v8/src/hydrogen-check-elimination.cc
jochen@chromium.org 56a486c322 Use full include paths everywhere
- this avoids using relative include paths which are forbidden by the style guide
- makes the code more readable since it's clear which header is meant
- allows for starting to use checkdeps

BUG=none
R=jkummerow@chromium.org, danno@chromium.org
LOG=n

Review URL: https://codereview.chromium.org/304153016

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21625 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-06-03 08:12:43 +00:00

904 lines
31 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/hydrogen-check-elimination.h"
#include "src/hydrogen-alias-analysis.h"
#include "src/hydrogen-flow-engine.h"
#define GLOBAL 1
// Only collect stats in debug mode.
#if DEBUG
#define INC_STAT(x) phase_->x++
#else
#define INC_STAT(x)
#endif
// For code de-uglification.
#define TRACE(x) if (FLAG_trace_check_elimination) PrintF x
namespace v8 {
namespace internal {
typedef const UniqueSet<Map>* MapSet;
struct HCheckTableEntry {
enum State {
// We have seen a map check (i.e. an HCheckMaps) for these maps, so we can
// use this information to eliminate further map checks, elements kind
// transitions, etc.
CHECKED,
// Same as CHECKED, but we also know that these maps are stable.
CHECKED_STABLE,
// These maps are stable, but not checked (i.e. we learned this via field
// type tracking or from a constant, or they were initially CHECKED_STABLE,
// but became UNCHECKED_STABLE because of an instruction that changes maps
// or elements kind), and we need a stability check for them in order to use
// this information for check elimination (which turns them back to
// CHECKED_STABLE).
UNCHECKED_STABLE
};
static const char* State2String(State state) {
switch (state) {
case CHECKED: return "checked";
case CHECKED_STABLE: return "checked stable";
case UNCHECKED_STABLE: return "unchecked stable";
}
UNREACHABLE();
return NULL;
}
static State StateMerge(State state1, State state2) {
if (state1 == state2) return state1;
if ((state1 == CHECKED && state2 == CHECKED_STABLE) ||
(state2 == CHECKED && state1 == CHECKED_STABLE)) {
return CHECKED;
}
ASSERT((state1 == CHECKED_STABLE && state2 == UNCHECKED_STABLE) ||
(state2 == CHECKED_STABLE && state1 == UNCHECKED_STABLE));
return UNCHECKED_STABLE;
}
HValue* object_; // The object being approximated. NULL => invalid entry.
HInstruction* check_; // The last check instruction.
MapSet maps_; // The set of known maps for the object.
State state_; // The state of this entry.
};
// The main data structure used during check elimination, which stores a
// set of known maps for each object.
class HCheckTable : public ZoneObject {
public:
static const int kMaxTrackedObjects = 16;
explicit HCheckTable(HCheckEliminationPhase* phase)
: phase_(phase),
cursor_(0),
size_(0) {
}
// The main processing of instructions.
HCheckTable* Process(HInstruction* instr, Zone* zone) {
switch (instr->opcode()) {
case HValue::kCheckMaps: {
ReduceCheckMaps(HCheckMaps::cast(instr));
break;
}
case HValue::kLoadNamedField: {
ReduceLoadNamedField(HLoadNamedField::cast(instr));
break;
}
case HValue::kStoreNamedField: {
ReduceStoreNamedField(HStoreNamedField::cast(instr));
break;
}
case HValue::kCompareMap: {
ReduceCompareMap(HCompareMap::cast(instr));
break;
}
case HValue::kCompareObjectEqAndBranch: {
ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch::cast(instr));
break;
}
case HValue::kIsStringAndBranch: {
ReduceIsStringAndBranch(HIsStringAndBranch::cast(instr));
break;
}
case HValue::kTransitionElementsKind: {
ReduceTransitionElementsKind(
HTransitionElementsKind::cast(instr));
break;
}
case HValue::kCheckHeapObject: {
ReduceCheckHeapObject(HCheckHeapObject::cast(instr));
break;
}
case HValue::kCheckInstanceType: {
ReduceCheckInstanceType(HCheckInstanceType::cast(instr));
break;
}
default: {
// If the instruction changes maps uncontrollably, drop everything.
if (instr->CheckChangesFlag(kOsrEntries)) {
Kill();
break;
}
if (instr->CheckChangesFlag(kElementsKind) ||
instr->CheckChangesFlag(kMaps)) {
KillUnstableEntries();
}
}
// Improvements possible:
// - eliminate redundant HCheckSmi instructions
// - track which values have been HCheckHeapObject'd
}
return this;
}
// Support for global analysis with HFlowEngine: Merge given state with
// the other incoming state.
static HCheckTable* Merge(HCheckTable* succ_state, HBasicBlock* succ_block,
HCheckTable* pred_state, HBasicBlock* pred_block,
Zone* zone) {
if (pred_state == NULL || pred_block->IsUnreachable()) {
return succ_state;
}
if (succ_state == NULL) {
return pred_state->Copy(succ_block, pred_block, zone);
} else {
return succ_state->Merge(succ_block, pred_state, pred_block, zone);
}
}
// Support for global analysis with HFlowEngine: Given state merged with all
// the other incoming states, prepare it for use.
static HCheckTable* Finish(HCheckTable* state, HBasicBlock* block,
Zone* zone) {
if (state == NULL) {
block->MarkUnreachable();
} else if (block->IsUnreachable()) {
state = NULL;
}
if (FLAG_trace_check_elimination) {
PrintF("Processing B%d, checkmaps-table:\n", block->block_id());
