7c00e15bc9
There is just one version now, called IsPowerOfTwo. It accepts any integral type. There is one slight semantical change: Called with kMinInt, it previously returned true, because the argument was implicitly casted to an unsigned. It's now (correctly) returning false, so I had to add special handlings of kMinInt in machine-operator-reducer before calling IsPowerOfTwo on that value. R=mlippautz@chromium.org,mstarzinger@chromium.org,jgruber@chromium.org,ishell@chromium.org,yangguo@chromium.org Change-Id: Idc112a89034cdc8c03365b778b33b1c29fefb38d Reviewed-on: https://chromium-review.googlesource.com/568140 Reviewed-by: Igor Sheludko <ishell@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Commit-Queue: Clemens Hammacher <clemensh@chromium.org> Cr-Commit-Position: refs/heads/master@{#46627}
503 lines
17 KiB
C++
503 lines
17 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// The reason we write our own hash map instead of using unordered_map in STL,
|
|
// is that STL containers use a mutex pool on debug build, which will lead to
|
|
// deadlock when we are using async signal handler.
|
|
|
|
#ifndef V8_BASE_HASHMAP_H_
|
|
#define V8_BASE_HASHMAP_H_
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "src/base/bits.h"
|
|
#include "src/base/hashmap-entry.h"
|
|
#include "src/base/logging.h"
|
|
|
|
namespace v8 {
|
|
namespace base {
|
|
|
|
class DefaultAllocationPolicy {
|
|
public:
|
|
V8_INLINE void* New(size_t size) { return malloc(size); }
|
|
V8_INLINE static void Delete(void* p) { free(p); }
|
|
};
|
|
|
|
template <typename Key, typename Value, class MatchFun, class AllocationPolicy>
|
|
class TemplateHashMapImpl {
|
|
public:
|
|
typedef TemplateHashMapEntry<Key, Value> Entry;
|
|
|
|
// The default capacity. This is used by the call sites which want
|
|
// to pass in a non-default AllocationPolicy but want to use the
|
|
// default value of capacity specified by the implementation.
|
|
static const uint32_t kDefaultHashMapCapacity = 8;
|
|
|
|
// initial_capacity is the size of the initial hash map;
|
|
// it must be a power of 2 (and thus must not be 0).
|
|
TemplateHashMapImpl(uint32_t capacity = kDefaultHashMapCapacity,
|
|
MatchFun match = MatchFun(),
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
|
|
// Clones the given hashmap and creates a copy with the same entries.
|
|
TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun,
|
|
AllocationPolicy>* original,
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
|
|
~TemplateHashMapImpl();
|
|
|
|
// If an entry with matching key is found, returns that entry.
|
|
// Otherwise, nullptr is returned.
|
|
Entry* Lookup(const Key& key, uint32_t hash) const;
|
|
|
|
// If an entry with matching key is found, returns that entry.
|
|
// If no matching entry is found, a new entry is inserted with
|
|
// corresponding key, key hash, and default initialized value.
|
|
Entry* LookupOrInsert(const Key& key, uint32_t hash,
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
|
|
// If an entry with matching key is found, returns that entry.
|
|
// If no matching entry is found, a new entry is inserted with
|
|
// corresponding key, key hash, and value created by func.
|
|
template <typename Func>
|
|
Entry* LookupOrInsert(const Key& key, uint32_t hash, const Func& value_func,
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
|
|
Entry* InsertNew(const Key& key, uint32_t hash,
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
|
|
// Removes the entry with matching key.
|
|
// It returns the value of the deleted entry
|
|
// or null if there is no value for such key.
|
|
Value Remove(const Key& key, uint32_t hash);
|
|
|
|
// Empties the hash map (occupancy() == 0).
|
|
void Clear();
|
|
|
|
// Empties the map and makes it unusable for allocation.
|
|
void Invalidate() {
|
|
AllocationPolicy::Delete(map_);
|
|
map_ = nullptr;
|
|
occupancy_ = 0;
|
|
capacity_ = 0;
|
|
}
|
|
|
|
// The number of (non-empty) entries in the table.
|
|
uint32_t occupancy() const { return occupancy_; }
|
|
|
|
// The capacity of the table. The implementation
|
|
// makes sure that occupancy is at most 80% of
|
|
// the table capacity.
|
|
uint32_t capacity() const { return capacity_; }
|
|
|
|
// Iteration
|
|
//
|
|
// for (Entry* p = map.Start(); p != nullptr; p = map.Next(p)) {
|
|
// ...
