44149ae751
This is for performance. Having to do the test in every Advance was too expensive. BUG=438991, v8:3230 LOG=N R=dslomov@chromium.org, marja Review URL: https://codereview.chromium.org/766193003 Cr-Commit-Position: refs/heads/master@{#25667}
746 lines
24 KiB
C++
746 lines
24 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Features shared by parsing and pre-parsing scanners.
|
|
|
|
#ifndef V8_SCANNER_H_
|
|
#define V8_SCANNER_H_
|
|
|
|
#include "src/allocation.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/char-predicates.h"
|
|
#include "src/globals.h"
|
|
#include "src/hashmap.h"
|
|
#include "src/list.h"
|
|
#include "src/token.h"
|
|
#include "src/unicode-inl.h"
|
|
#include "src/unicode-decoder.h"
|
|
#include "src/utils.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
class AstRawString;
|
|
class AstValueFactory;
|
|
class ParserRecorder;
|
|
|
|
|
|
// Returns the value (0 .. 15) of a hexadecimal character c.
|
|
// If c is not a legal hexadecimal character, returns a value < 0.
|
|
inline int HexValue(uc32 c) {
|
|
c -= '0';
|
|
if (static_cast<unsigned>(c) <= 9) return c;
|
|
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
|
|
if (static_cast<unsigned>(c) <= 5) return c + 10;
|
|
return -1;
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
|
|
// A code unit is a 16 bit value representing either a 16 bit code point
|
|
// or one part of a surrogate pair that make a single 21 bit code point.
|
|
|
|
class Utf16CharacterStream {
|
|
public:
|
|
Utf16CharacterStream() : pos_(0) { }
|
|
virtual ~Utf16CharacterStream() { }
|
|
|
|
// Returns and advances past the next UTF-16 code unit in the input
|
|
// stream. If there are no more code units, it returns a negative
|
|
// value.
|
|
inline uc32 Advance() {
|
|
if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
|
|
pos_++;
|
|
return static_cast<uc32>(*(buffer_cursor_++));
|
|
}
|
|
// Note: currently the following increment is necessary to avoid a
|
|
// parser problem! The scanner treats the final kEndOfInput as
|
|
// a code unit with a position, and does math relative to that
|
|
// position.
|
|
pos_++;
|
|
|
|
return kEndOfInput;
|
|
}
|
|
|
|
// Return the current position in the code unit stream.
|
|
// Starts at zero.
|
|
inline unsigned pos() const { return pos_; }
|
|
|
|
// Skips forward past the next code_unit_count UTF-16 code units
|
|
// in the input, or until the end of input if that comes sooner.
|
|
// Returns the number of code units actually skipped. If less
|
|
// than code_unit_count,
|
|
inline unsigned SeekForward(unsigned code_unit_count) {
|
|
unsigned buffered_chars =
|
|
static_cast<unsigned>(buffer_end_ - buffer_cursor_);
|
|
if (code_unit_count <= buffered_chars) {
|
|
buffer_cursor_ += code_unit_count;
|
|
pos_ += code_unit_count;
|
|
return code_unit_count;
|
|
}
|
|
return SlowSeekForward(code_unit_count);
|
|
}
|
|
|
|
// Pushes back the most recently read UTF-16 code unit (or negative
|
|
// value if at end of input), i.e., the value returned by the most recent
|
|
// call to Advance.
|
|
// Must not be used right after calling SeekForward.
|
|
virtual void PushBack(int32_t code_unit) = 0;
|
|
|
|
protected:
|
|
static const uc32 kEndOfInput = -1;
|
|
|
|
// Ensures that the buffer_cursor_ points to the code_unit at
|
|
// position pos_ of the input, if possible. If the position
|
|
// is at or after the end of the input, return false. If there
|
|
// are more code_units available, return true.
|
|
virtual bool ReadBlock() = 0;
|
|
virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0;
|
|
|
|
const uint16_t* buffer_cursor_;
|
|
const uint16_t* buffer_end_;
|
|
unsigned pos_;
|
|
};
|
|
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Caching predicates used by scanners.
