v8/test/cctest/compiler/test-gap-resolver.cc
Lu Yahan 818d73ca18 [riscv64][register-alloc] Implement vector register independently allocating
vector register has different register file from float register in Risc64 rvv extension.
So this cl add third FPalising kind INDEPENDENT to allocate independently simd register.

Bug: v8:11976

doc: https://docs.google.com/document/d/1UwmUwOI3eeIMYzZFRmeXmfyNXRFHNZAQ4BcN0ODdMmo/edit?usp=sharing

Change-Id: I0fb8901294b4bc44b0bee55e630b60460e42bef2
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3383513
Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Auto-Submit: Yahan Lu <yahan@iscas.ac.cn>
Commit-Queue: Yahan Lu <yahan@iscas.ac.cn>
Cr-Commit-Position: refs/heads/main@{#79449}
2022-03-11 05:07:45 +00:00

516 lines
17 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/backend/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
const auto GetRegConfig = RegisterConfiguration::Default;
// Fragments the given FP operand into an equivalent set of FP operands to
// simplify ParallelMove equivalence testing.
void GetCanonicalOperands(const InstructionOperand& op,
std::vector<InstructionOperand>* fragments) {
CHECK_EQ(kFPAliasing, AliasingKind::kCombine);
CHECK(op.IsFPLocationOperand());
const LocationOperand& loc = LocationOperand::cast(op);
MachineRepresentation rep = loc.representation();
int base = -1;
int aliases = GetRegConfig()->GetAliases(
rep, 0, MachineRepresentation::kFloat32, &base);
CHECK_LT(0, aliases);
CHECK_GE(4, aliases);
int index = -1;
int step = 1;
if (op.IsFPRegister()) {
index = loc.register_code() * aliases;
} else {
index = loc.index();
step = -1;
}
for (int i = 0; i < aliases; i++) {
fragments->push_back(AllocatedOperand(loc.location_kind(),
MachineRepresentation::kFloat32,
index + i * step));
}
}
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
void ExecuteInParallel(const ParallelMove* moves) {
InterpreterState copy(*this);
for (const auto m : *moves) {
CHECK(!m->IsRedundant());
const InstructionOperand& src = m->source();
const InstructionOperand& dst = m->destination();
if (kFPAliasing == AliasingKind::kCombine && src.IsFPLocationOperand() &&
dst.IsFPLocationOperand()) {
// Canonicalize FP location-location moves by fragmenting them into
// an equivalent sequence of float32 moves, to simplify state
// equivalence testing.
std::vector<InstructionOperand> src_fragments;
GetCanonicalOperands(src, &src_fragments);
CHECK(!src_fragments.empty());
std::vector<InstructionOperand> dst_fragments;
GetCanonicalOperands(dst, &dst_fragments);
CHECK_EQ(src_fragments.size(), dst_fragments.size());
for (size_t i = 0; i < src_fragments.size(); ++i) {
write(dst_fragments[i], copy.read(src_fragments[i]));
}
continue;
}
// All other moves.
write(dst, copy.read(src));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
private:
// struct for mapping operands to a unique value, that makes it easier to
// detect illegal parallel moves, and to evaluate moves for equivalence. This
// is a one way transformation. All general register and slot operands are
// mapped to the default representation. FP registers and slots are mapped to
// float64 except on architectures with non-simple FP register aliasing, where
// the actual representation is used.
struct Key {
bool is_constant;
MachineRepresentation rep;
LocationOperand::LocationKind kind;
int index;
bool operator<(const Key& other) const {
if (this->is_constant != other.is_constant) {
return this->is_constant;
}
if (this->rep != other.rep) {
return this->rep < other.rep;
}
if (this->kind != other.kind) {
return this->kind < other.kind;
}
return this->index < other.index;
}
bool operator==(const Key& other) const {
return this->is_constant == other.is_constant && this->rep == other.rep &&
this->kind == other.kind && this->index == other.index;
}
};
// Internally, the state is a normalized permutation of Value pairs.
using Value = Key;
using OperandMap = std::map<Key, Value>;
Value read(const InstructionOperand& op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand& dst, Value v) {
if (v == ValueFor(dst)) {
values_.erase(KeyFor(dst));
} else {
values_[KeyFor(dst)] = v;
}
}
static Key KeyFor(const InstructionOperand& op) {
bool is_constant = op.IsConstant();
MachineRepresentation rep =
v8::internal::compiler::InstructionSequence::DefaultRepresentation();
LocationOperand::LocationKind kind;
int index;
if (!is_constant) {
const LocationOperand& loc_op = LocationOperand::cast(op);
// Preserve FP representation when FP register aliasing is complex.