|
|
// }
|
|
//
|
|
// If entries are inserted during iteration, the effect of
|
|
// calling Next() is undefined.
|
|
Entry* Start() const;
|
|
Entry* Next(Entry* entry) const;
|
|
|
|
void Reset(AllocationPolicy allocator) {
|
|
Initialize(capacity_, allocator);
|
|
occupancy_ = 0;
|
|
}
|
|
|
|
protected:
|
|
void Initialize(uint32_t capacity, AllocationPolicy allocator);
|
|
|
|
private:
|
|
Entry* map_;
|
|
uint32_t capacity_;
|
|
uint32_t occupancy_;
|
|
// TODO(leszeks): This takes up space even if it has no state, maybe replace
|
|
// with something that does the empty base optimisation e.g. std::tuple
|
|
MatchFun match_;
|
|
|
|
Entry* map_end() const { return map_ + capacity_; }
|
|
Entry* Probe(const Key& key, uint32_t hash) const;
|
|
Entry* FillEmptyEntry(Entry* entry, const Key& key, const Value& value,
|
|
uint32_t hash,
|
|
AllocationPolicy allocator = AllocationPolicy());
|
|
void Resize(AllocationPolicy allocator);
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(TemplateHashMapImpl);
|
|
};
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::
|
|
TemplateHashMapImpl(uint32_t initial_capacity, MatchFun match,
|
|
AllocationPolicy allocator)
|
|
: match_(match) {
|
|
Initialize(initial_capacity, allocator);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::
|
|
TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun,
|
|
AllocationPolicy>* original,
|
|
AllocationPolicy allocator)
|
|
: capacity_(original->capacity_),
|
|
occupancy_(original->occupancy_),
|
|
match_(original->match_) {
|
|
map_ = reinterpret_cast<Entry*>(allocator.New(capacity_ * sizeof(Entry)));
|
|
memcpy(map_, original->map_, capacity_ * sizeof(Entry));
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
TemplateHashMapImpl<Key, Value, MatchFun,
|
|
AllocationPolicy>::~TemplateHashMapImpl() {
|
|
AllocationPolicy::Delete(map_);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Lookup(
|
|
const Key& key, uint32_t hash) const {
|
|
Entry* entry = Probe(key, hash);
|
|
return entry->exists() ? entry : nullptr;
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert(
|
|
const Key& key, uint32_t hash, AllocationPolicy allocator) {
|
|
return LookupOrInsert(key, hash, []() { return Value(); }, allocator);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
template <typename Func>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert(
|
|
const Key& key, uint32_t hash, const Func& value_func,
|
|
AllocationPolicy allocator) {
|
|
// Find a matching entry.
|
|
Entry* entry = Probe(key, hash);
|
|
if (entry->exists()) {
|
|
return entry;
|
|
}
|
|
|
|
return FillEmptyEntry(entry, key, value_func(), hash, allocator);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::InsertNew(
|
|
const Key& key, uint32_t hash, AllocationPolicy allocator) {
|
|
Entry* entry = Probe(key, hash);
|
|
return FillEmptyEntry(entry, key, Value(), hash, allocator);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
Value TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Remove(
|
|
const Key& key, uint32_t hash) {
|
|
// Lookup the entry for the key to remove.
|
|
Entry* p = Probe(key, hash);
|
|
if (!p->exists()) {
|
|
// Key not found nothing to remove.
|
|
return nullptr;
|
|
}
|
|
|
|
Value value = p->value;
|
|
// To remove an entry we need to ensure that it does not create an empty
|
|
// entry that will cause the search for another entry to stop too soon. If all
|
|
// the entries between the entry to remove and the next empty slot have their
|
|
// initial position inside this interval, clearing the entry to remove will
|
|
// not break the search. If, while searching for the next empty entry, an
|
|
// entry is encountered which does not have its initial position between the
|
|
// entry to remove and the position looked at, then this entry can be moved to
|
|
// the place of the entry to remove without breaking the search for it. The
|
|
// entry made vacant by this move is now the entry to remove and the process
|
|
// starts over.
|
|
// Algorithm from http://en.wikipedia.org/wiki/Open_addressing.
|
|
|
|
// This guarantees loop termination as there is at least one empty entry so
|
|
// eventually the removed entry will have an empty entry after it.
|
|
DCHECK(occupancy_ < capacity_);
|
|
|
|
// p is the candidate entry to clear. q is used to scan forwards.
|
|
Entry* q = p; // Start at the entry to remove.
|
|
while (true) {
|
|
// Move q to the next entry.