|
|
|
|
class UnicodeCache {
|
|
public:
|
|
UnicodeCache() {}
|
|
typedef unibrow::Utf8Decoder<512> Utf8Decoder;
|
|
|
|
StaticResource<Utf8Decoder>* utf8_decoder() {
|
|
return &utf8_decoder_;
|
|
}
|
|
|
|
bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
|
|
bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
|
|
bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
|
|
bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
|
|
bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) {
|
|
return kIsWhiteSpaceOrLineTerminator.get(c);
|
|
}
|
|
|
|
private:
|
|
unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
|
|
unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
|
|
unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
|
|
unibrow::Predicate<WhiteSpace, 128> kIsWhiteSpace;
|
|
unibrow::Predicate<WhiteSpaceOrLineTerminator, 128>
|
|
kIsWhiteSpaceOrLineTerminator;
|
|
StaticResource<Utf8Decoder> utf8_decoder_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
|
|
};
|
|
|
|
|
|
// ---------------------------------------------------------------------
|
|
// DuplicateFinder discovers duplicate symbols.
|
|
|
|
class DuplicateFinder {
|
|
public:
|
|
explicit DuplicateFinder(UnicodeCache* constants)
|
|
: unicode_constants_(constants),
|
|
backing_store_(16),
|
|
map_(&Match) { }
|
|
|
|
int AddOneByteSymbol(Vector<const uint8_t> key, int value);
|
|
int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
|
|
// Add a a number literal by converting it (if necessary)
|
|
// to the string that ToString(ToNumber(literal)) would generate.
|
|
// and then adding that string with AddOneByteSymbol.
|
|
// This string is the actual value used as key in an object literal,
|
|
// and the one that must be different from the other keys.
|
|
int AddNumber(Vector<const uint8_t> key, int value);
|
|
|
|
private:
|
|
int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
|
|
// Backs up the key and its length in the backing store.
|
|
// The backup is stored with a base 127 encoding of the
|
|
// length (plus a bit saying whether the string is one byte),
|
|
// followed by the bytes of the key.
|
|
uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);
|
|
|
|
// Compare two encoded keys (both pointing into the backing store)
|
|
// for having the same base-127 encoded lengths and representation.
|
|
// and then having the same 'length' bytes following.
|
|
static bool Match(void* first, void* second);
|
|
// Creates a hash from a sequence of bytes.
|
|
static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
|
|
// Checks whether a string containing a JS number is its canonical
|
|
// form.
|
|
static bool IsNumberCanonical(Vector<const uint8_t> key);
|
|
|
|
// Size of buffer. Sufficient for using it to call DoubleToCString in
|
|
// from conversions.h.
|
|
static const int kBufferSize = 100;
|
|
|
|
UnicodeCache* unicode_constants_;
|
|
// Backing store used to store strings used as hashmap keys.
|
|
SequenceCollector<unsigned char> backing_store_;
|
|
HashMap map_;
|
|
// Buffer used for string->number->canonical string conversions.
|
|
char number_buffer_[kBufferSize];
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// LiteralBuffer - Collector of chars of literals.
