v8/src/data-flow.h
vitalyr@chromium.org 7976ca2cbc Merge isolates to bleeding_edge.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7271 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-03-18 20:35:07 +00:00

380 lines
9.7 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_DATAFLOW_H_
#define V8_DATAFLOW_H_
#include "v8.h"
#include "ast.h"
#include "compiler.h"
#include "zone-inl.h"
namespace v8 {
namespace internal {
// Forward declarations.
class Node;
class BitVector: public ZoneObject {
public:
// Iterator for the elements of this BitVector.
class Iterator BASE_EMBEDDED {
public:
explicit Iterator(BitVector* target)
: target_(target),
current_index_(0),
current_value_(target->data_[0]),
current_(-1) {
ASSERT(target->data_length_ > 0);
Advance();
}
~Iterator() { }
bool Done() const { return current_index_ >= target_->data_length_; }
void Advance();
int Current() const {
ASSERT(!Done());
return current_;
}
private:
uint32_t SkipZeroBytes(uint32_t val) {
while ((val & 0xFF) == 0) {
val >>= 8;
current_ += 8;
}
return val;
}
uint32_t SkipZeroBits(uint32_t val) {
while ((val & 0x1) == 0) {
val >>= 1;
current_++;
}
return val;
}
BitVector* target_;
int current_index_;
uint32_t current_value_;
int current_;
friend class BitVector;
};
explicit BitVector(int length)
: length_(length),
data_length_(SizeFor(length)),
data_(ZONE->NewArray<uint32_t>(data_length_)) {
ASSERT(length > 0);
Clear();
}
BitVector(const BitVector& other)
: length_(other.length()),
data_length_(SizeFor(length_)),
data_(ZONE->NewArray<uint32_t>(data_length_)) {
CopyFrom(other);
}
static int SizeFor(int length) {
return 1 + ((length - 1) / 32);
}
BitVector& operator=(const BitVector& rhs) {
if (this != &rhs) CopyFrom(rhs);
return *this;
}
void CopyFrom(const BitVector& other) {
ASSERT(other.length() <= length());
for (int i = 0; i < other.data_length_; i++) {
data_[i] = other.data_[i];
}
for (int i = other.data_length_; i < data_length_; i++) {
data_[i] = 0;
}
}
bool Contains(int i) const {
ASSERT(i >= 0 && i < length());
uint32_t block = data_[i / 32];
return (block & (1U << (i % 32))) != 0;
}
void Add(int i) {
ASSERT(i >= 0 && i < length());
data_[i / 32] |= (1U << (i % 32));
}
void Remove(int i) {
ASSERT(i >= 0 && i < length());
data_[i / 32] &= ~(1U << (i % 32));
}
void Union(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] |= other.data_[i];
}
}
bool UnionIsChanged(const BitVector& other) {
ASSERT(other.length() == length());
bool changed = false;
for (int i = 0; i < data_length_; i++) {
uint32_t old_data = data_[i];
data_[i] |= other.data_[i];
if (data_[i] != old_data) changed = true;
}
return changed;
}
void Intersect(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] &= other.data_[i];
}
}
void Subtract(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] &= ~other.data_[i];
}
}
void Clear() {
for (int i = 0; i < data_length_; i++) {
data_[i] = 0;
}
}
bool IsEmpty() const {
for (int i = 0; i < data_length_; i++) {
if (data_[i] != 0) return false;
}
return true;
}
bool Equals(const BitVector& other) {
for (int i = 0; i < data_length_; i++) {
if (data_[i] != other.data_[i]) return false;
}
return true;
}
int length() const { return length_; }
#ifdef DEBUG
void Print();
#endif
private:
int length_;
int data_length_;
uint32_t* data_;
};
// An implementation of a sparse set whose elements are drawn from integers
// in the range [0..universe_size[. It supports constant-time Contains,
// destructive Add, and destructuve Remove operations and linear-time (in
// the number of elements) destructive Union.
class SparseSet: public ZoneObject {
public:
// Iterator for sparse set elements. Elements should not be added or
// removed during iteration.