// Otherwise, canonicalize to kFloat64.
if (IsFloatingPoint(loc_op.representation())) {
if (kFPAliasing == AliasingKind::kIndependent) {
rep = IsSimd128(loc_op.representation())
? MachineRepresentation::kSimd128
: MachineRepresentation::kFloat64;
} else if (kFPAliasing == AliasingKind::kOverlap) {
rep = MachineRepresentation::kFloat64;
} else {
rep = loc_op.representation();
}
}
if (loc_op.IsAnyRegister()) {
index = loc_op.register_code();
} else {
index = loc_op.index();
}
kind = loc_op.location_kind();
} else {
index = ConstantOperand::cast(op).virtual_register();
kind = LocationOperand::REGISTER;
}
Key key = {is_constant, rep, kind, index};
return key;
}
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
static InstructionOperand FromKey(Key key) {
if (key.is_constant) {
return ConstantOperand(key.index);
}
return AllocatedOperand(key.kind, key.rep, key.index);
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
const char* space = "";
for (auto& value : is.values_) {
InstructionOperand source = FromKey(value.second);
InstructionOperand destination = FromKey(value.first);
os << space << MoveOperands{source, destination};
space = " ";
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = zone_->New<ParallelMove>(zone_);
moves->AddMove(*source, *destination);
state_.ExecuteInParallel(moves);
}
void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = zone_->New<ParallelMove>(zone_);
moves->AddMove(*source, *destination);
moves->AddMove(*destination, *source);
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* moves) {
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
Zone* const zone_;
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
// Creates a ParallelMove with 'size' random MoveOperands. Note that illegal
// moves will be rejected, so the actual number of MoveOperands may be less.
ParallelMove* Create(int size) {
ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone());
// Valid ParallelMoves can't have interfering destination ops.
std::set<InstructionOperand, CompareOperandModuloType> destinations;
// Valid ParallelMoves can't have interfering source ops of different reps.
std::map<InstructionOperand, MachineRepresentation,
CompareOperandModuloType>
sources;
for (int i = 0; i < size; ++i) {
MachineRepresentation rep = RandomRepresentation();
MoveOperands mo(CreateRandomOperand(true, rep),
CreateRandomOperand(false, rep));
if (mo.IsRedundant()) continue;
const InstructionOperand& dst = mo.destination();
bool reject = false;
// On architectures where FP register aliasing is non-simple, update the
// destinations set with the float equivalents of the operand and check
// that all destinations are unique and do not alias each other.
if (kFPAliasing == AliasingKind::kCombine &&
mo.destination().IsFPLocationOperand()) {
std::vector<InstructionOperand> dst_fragments;
GetCanonicalOperands(dst, &dst_fragments);
CHECK(!dst_fragments.empty());
for (size_t j = 0; j < dst_fragments.size(); ++j) {
if (destinations.find(dst_fragments[j]) == destinations.end()) {
destinations.insert(dst_fragments[j]);
} else {
reject = true;
break;
}
}
// Update the sources map, and check that no FP source has multiple
// representations.
const InstructionOperand& src = mo.source();
if (src.IsFPRegister()) {
std::vector<InstructionOperand> src_fragments;
MachineRepresentation src_rep =
LocationOperand::cast(src).representation();
GetCanonicalOperands(src, &src_fragments);
CHECK(!src_fragments.empty());
for (size_t j = 0; j < src_fragments.size(); ++j) {
auto find_it = sources.find(src_fragments[j]);
if (find_it != sources.end() && find_it->second != src_rep) {
reject = true;
break;
}
sources.insert(std::make_pair(src_fragments[j], src_rep));
}
}
} else {
if (destinations.find(dst) == destinations.end()) {
destinations.insert(dst);
} else {
reject = true;
}
}
if (!reject) {
parallel_move->AddMove(mo.source(), mo.destination());
}
}
return parallel_move;
}
// Creates a ParallelMove from a list of operand pairs. Even operands are
// destinations, odd ones are sources.
ParallelMove* Create(const std::vector<InstructionOperand>& operand_pairs) {
ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone());
for (size_t i = 0; i < operand_pairs.size(); i += 2) {
const InstructionOperand& dst = operand_pairs[i];
const InstructionOperand& src = operand_pairs[i + 1];
parallel_move->AddMove(src, dst);
}
return parallel_move;
}
private:
MachineRepresentation RandomRepresentation() {
int index = rng_->NextInt(6);
switch (index) {
case 0:
return MachineRepresentation::kWord32;
case 1:
return MachineRepresentation::kWord64;
case 2:
return MachineRepresentation::kFloat32;
case 3:
return MachineRepresentation::kFloat64;
case 4:
return MachineRepresentation::kSimd128;
case 5:
return MachineRepresentation::kTagged;
}
UNREACHABLE();
}
// min(num_alloctable_general_registers for each arch) == 5 from
// assembler-ia32.h
const int kMaxIndex = 5;
const int kMaxIndices = kMaxIndex + 1;
// Non-FP slots shouldn't overlap FP slots.