|
|
|
|
class LiteralBuffer {
|
|
public:
|
|
LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }
|
|
|
|
~LiteralBuffer() {
|
|
if (backing_store_.length() > 0) {
|
|
backing_store_.Dispose();
|
|
}
|
|
}
|
|
|
|
INLINE(void AddChar(uint32_t code_unit)) {
|
|
if (position_ >= backing_store_.length()) ExpandBuffer();
|
|
if (is_one_byte_) {
|
|
if (code_unit <= unibrow::Latin1::kMaxChar) {
|
|
backing_store_[position_] = static_cast<byte>(code_unit);
|
|
position_ += kOneByteSize;
|
|
return;
|
|
}
|
|
ConvertToTwoByte();
|
|
}
|
|
if (code_unit <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
|
|
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
|
|
position_ += kUC16Size;
|
|
} else {
|
|
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
|
|
unibrow::Utf16::LeadSurrogate(code_unit);
|
|
position_ += kUC16Size;
|
|
if (position_ >= backing_store_.length()) ExpandBuffer();
|
|
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
|
|
unibrow::Utf16::TrailSurrogate(code_unit);
|
|
position_ += kUC16Size;
|
|
}
|
|
}
|
|
|
|
bool is_one_byte() const { return is_one_byte_; }
|
|
|
|
bool is_contextual_keyword(Vector<const char> keyword) const {
|
|
return is_one_byte() && keyword.length() == position_ &&
|
|
(memcmp(keyword.start(), backing_store_.start(), position_) == 0);
|
|
}
|
|
|
|
Vector<const uint16_t> two_byte_literal() const {
|
|
DCHECK(!is_one_byte_);
|
|
DCHECK((position_ & 0x1) == 0);
|
|
return Vector<const uint16_t>(
|
|
reinterpret_cast<const uint16_t*>(backing_store_.start()),
|
|
position_ >> 1);
|
|
}
|
|
|
|
Vector<const uint8_t> one_byte_literal() const {
|
|
DCHECK(is_one_byte_);
|
|
return Vector<const uint8_t>(
|
|
reinterpret_cast<const uint8_t*>(backing_store_.start()),
|
|
position_);
|
|
}
|
|
|
|
int length() const {
|
|
return is_one_byte_ ? position_ : (position_ >> 1);
|
|
}
|
|
|
|
void ReduceLength(int delta) {
|
|
position_ -= delta * (is_one_byte_ ? kOneByteSize : kUC16Size);
|
|
}
|
|
|
|
void Reset() {
|
|
position_ = 0;
|
|
is_one_byte_ = true;
|
|
}
|
|
|
|
Handle<String> Internalize(Isolate* isolate) const;
|
|
|
|
private:
|
|
static const int kInitialCapacity = 16;
|
|
static const int kGrowthFactory = 4;
|
|
static const int kMinConversionSlack = 256;
|
|
static const int kMaxGrowth = 1 * MB;
|
|
inline int NewCapacity(int min_capacity) {
|
|
int capacity = Max(min_capacity, backing_store_.length());
|
|
int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
|
|
return new_capacity;
|
|
}
|
|
|
|
void ExpandBuffer() {
|
|
Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
|
|
MemCopy(new_store.start(), backing_store_.start(), position_);
|
|
backing_store_.Dispose();
|
|
backing_store_ = new_store;
|
|
}
|
|
|
|
void ConvertToTwoByte() {
|
|
DCHECK(is_one_byte_);
|
|
Vector<byte> new_store;
|
|
int new_content_size = position_ * kUC16Size;
|
|
if (new_content_size >= backing_store_.length()) {
|
|
// Ensure room for all currently read code units as UC16 as well
|
|
// as the code unit about to be stored.
|
|
new_store = Vector<byte>::New(NewCapacity(new_content_size));
|
|
} else {
|
|
new_store = backing_store_;
|
|
}
|
|
uint8_t* src = backing_store_.start();
|
|
uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
|
|
for (int i = position_ - 1; i >= 0; i--) {
|
|
dst[i] = src[i];
|
|
}
|
|
if (new_store.start() != backing_store_.start()) {
|
|
backing_store_.Dispose();
|
|
backing_store_ = new_store;
|
|
}
|
|
position_ = new_content_size;
|
|
is_one_byte_ = false;
|
|
}
|
|
|
|
bool is_one_byte_;
|
|
int position_;
|
|
Vector<byte> backing_store_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// JavaScript Scanner.
|
|
|
|
class Scanner {
|
|
public:
|
|
// Scoped helper for literal recording. Automatically drops the literal
|
|
// if aborting the scanning before it's complete.
|
|
class LiteralScope {
|
|
public:
|
|
explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) {
|
|
scanner_->StartLiteral();
|
|
}
|
|
~LiteralScope() {
|
|
if (!complete_) scanner_->DropLiteral();
|
|
}
|
|
void Complete() {
|
|
complete_ = true;
|
|
}
|
|
|
|
private:
|
|
Scanner* scanner_;
|
|
bool complete_;
|
|
};
|
|
|
|
// Representation of an interval of source positions.