|
|
q = q + 1;
|
|
if (q == map_end()) {
|
|
q = map_;
|
|
}
|
|
|
|
// All entries between p and q have their initial position between p and q
|
|
// and the entry p can be cleared without breaking the search for these
|
|
// entries.
|
|
if (!q->exists()) {
|
|
break;
|
|
}
|
|
|
|
// Find the initial position for the entry at position q.
|
|
Entry* r = map_ + (q->hash & (capacity_ - 1));
|
|
|
|
// If the entry at position q has its initial position outside the range
|
|
// between p and q it can be moved forward to position p and will still be
|
|
// found. There is now a new candidate entry for clearing.
|
|
if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) {
|
|
*p = *q;
|
|
p = q;
|
|
}
|
|
}
|
|
|
|
// Clear the entry which is allowed to en emptied.
|
|
p->clear();
|
|
occupancy_--;
|
|
return value;
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Clear() {
|
|
// Mark all entries as empty.
|
|
for (size_t i = 0; i < capacity_; ++i) {
|
|
map_[i].clear();
|
|
}
|
|
occupancy_ = 0;
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Start() const {
|
|
return Next(map_ - 1);
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Next(
|
|
Entry* entry) const {
|
|
const Entry* end = map_end();
|
|
DCHECK(map_ - 1 <= entry && entry < end);
|
|
for (entry++; entry < end; entry++) {
|
|
if (entry->exists()) {
|
|
return entry;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Probe(
|
|
const Key& key, uint32_t hash) const {
|
|
DCHECK(base::bits::IsPowerOfTwo(capacity_));
|
|
size_t i = hash & (capacity_ - 1);
|
|
DCHECK(i < capacity_);
|
|
|
|
DCHECK(occupancy_ < capacity_); // Guarantees loop termination.
|
|
while (map_[i].exists() && !match_(hash, map_[i].hash, key, map_[i].key)) {
|
|
i = (i + 1) & (capacity_ - 1);
|
|
}
|
|
|
|
return &map_[i];
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
|
|
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::FillEmptyEntry(
|
|
Entry* entry, const Key& key, const Value& value, uint32_t hash,
|
|
AllocationPolicy allocator) {
|
|
DCHECK(!entry->exists());
|
|
|
|
new (entry) Entry(key, value, hash);
|
|
occupancy_++;
|
|
|
|
// Grow the map if we reached >= 80% occupancy.
|
|
if (occupancy_ + occupancy_ / 4 >= capacity_) {
|
|
Resize(allocator);
|
|
entry = Probe(key, hash);
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Initialize(
|
|
uint32_t capacity, AllocationPolicy allocator) {
|
|
DCHECK(base::bits::IsPowerOfTwo(capacity));
|
|
map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry)));
|
|
if (map_ == nullptr) {
|
|
FATAL("Out of memory: HashMap::Initialize");
|
|
return;
|
|
}
|
|
capacity_ = capacity;
|
|
Clear();
|
|
}
|
|
|
|
template <typename Key, typename Value, typename MatchFun,
|
|
class AllocationPolicy>
|
|
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Resize(
|
|
AllocationPolicy allocator) {
|
|
Entry* map = map_;
|
|
uint32_t n = occupancy_;
|
|
|
|
// Allocate larger map.
|
|
Initialize(capacity_ * 2, allocator);
|
|
|
|
// Rehash all current entries.
|
|
for (Entry* entry = map; n > 0; entry++) {
|
|
if (entry->exists()) {
|
|
Entry* new_entry = Probe(entry->key, entry->hash);
|
|
new_entry = FillEmptyEntry(new_entry, entry->key, entry->value,
|
|
entry->hash, allocator);
|
|
n--;
|
|
}
|
|
}
|
|
|
|
// Delete old map.
|
|
AllocationPolicy::Delete(map);
|
|
}
|
|
|
|
// Match function which compares hashes before executing a (potentially
|
|
// expensive) key comparison.
|
|
template <typename Key, typename MatchFun>
|
|
struct HashEqualityThenKeyMatcher {
|
|
explicit HashEqualityThenKeyMatcher(MatchFun match) : match_(match) {}
|
|
|
|
bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1,
|
|
const Key& key2) const {
|
|
return hash1 == hash2 && match_(key1, key2);
|
|
}
|
|
|
|
private:
|
|
MatchFun match_;
|
|
};
|
|
|
|
// Hashmap<void*, void*> which takes a custom key comparison function pointer.