class Iterator BASE_EMBEDDED {
public:
explicit Iterator(SparseSet* target) : target_(target), current_(0) {
ASSERT(++target->iterator_count_ > 0);
}
~Iterator() {
ASSERT(target_->iterator_count_-- > 0);
}
bool Done() const { return current_ >= target_->dense_.length(); }
void Advance() {
ASSERT(!Done());
++current_;
}
int Current() {
ASSERT(!Done());
return target_->dense_[current_];
}
private:
SparseSet* target_;
int current_;
friend class SparseSet;
};
explicit SparseSet(int universe_size)
: dense_(4),
sparse_(ZONE->NewArray<int>(universe_size)) {
#ifdef DEBUG
size_ = universe_size;
iterator_count_ = 0;
#endif
}
bool Contains(int n) const {
ASSERT(0 <= n && n < size_);
int dense_index = sparse_[n];
return (0 <= dense_index) &&
(dense_index < dense_.length()) &&
(dense_[dense_index] == n);
}
void Add(int n) {
ASSERT(0 <= n && n < size_);
ASSERT(iterator_count_ == 0);
if (!Contains(n)) {
sparse_[n] = dense_.length();
dense_.Add(n);
}
}
void Remove(int n) {
ASSERT(0 <= n && n < size_);
ASSERT(iterator_count_ == 0);
if (Contains(n)) {
int dense_index = sparse_[n];
int last = dense_.RemoveLast();
if (dense_index < dense_.length()) {
dense_[dense_index] = last;
sparse_[last] = dense_index;
}
}
}
void Union(const SparseSet& other) {
for (int i = 0; i < other.dense_.length(); ++i) {
Add(other.dense_[i]);
}
}
private:
// The set is implemented as a pair of a growable dense list and an
// uninitialized sparse array.
ZoneList<int> dense_;
int* sparse_;
#ifdef DEBUG
int size_;
int iterator_count_;
#endif
};
// Simple fixed-capacity list-based worklist (managed as a queue) of
// pointers to T.
template<typename T>
class WorkList BASE_EMBEDDED {
public:
// The worklist cannot grow bigger than size. We keep one item empty to
// distinguish between empty and full.
explicit WorkList(int size)
: capacity_(size + 1), head_(0), tail_(0), queue_(capacity_) {
for (int i = 0; i < capacity_; i++) queue_.Add(NULL);
}
bool is_empty() { return head_ == tail_; }
bool is_full() {
// The worklist is full if head is at 0 and tail is at capacity - 1:
// head == 0 && tail == capacity-1 ==> tail - head == capacity - 1
// or if tail is immediately to the left of head:
// tail+1 == head ==> tail - head == -1
int diff = tail_ - head_;
return (diff == -1 || diff == capacity_ - 1);
}
void Insert(T* item) {
ASSERT(!is_full());
queue_[tail_++] = item;
if (tail_ == capacity_) tail_ = 0;
}
T* Remove() {
ASSERT(!is_empty());
T* item = queue_[head_++];
if (head_ == capacity_) head_ = 0;
return item;
}
private:
int capacity_; // Including one empty slot.
int head_; // Where the first item is.
int tail_; // Where the next inserted item will go.
List<T*> queue_;
};
// Computes the set of assigned variables and annotates variables proxies
// that are trivial sub-expressions and for-loops where the loop variable
// is guaranteed to be a smi.
class AssignedVariablesAnalyzer : public AstVisitor {
public:
static bool Analyze(CompilationInfo* info);
private:
AssignedVariablesAnalyzer(CompilationInfo* info, int bits);
bool Analyze();
Variable* FindSmiLoopVariable(ForStatement* stmt);
int BitIndex(Variable* var);
void RecordAssignedVar(Variable* var);
void MarkIfTrivial(Expression* expr);
// Visits an expression saving the accumulator before, clearing
// it before visting and restoring it after visiting.
void ProcessExpression(Expression* expr);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
CompilationInfo* info_;
// Accumulator for assigned variables set.
BitVector av_;
DISALLOW_COPY_AND_ASSIGN(AssignedVariablesAnalyzer);
};
} } // namespace v8::internal
#endif // V8_DATAFLOW_H_