|
|
struct Location {
|
|
Location(int b, int e) : beg_pos(b), end_pos(e) { }
|
|
Location() : beg_pos(0), end_pos(0) { }
|
|
|
|
bool IsValid() const {
|
|
return beg_pos >= 0 && end_pos >= beg_pos;
|
|
}
|
|
|
|
static Location invalid() { return Location(-1, -1); }
|
|
|
|
int beg_pos;
|
|
int end_pos;
|
|
};
|
|
|
|
// -1 is outside of the range of any real source code.
|
|
static const int kNoOctalLocation = -1;
|
|
|
|
explicit Scanner(UnicodeCache* scanner_contants);
|
|
|
|
void Initialize(Utf16CharacterStream* source);
|
|
|
|
// Returns the next token and advances input.
|
|
Token::Value Next();
|
|
// Returns the current token again.
|
|
Token::Value current_token() { return current_.token; }
|
|
// Returns the location information for the current token
|
|
// (the token last returned by Next()).
|
|
Location location() const { return current_.location; }
|
|
|
|
// Similar functions for the upcoming token.
|
|
|
|
// One token look-ahead (past the token returned by Next()).
|
|
Token::Value peek() const { return next_.token; }
|
|
|
|
Location peek_location() const { return next_.location; }
|
|
|
|
bool literal_contains_escapes() const {
|
|
Location location = current_.location;
|
|
int source_length = (location.end_pos - location.beg_pos);
|
|
if (current_.token == Token::STRING) {
|
|
// Subtract delimiters.
|
|
source_length -= 2;
|
|
}
|
|
return current_.literal_chars->length() != source_length;
|
|
}
|
|
bool is_literal_contextual_keyword(Vector<const char> keyword) {
|
|
DCHECK_NOT_NULL(current_.literal_chars);
|
|
return current_.literal_chars->is_contextual_keyword(keyword);
|
|
}
|
|
bool is_next_contextual_keyword(Vector<const char> keyword) {
|
|
DCHECK_NOT_NULL(next_.literal_chars);
|
|
return next_.literal_chars->is_contextual_keyword(keyword);
|
|
}
|
|
|
|
const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
|
|
const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);
|
|
const AstRawString* CurrentRawSymbol(AstValueFactory* ast_value_factory);
|
|
|
|
double DoubleValue();
|
|
bool LiteralMatches(const char* data, int length, bool allow_escapes = true) {
|
|
if (is_literal_one_byte() &&
|
|
literal_length() == length &&
|
|
(allow_escapes || !literal_contains_escapes())) {
|
|
const char* token =
|
|
reinterpret_cast<const char*>(literal_one_byte_string().start());
|
|
return !strncmp(token, data, length);
|
|
}
|
|
return false;
|
|
}
|
|
inline bool UnescapedLiteralMatches(const char* data, int length) {
|
|
return LiteralMatches(data, length, false);
|
|
}
|
|
|
|
void IsGetOrSet(bool* is_get, bool* is_set) {
|
|
if (is_literal_one_byte() &&
|
|
literal_length() == 3 &&
|
|
!literal_contains_escapes()) {
|
|
const char* token =
|
|
reinterpret_cast<const char*>(literal_one_byte_string().start());
|
|
*is_get = strncmp(token, "get", 3) == 0;
|
|
*is_set = !*is_get && strncmp(token, "set", 3) == 0;
|
|
}
|
|
}
|
|
|
|
int FindNumber(DuplicateFinder* finder, int value);
|
|
int FindSymbol(DuplicateFinder* finder, int value);
|
|
|
|
UnicodeCache* unicode_cache() { return unicode_cache_; }
|
|
|
|
// Returns the location of the last seen octal literal.
|
|
Location octal_position() const { return octal_pos_; }
|
|
void clear_octal_position() { octal_pos_ = Location::invalid(); }
|
|
|
|
// Seek forward to the given position. This operation does not
|
|
// work in general, for instance when there are pushed back
|
|
// characters, but works for seeking forward until simple delimiter
|
|
// tokens, which is what it is used for.
