restore registers, and return.
mov(sp, Operand(fp)); // respect ABI stack constraint
ldm(ia, sp, fp.bit() | sp.bit() | pc.bit());
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag) {
bool definitely_matches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// r0: actual arguments count
// r1: function (passed through to callee)
// r2: expected arguments count
// r3: callee code entry
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
ASSERT(actual.is_immediate() || actual.reg().is(r0));
ASSERT(expected.is_immediate() || expected.reg().is(r2));
ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(r0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
mov(r2, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
cmp(expected.reg(), Operand(actual.immediate()));
b(eq, &regular_invoke);
mov(r0, Operand(actual.immediate()));
} else {
cmp(expected.reg(), Operand(actual.reg()));
b(eq, &regular_invoke);
}
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
mov(r3, Operand(code_constant));
add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
}
Handle<Code> adaptor =
Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
if (flag == CALL_FUNCTION) {
Call(adaptor, RelocInfo::CODE_TARGET);
b(done);
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
if (flag == CALL_FUNCTION) {
Call(code);
} else {
ASSERT(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, code, no_reg, &done, flag);
if (flag == CALL_FUNCTION) {
Call(code, rmode);
} else {
Jump(code, rmode);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag) {
// Contract with called JS functions requires that function is passed in r1.
ASSERT(fun.is(r1));
Register expected_reg = r2;
Register code_reg = r3;
ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
ldr(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
ldr(code_reg,
MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag);
}
void MacroAssembler::SaveRegistersToMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of registers to memory location.
for (int i = 0; i < kNumJSCallerSaved; i++) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
Register reg = { r };
mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
str(reg, MemOperand(ip));
}
}
}
void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of memory location to registers.
for (int i = kNumJSCallerSaved; --i >= 0;) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
Register reg = { r };
mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
ldr(reg, MemOperand(ip));
}
}
}
void MacroAssembler::CopyRegistersFromMemoryToStack(Register base,
RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of the memory location to the stack and adjust base.
for (int i = kNumJSCallerSaved; --i >= 0;) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
ldr(ip, MemOperand(ip));
str(ip, MemOperand(base, 4, NegPreIndex));
}
}
}
void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
Register scratch,
RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of the stack to the memory location and adjust base.
for (int i = 0; i < kNumJSCallerSaved; i++) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
ldr(scratch, MemOperand(base, 4, PostIndex));
str(scratch, MemOperand(ip));
}
}
}
void MacroAssembler::PushTryHandler(CodeLocation try_location,
HandlerType type) {
ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
// The pc (return address) is passed in register lr.
if (try_location == IN_JAVASCRIPT) {
stm(db_w, sp, pp.bit() | fp.bit() | lr.bit());
if (type == TRY_CATCH_HANDLER) {
mov(r3, Operand(StackHandler::TRY_CATCH));
} else {
mov(r3, Operand(StackHandler::TRY_FINALLY));
}
push(r3); // state
mov(r3, Operand(ExternalReference(Top::k_handler_address)));
ldr(r1, MemOperand(r3));
push(r1); // next sp
str(sp, MemOperand(r3)); // chain handler
mov(r0, Operand(Smi::FromInt(StackHandler::kCodeNotPresent))); // new TOS
push(r0);
} else {
// Must preserve r0-r4, r5-r7 are available.
ASSERT(try_location == IN_JS_ENTRY);
// The parameter pointer is meaningless here and fp does not point to a JS
// frame. So we save NULL for both pp and fp. We expect the code throwing an
// exception to check fp before dereferencing it to restore the context.
mov(pp, Operand(0)); // set pp to NULL
mov(ip, Operand(0)); // to save a NULL fp
stm(db_w, sp, pp.bit() | ip.bit() | lr.bit());
mov(r6, Operand(StackHandler::ENTRY));
push(r6); // state
mov(r7, Operand(ExternalReference(Top::k_handler_address)));
ldr(r6, MemOperand(r7));
push(r6); // next sp
str(sp, MemOperand(r7)); // chain handler
mov(r5, Operand(Smi::FromInt(StackHandler::kCodeNotPresent))); // new TOS
push(r5); // flush TOS
}
}
Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
JSObject* holder, Register holder_reg,
Register scratch,
Label* miss) {
// Make sure there's no overlap between scratch and the other
// registers.
ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 1;
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
while (object != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Get the map of the current object.
ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
cmp(scratch, Operand(Handle<Map>(object->map())));
// Branch on the result of the map check.
b(ne, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (object->IsJSGlobalProxy()) {
CheckAccessGlobalProxy(reg, scratch, miss);
// Restore scratch register to be the map of the object. In the
// new space case below, we load the prototype from the map in
// the scratch register.
ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
}
reg = holder_reg; // from now the object is in holder_reg
JSObject* prototype = JSObject::cast(object->GetPrototype());
if (Heap::InNewSpace(prototype)) {
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
mov(reg, Operand(Handle<JSObject>(prototype)));
}
// Go to the next object in the prototype chain.
object = prototype;
}
// Check the holder map.
ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
cmp(scratch, Operand(Handle<Map>(object->map())));
b(ne, miss);
// Log the check depth.
LOG(IntEvent("check-maps-depth", depth));
// Perform security check for access to the global object and return
// the holder register.
ASSERT(object == holder);
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
if (object->IsJSGlobalProxy()) {
CheckAccessGlobalProxy(reg, scratch, miss);
}
return reg;
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!holder_reg.is(ip));
ASSERT(!scratch.is(ip));
// Load current lexical context from the stack frame.
ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
if (kDebug) {
cmp(scratch, Operand(0));
Check(ne, "we should not have an empty lexical context");
}
// Load the global context of the current context.
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, offset));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check the context is a global context.
if (FLAG_debug_code) {
// TODO(119): avoid push(holder_reg)/pop(holder_reg)
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the global_context_map.
ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
cmp(holder_reg, Operand(Factory::global_context_map()));
Check(eq, "JSGlobalObject::global_context should be a global context.");
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
cmp(scratch, Operand(ip));
b(eq, &same_contexts);
// Check the context is a global context.
if (FLAG_debug_code) {
// TODO(119): avoid push(holder_reg)/pop(holder_reg)
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, ip); // Move ip to its holding place.
cmp(holder_reg, Operand(Factory::null_value()));
Check(ne, "JSGlobalProxy::context() should not be null.");
ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
cmp(holder_reg, Operand(Factory::global_context_map()));
Check(eq, "JSGlobalObject::global_context should be a global context.");
// Restore ip is not needed. ip is reloaded below.
pop(holder_reg); // Restore holder.
// Restore ip to holder's context.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, token_offset));
ldr(ip, FieldMemOperand(ip, token_offset));
cmp(scratch, Operand(ip));
b(ne, miss);
bind(&same_contexts);
}
void MacroAssembler::CallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs
Call(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
ASSERT(argc >= 1 && generating_stub());
if (argc > 1)
add(sp, sp, Operand((argc - 1) * kPointerSize));
Ret();
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
add(sp, sp, Operand(num_arguments * kPointerSize));
}
mov(r0, Operand(Factory::undefined_value()));
}
void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
// All parameters are on the stack. r0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
Runtime::FunctionId function_id =
static_cast<Runtime::FunctionId>(f->stub_id);
RuntimeStub stub(function_id, num_arguments);
CallStub(&stub);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}
void MacroAssembler::TailCallRuntime(const ExternalReference& ext,
int num_arguments) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
JumpToBuiltin(ext);
}
void MacroAssembler::JumpToBuiltin(const ExternalReference& builtin) {
#if defined(__thumb__)
// Thumb mode builtin.
ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
mov(r1, Operand(builtin));
CEntryStub stub;
Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
bool* resolved) {
// Contract with compiled functions is that the function is passed in r1.
int builtins_offset =
JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
ldr(r1, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
ldr(r1, FieldMemOperand(r1, builtins_offset));
return Builtins::GetCode(id, resolved);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flags) {
bool resolved;
Handle<Code> code = ResolveBuiltin(id, &resolved);
if (flags == CALL_JS) {
Call(code, RelocInfo::CODE_TARGET);
} else {
ASSERT(flags == JUMP_JS);
Jump(code, RelocInfo::CODE_TARGET);
}
if (!resolved) {
const char* name = Builtins::GetName(id);
int argc = Builtins::GetArgumentsCount(id);
uint32_t flags =
Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Bootstrapper::FixupFlagsIsPCRelative::encode(true);
Unresolved entry = { pc_offset() - sizeof(Instr), flags, name };
unresolved_.Add(entry);
}
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
bool resolved;
Handle<Code> code = ResolveBuiltin(id, &resolved);
mov(target, Operand(code));
if (!resolved) {
const char* name = Builtins::GetName(id);
int argc = Builtins::GetArgumentsCount(id);
uint32_t flags =
Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Bootstrapper::FixupFlagsIsPCRelative::encode(true);
Unresolved entry = { pc_offset() - sizeof(Instr), flags, name };
unresolved_.Add(entry);
}
}
void MacroAssembler::Assert(Condition cc, const char* msg) {
if (FLAG_debug_code)
Check(cc, msg);
}
void MacroAssembler::Check(Condition cc, const char* msg) {
Label L;
b(cc, &L);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(const char* msg) {
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the aligment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
mov(r0, Operand(p0));
push(r0);
mov(r0, Operand(Smi::FromInt(p1 - p0)));
push(r0);
CallRuntime(Runtime::kAbort, 2);
// will not return here
}
} } // namespace v8::internal