// FP slots with different representations shouldn't overlap.
int GetValidSlotIndex(MachineRepresentation rep, int index) {
DCHECK_GE(kMaxIndex, index);
// The first group of slots are for non-FP values.
if (!IsFloatingPoint(rep)) return index;
// The next group are for float values.
int base = kMaxIndices;
if (rep == MachineRepresentation::kFloat32) return base + index;
// Double values.
base += kMaxIndices;
if (rep == MachineRepresentation::kFloat64) return base + index * 2;
// SIMD values
base += kMaxIndices * 2;
CHECK_EQ(MachineRepresentation::kSimd128, rep);
return base + index * 4;
}
InstructionOperand CreateRandomOperand(bool is_source,
MachineRepresentation rep) {
auto conf = RegisterConfiguration::Default();
auto GetValidRegisterCode = [&conf](MachineRepresentation rep, int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
return conf->RegisterConfiguration::GetAllocatableFloatCode(index);
case MachineRepresentation::kFloat64:
return conf->RegisterConfiguration::GetAllocatableDoubleCode(index);
case MachineRepresentation::kSimd128:
return conf->RegisterConfiguration::GetAllocatableSimd128Code(index);
default:
return conf->RegisterConfiguration::GetAllocatableGeneralCode(index);
}
UNREACHABLE();
};
int index = rng_->NextInt(kMaxIndex);
// destination can't be Constant.
switch (rng_->NextInt(is_source ? 3 : 2)) {
case 0:
return AllocatedOperand(LocationOperand::STACK_SLOT, rep,
GetValidSlotIndex(rep, index));
case 1:
return AllocatedOperand(LocationOperand::REGISTER, rep,
GetValidRegisterCode(rep, index));
case 2:
return ConstantOperand(index);
}
UNREACHABLE();
}
private:
v8::base::RandomNumberGenerator* rng_;
};
void RunTest(ParallelMove* pm, Zone* zone) {
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1(zone);
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2(zone);
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK_EQ(mi1.state(), mi2.state());
}
TEST(Aliasing) {
// On platforms with simple aliasing, these parallel moves are ill-formed.
if (kFPAliasing != AliasingKind::kCombine) return;
ParallelMoveCreator pmc;
Zone* zone = pmc.main_zone();
auto s0 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 0);
auto s1 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 1);
auto s2 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 2);
auto s3 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 3);
auto s4 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat32, 4);
auto d0 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 0);
auto d1 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 1);
auto d16 = AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kFloat64, 16);
// Double slots must be odd to match frame allocation.
auto dSlot = AllocatedOperand(LocationOperand::STACK_SLOT,
MachineRepresentation::kFloat64, 3);
// Cycles involving s- and d-registers.
{
std::vector<InstructionOperand> moves = {
s2, s0, // s2 <- s0
d0, d1 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s0 // s2 <- s0
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
s2, s1, // s2 <- s1
d0, d1 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s1 // s2 <- s1
};
RunTest(pmc.Create(moves), zone);
}
// Two cycles involving a single d-register.
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s1, // s2 <- s1
s3, s0 // s3 <- s0
};
RunTest(pmc.Create(moves), zone);
}
// Cycle with a float move that must be deferred until after swaps.
{
std::vector<InstructionOperand> moves = {
d0, d1, // d0 <- d1
s2, s0, // s2 <- s0
s3, s4 // s3 <- s4 must be deferred
};
RunTest(pmc.Create(moves), zone);
}
// Cycles involving s-registers and a non-aliased d-register.
{
std::vector<InstructionOperand> moves = {
d16, d0, // d16 <- d0
s1, s2, // s1 <- s2
d1, d16 // d1 <- d16
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
s2, s1, // s1 <- s2
d0, d16, // d16 <- d0
d16, d1 // d1 <- d16
};
RunTest(pmc.Create(moves), zone);
}
{
std::vector<InstructionOperand> moves = {
d0, d16, // d0 <- d16
d16, d1, // s2 <- s0
s3, s0 // d0 <- d1
};
RunTest(pmc.Create(moves), zone);
}
// Cycle involving aliasing registers and a slot.
{
std::vector<InstructionOperand> moves = {
dSlot, d0, // dSlot <- d0
d1, dSlot, // d1 <- dSlot
s0, s3 // s0 <- s3
};
RunTest(pmc.Create(moves), zone);
}
}
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 80; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
RunTest(pmc.Create(size), pmc.main_zone());
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8