|
|
void SeekForward(int pos);
|
|
|
|
bool HarmonyScoping() const {
|
|
return harmony_scoping_;
|
|
}
|
|
void SetHarmonyScoping(bool scoping) {
|
|
harmony_scoping_ = scoping;
|
|
}
|
|
bool HarmonyModules() const {
|
|
return harmony_modules_;
|
|
}
|
|
void SetHarmonyModules(bool modules) {
|
|
harmony_modules_ = modules;
|
|
}
|
|
bool HarmonyNumericLiterals() const {
|
|
return harmony_numeric_literals_;
|
|
}
|
|
void SetHarmonyNumericLiterals(bool numeric_literals) {
|
|
harmony_numeric_literals_ = numeric_literals;
|
|
}
|
|
bool HarmonyClasses() const {
|
|
return harmony_classes_;
|
|
}
|
|
void SetHarmonyClasses(bool classes) {
|
|
harmony_classes_ = classes;
|
|
}
|
|
bool HarmonyTemplates() const { return harmony_templates_; }
|
|
void SetHarmonyTemplates(bool templates) { harmony_templates_ = templates; }
|
|
bool HarmonyUnicode() const { return harmony_unicode_; }
|
|
void SetHarmonyUnicode(bool unicode) { harmony_unicode_ = unicode; }
|
|
|
|
// Returns true if there was a line terminator before the peek'ed token,
|
|
// possibly inside a multi-line comment.
|
|
bool HasAnyLineTerminatorBeforeNext() const {
|
|
return has_line_terminator_before_next_ ||
|
|
has_multiline_comment_before_next_;
|
|
}
|
|
|
|
// Scans the input as a regular expression pattern, previous
|
|
// character(s) must be /(=). Returns true if a pattern is scanned.
|
|
bool ScanRegExpPattern(bool seen_equal);
|
|
// Returns true if regexp flags are scanned (always since flags can
|
|
// be empty).
|
|
bool ScanRegExpFlags();
|
|
|
|
// Scans the input as a template literal
|
|
Token::Value ScanTemplateStart();
|
|
Token::Value ScanTemplateContinuation();
|
|
|
|
const LiteralBuffer* source_url() const { return &source_url_; }
|
|
const LiteralBuffer* source_mapping_url() const {
|
|
return &source_mapping_url_;
|
|
}
|
|
|
|
bool IdentifierIsFutureStrictReserved(const AstRawString* string) const;
|
|
|
|
private:
|
|
// The current and look-ahead token.
|
|
struct TokenDesc {
|
|
Token::Value token;
|
|
Location location;
|
|
LiteralBuffer* literal_chars;
|
|
LiteralBuffer* raw_literal_chars;
|
|
};
|
|
|
|
static const int kCharacterLookaheadBufferSize = 1;
|
|
|
|
// Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
|
|
template <bool capture_raw>
|
|
uc32 ScanOctalEscape(uc32 c, int length);
|
|
|
|
// Call this after setting source_ to the input.
|
|
void Init() {
|
|
// Set c0_ (one character ahead)
|
|
STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
|
|
Advance();
|
|
// Initialize current_ to not refer to a literal.
|
|
current_.literal_chars = NULL;
|
|
current_.raw_literal_chars = NULL;
|
|
}
|
|
|
|
// Literal buffer support
|
|
inline void StartLiteral() {
|
|
LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
|
|
&literal_buffer2_ : &literal_buffer1_;
|
|
free_buffer->Reset();
|
|
next_.literal_chars = free_buffer;
|
|
}
|
|
|
|
inline void StartRawLiteral() {
|
|
raw_literal_buffer_.Reset();
|
|
next_.raw_literal_chars = &raw_literal_buffer_;
|
|
}
|
|
|
|
INLINE(void AddLiteralChar(uc32 c)) {
|
|
DCHECK_NOT_NULL(next_.literal_chars);
|
|
next_.literal_chars->AddChar(c);
|
|
}
|
|
|
|
INLINE(void AddRawLiteralChar(uc32 c)) {
|
|
DCHECK_NOT_NULL(next_.raw_literal_chars);
|
|
next_.raw_literal_chars->AddChar(c);
|
|
}
|
|
|
|
INLINE(void ReduceRawLiteralLength(int delta)) {
|
|
DCHECK_NOT_NULL(next_.raw_literal_chars);
|
|
next_.raw_literal_chars->ReduceLength(delta);
|
|
}
|
|
|
|
// Stops scanning of a literal and drop the collected characters,
|
|
// e.g., due to an encountered error.