|
|
template <typename AllocationPolicy>
|
|
class CustomMatcherTemplateHashMapImpl
|
|
: public TemplateHashMapImpl<
|
|
void*, void*,
|
|
HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>,
|
|
AllocationPolicy> {
|
|
typedef TemplateHashMapImpl<
|
|
void*, void*, HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>,
|
|
AllocationPolicy>
|
|
Base;
|
|
|
|
public:
|
|
typedef bool (*MatchFun)(void*, void*);
|
|
|
|
CustomMatcherTemplateHashMapImpl(
|
|
MatchFun match, uint32_t capacity = Base::kDefaultHashMapCapacity,
|
|
AllocationPolicy allocator = AllocationPolicy())
|
|
: Base(capacity, HashEqualityThenKeyMatcher<void*, MatchFun>(match),
|
|
allocator) {}
|
|
|
|
CustomMatcherTemplateHashMapImpl(
|
|
const CustomMatcherTemplateHashMapImpl<AllocationPolicy>* original,
|
|
AllocationPolicy allocator = AllocationPolicy())
|
|
: Base(original, allocator) {}
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(CustomMatcherTemplateHashMapImpl);
|
|
};
|
|
|
|
typedef CustomMatcherTemplateHashMapImpl<DefaultAllocationPolicy>
|
|
CustomMatcherHashMap;
|
|
|
|
// Match function which compares keys directly by equality.
|
|
template <typename Key>
|
|
struct KeyEqualityMatcher {
|
|
bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1,
|
|
const Key& key2) const {
|
|
return key1 == key2;
|
|
}
|
|
};
|
|
|
|
// Hashmap<void*, void*> which compares the key pointers directly.
|
|
template <typename AllocationPolicy>
|
|
class PointerTemplateHashMapImpl
|
|
: public TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>,
|
|
AllocationPolicy> {
|
|
typedef TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>,
|
|
AllocationPolicy>
|
|
Base;
|
|
|
|
public:
|
|
PointerTemplateHashMapImpl(uint32_t capacity = Base::kDefaultHashMapCapacity,
|
|
AllocationPolicy allocator = AllocationPolicy())
|
|
: Base(capacity, KeyEqualityMatcher<void*>(), allocator) {}
|
|
};
|
|
|
|
typedef PointerTemplateHashMapImpl<DefaultAllocationPolicy> HashMap;
|
|
|
|
// A hash map for pointer keys and values with an STL-like interface.
|
|
template <class Key, class Value, class MatchFun, class AllocationPolicy>
|
|
class TemplateHashMap
|
|
: private TemplateHashMapImpl<void*, void*,
|
|
HashEqualityThenKeyMatcher<void*, MatchFun>,
|
|
AllocationPolicy> {
|
|
typedef TemplateHashMapImpl<void*, void*,
|
|
HashEqualityThenKeyMatcher<void*, MatchFun>,
|
|
AllocationPolicy>
|
|
Base;
|
|
|
|
public:
|
|
STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT
|
|
STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT
|
|
struct value_type {
|
|
Key* first;
|
|
Value* second;
|
|
};
|
|
|
|
class Iterator {
|
|
public:
|
|
Iterator& operator++() {
|
|
entry_ = map_->Next(entry_);
|
|
return *this;
|
|
}
|
|
|
|
value_type* operator->() { return reinterpret_cast<value_type*>(entry_); }
|
|
bool operator!=(const Iterator& other) { return entry_ != other.entry_; }
|
|
|
|
private:
|
|
Iterator(const Base* map, typename Base::Entry* entry)
|
|
: map_(map), entry_(entry) {}
|
|
|
|
const Base* map_;
|
|
typename Base::Entry* entry_;
|
|
|
|
friend class TemplateHashMap;
|
|
};
|
|
|
|
TemplateHashMap(MatchFun match,
|
|
AllocationPolicy allocator = AllocationPolicy())
|
|
: Base(Base::kDefaultHashMapCapacity,
|
|
HashEqualityThenKeyMatcher<void*, MatchFun>(match), allocator) {}
|
|
|
|
Iterator begin() const { return Iterator(this, this->Start()); }
|
|
Iterator end() const { return Iterator(this, nullptr); }
|
|
Iterator find(Key* key, bool insert = false,
|
|
AllocationPolicy allocator = AllocationPolicy()) {
|
|
if (insert) {
|
|
return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator));
|
|
}
|
|
return Iterator(this, this->Lookup(key, key->Hash()));
|
|
}
|
|
};
|
|
|
|
} // namespace base
|
|
} // namespace v8
|
|
|
|
#endif // V8_BASE_HASHMAP_H_
|