|
|
inline void DropLiteral() {
|
|
next_.literal_chars = NULL;
|
|
next_.raw_literal_chars = NULL;
|
|
}
|
|
|
|
inline void AddLiteralCharAdvance() {
|
|
AddLiteralChar(c0_);
|
|
Advance();
|
|
}
|
|
|
|
// Low-level scanning support.
|
|
template <bool capture_raw = false>
|
|
void Advance() {
|
|
if (capture_raw) {
|
|
AddRawLiteralChar(c0_);
|
|
}
|
|
c0_ = source_->Advance();
|
|
if (unibrow::Utf16::IsLeadSurrogate(c0_)) {
|
|
uc32 c1 = source_->Advance();
|
|
if (!unibrow::Utf16::IsTrailSurrogate(c1)) {
|
|
source_->PushBack(c1);
|
|
} else {
|
|
c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PushBack(uc32 ch) {
|
|
if (ch > static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
|
|
source_->PushBack(unibrow::Utf16::TrailSurrogate(c0_));
|
|
source_->PushBack(unibrow::Utf16::LeadSurrogate(c0_));
|
|
} else {
|
|
source_->PushBack(c0_);
|
|
}
|
|
c0_ = ch;
|
|
}
|
|
|
|
inline Token::Value Select(Token::Value tok) {
|
|
Advance();
|
|
return tok;
|
|
}
|
|
|
|
inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
|
|
Advance();
|
|
if (c0_ == next) {
|
|
Advance();
|
|
return then;
|
|
} else {
|
|
return else_;
|
|
}
|
|
}
|
|
|
|
// Returns the literal string, if any, for the current token (the
|
|
// token last returned by Next()). The string is 0-terminated.
|
|
// Literal strings are collected for identifiers, strings, numbers as well
|
|
// as for template literals. For template literals we also collect the raw
|
|
// form.
|
|
// These functions only give the correct result if the literal was scanned
|
|
// when a LiteralScope object is alive.
|
|
Vector<const uint8_t> literal_one_byte_string() {
|
|
DCHECK_NOT_NULL(current_.literal_chars);
|
|
return current_.literal_chars->one_byte_literal();
|
|
}
|
|
Vector<const uint16_t> literal_two_byte_string() {
|
|
DCHECK_NOT_NULL(current_.literal_chars);
|
|
return current_.literal_chars->two_byte_literal();
|
|
}
|
|
bool is_literal_one_byte() {
|
|
DCHECK_NOT_NULL(current_.literal_chars);
|
|
return current_.literal_chars->is_one_byte();
|
|
}
|
|
int literal_length() const {
|
|
DCHECK_NOT_NULL(current_.literal_chars);
|
|
return current_.literal_chars->length();
|
|
}
|
|
// Returns the literal string for the next token (the token that
|
|
// would be returned if Next() were called).
|
|
Vector<const uint8_t> next_literal_one_byte_string() {
|
|
DCHECK_NOT_NULL(next_.literal_chars);
|
|
return next_.literal_chars->one_byte_literal();
|
|
}
|
|
Vector<const uint16_t> next_literal_two_byte_string() {
|
|
DCHECK_NOT_NULL(next_.literal_chars);
|
|
return next_.literal_chars->two_byte_literal();
|
|
}
|
|
bool is_next_literal_one_byte() {
|
|
DCHECK_NOT_NULL(next_.literal_chars);
|
|
return next_.literal_chars->is_one_byte();
|
|
}
|
|
Vector<const uint8_t> raw_literal_one_byte_string() {
|
|
DCHECK_NOT_NULL(current_.raw_literal_chars);
|
|
return current_.raw_literal_chars->one_byte_literal();
|
|
}
|
|
Vector<const uint16_t> raw_literal_two_byte_string() {
|
|
DCHECK_NOT_NULL(current_.raw_literal_chars);
|
|
return current_.raw_literal_chars->two_byte_literal();
|
|
}
|
|
bool is_raw_literal_one_byte() {
|
|
DCHECK_NOT_NULL(current_.raw_literal_chars);
|
|
return current_.raw_literal_chars->is_one_byte();
|
|
}
|
|
|
|
template <bool capture_raw>
|
|
uc32 ScanHexNumber(int expected_length);
|
|
// Scan a number of any length but not bigger than max_value. For example, the
|
|
// number can be 000000001, so it's very long in characters but its value is
|
|
// small.
|
|
template <bool capture_raw>
|
|
uc32 ScanUnlimitedLengthHexNumber(int max_value);
|
|
|
|
// Scans a single JavaScript token.
|
|
void Scan();
|
|
|
|
bool SkipWhiteSpace();
|
|
Token::Value SkipSingleLineComment();
|
|
Token::Value SkipSourceURLComment();
|
|
void TryToParseSourceURLComment();
|
|
Token::Value SkipMultiLineComment();
|
|
// Scans a possible HTML comment -- begins with '<!'.
|
|
Token::Value ScanHtmlComment();
|
|
|
|
void ScanDecimalDigits();
|
|
Token::Value ScanNumber(bool seen_period);
|
|
Token::Value ScanIdentifierOrKeyword();
|
|
Token::Value ScanIdentifierSuffix(LiteralScope* literal);
|
|
|
|
Token::Value ScanString();
|
|
|
|
// Scans an escape-sequence which is part of a string and adds the
|
|
// decoded character to the current literal. Returns true if a pattern
|
|
// is scanned.
|
|
template <bool capture_raw>
|
|
bool ScanEscape();
|
|
// Decodes a Unicode escape-sequence which is part of an identifier.
|
|
// If the escape sequence cannot be decoded the result is kBadChar.
|
|
uc32 ScanIdentifierUnicodeEscape();
|
|
// Helper for the above functions.
|
|
template <bool capture_raw>
|
|
uc32 ScanUnicodeEscape();
|
|
|
|
Token::Value ScanTemplateSpan();
|
|
|
|
// Return the current source position.
|
|
int source_pos() {
|
|
return source_->pos() - kCharacterLookaheadBufferSize;
|
|
}
|
|
|
|
UnicodeCache* unicode_cache_;
|
|
|
|
// Buffers collecting literal strings, numbers, etc.
|
|
LiteralBuffer literal_buffer1_;
|
|
LiteralBuffer literal_buffer2_;
|
|
|
|
// Values parsed from magic comments.
|
|
LiteralBuffer source_url_;
|
|
LiteralBuffer source_mapping_url_;
|
|
|
|
// Buffer to store raw string values
|
|
LiteralBuffer raw_literal_buffer_;
|
|
|
|
TokenDesc current_; // desc for current token (as returned by Next())
|
|
TokenDesc next_; // desc for next token (one token look-ahead)
|
|
|
|
// Input stream. Must be initialized to an Utf16CharacterStream.
|
|
Utf16CharacterStream* source_;
|
|
|
|
|
|
// Start position of the octal literal last scanned.
|
|
Location octal_pos_;
|
|
|
|
// One Unicode character look-ahead; c0_ < 0 at the end of the input.
|
|
uc32 c0_;
|
|
|
|
// Whether there is a line terminator whitespace character after
|
|
// the current token, and before the next. Does not count newlines
|
|
// inside multiline comments.
|
|
bool has_line_terminator_before_next_;
|
|
// Whether there is a multi-line comment that contains a
|
|
// line-terminator after the current token, and before the next.
|
|
bool has_multiline_comment_before_next_;
|
|
// Whether we scan 'let' as a keyword for harmony block-scoped let bindings.
|
|
bool harmony_scoping_;
|
|
// Whether we scan 'module', 'import', 'export' as keywords.
|
|
bool harmony_modules_;
|
|
// Whether we scan 0o777 and 0b111 as numbers.
|
|
bool harmony_numeric_literals_;
|
|
// Whether we scan 'class', 'extends', 'static' and 'super' as keywords.
|
|
bool harmony_classes_;
|
|
// Whether we scan TEMPLATE_SPAN and TEMPLATE_TAIL
|
|
bool harmony_templates_;
|
|
// Whether we allow \u{xxxxx}.
|
|
bool harmony_unicode_;
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_SCANNER_H_
|