Print(state);
}
return state;
}
private:
// Copy state to successor block.
HCheckTable* Copy(HBasicBlock* succ, HBasicBlock* from_block, Zone* zone) {
HCheckTable* copy = new(zone) HCheckTable(phase_);
for (int i = 0; i < size_; i++) {
HCheckTableEntry* old_entry = &entries_[i];
ASSERT(old_entry->maps_->size() > 0);
HCheckTableEntry* new_entry = &copy->entries_[i];
new_entry->object_ = old_entry->object_;
new_entry->maps_ = old_entry->maps_;
new_entry->state_ = old_entry->state_;
// Keep the check if the existing check's block dominates the successor.
if (old_entry->check_ != NULL &&
old_entry->check_->block()->Dominates(succ)) {
new_entry->check_ = old_entry->check_;
} else {
// Leave it NULL till we meet a new check instruction for this object
// in the control flow.
new_entry->check_ = NULL;
}
}
copy->cursor_ = cursor_;
copy->size_ = size_;
// Create entries for succ block's phis.
if (!succ->IsLoopHeader() && succ->phis()->length() > 0) {
int pred_index = succ->PredecessorIndexOf(from_block);
for (int phi_index = 0;
phi_index < succ->phis()->length();
++phi_index) {
HPhi* phi = succ->phis()->at(phi_index);
HValue* phi_operand = phi->OperandAt(pred_index);
HCheckTableEntry* pred_entry = copy->Find(phi_operand);
if (pred_entry != NULL) {
// Create an entry for a phi in the table.
copy->Insert(phi, NULL, pred_entry->maps_, pred_entry->state_);
}
}
}
// Branch-sensitive analysis for certain comparisons may add more facts
// to the state for the successor on the true branch.
bool learned = false;
if (succ->predecessors()->length() == 1) {
HControlInstruction* end = succ->predecessors()->at(0)->end();
bool is_true_branch = end->SuccessorAt(0) == succ;
if (end->IsCompareMap()) {
HCompareMap* cmp = HCompareMap::cast(end);
HValue* object = cmp->value()->ActualValue();
HCheckTableEntry* entry = copy->Find(object);
if (is_true_branch) {
HCheckTableEntry::State state = cmp->map_is_stable()
? HCheckTableEntry::CHECKED_STABLE
: HCheckTableEntry::CHECKED;
// Learn on the true branch of if(CompareMap(x)).
if (entry == NULL) {
copy->Insert(object, cmp, cmp->map(), state);
} else {
entry->maps_ = new(zone) UniqueSet<Map>(cmp->map(), zone);
entry->check_ = cmp;
entry->state_ = state;
}
} else {
// Learn on the false branch of if(CompareMap(x)).
if (entry != NULL) {
EnsureChecked(entry, object, cmp);
UniqueSet<Map>* maps = entry->maps_->Copy(zone);
maps->Remove(cmp->map());
entry->maps_ = maps;
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_);
}
}
learned = true;
} else if (is_true_branch && end->IsCompareObjectEqAndBranch()) {
// Learn on the true branch of if(CmpObjectEq(x, y)).
HCompareObjectEqAndBranch* cmp =
HCompareObjectEqAndBranch::cast(end);
HValue* left = cmp->left()->ActualValue();
HValue* right = cmp->right()->ActualValue();
HCheckTableEntry* le = copy->Find(left);
HCheckTableEntry* re = copy->Find(right);
if (le == NULL) {
if (re != NULL) {
copy->Insert(left, NULL, re->maps_, re->state_);
}
} else if (re == NULL) {
copy->Insert(right, NULL, le->maps_, le->state_);
} else {
EnsureChecked(le, cmp->left(), cmp);
EnsureChecked(re, cmp->right(), cmp);
le->maps_ = re->maps_ = le->maps_->Intersect(re->maps_, zone);
le->state_ = re->state_ = HCheckTableEntry::StateMerge(
le->state_, re->state_);
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, le->state_);
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, re->state_);
}
learned = true;
} else if (end->IsIsStringAndBranch()) {
HIsStringAndBranch* cmp = HIsStringAndBranch::cast(end);
HValue* object = cmp->value()->ActualValue();
HCheckTableEntry* entry = copy->Find(object);
if (is_true_branch) {
// Learn on the true branch of if(IsString(x)).
if (entry == NULL) {
copy->Insert(object, NULL, string_maps(),
HCheckTableEntry::CHECKED);
} else {
EnsureChecked(entry, object, cmp);
entry->maps_ = entry->maps_->Intersect(string_maps(), zone);
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_);
}
} else {
// Learn on the false branch of if(IsString(x)).
if (entry != NULL) {
EnsureChecked(entry, object, cmp);
entry->maps_ = entry->maps_->Subtract(string_maps(), zone);
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_);
}
}
}
// Learning on false branches requires storing negative facts.
}
if (FLAG_trace_check_elimination) {
PrintF("B%d checkmaps-table %s from B%d:\n",
succ->block_id(),
learned ? "learned" : "copied",
from_block->block_id());
Print(copy);
}
return copy;
}
// Merge this state with the other incoming state.
HCheckTable* Merge(HBasicBlock* succ, HCheckTable* that,
HBasicBlock* pred_block, Zone* zone) {
if (that->size_ == 0) {
// If the other state is empty, simply reset.
size_ = 0;
cursor_ = 0;
} else {
int pred_index = succ->PredecessorIndexOf(pred_block);
bool compact = false;
for (int i = 0; i < size_; i++) {
HCheckTableEntry* this_entry = &entries_[i];
HCheckTableEntry* that_entry;
if (this_entry->object_->IsPhi() &&
this_entry->object_->block() == succ) {
HPhi* phi = HPhi::cast(this_entry->object_);
HValue* phi_operand = phi->OperandAt(pred_index);
that_entry = that->Find(phi_operand);
} else {
that_entry = that->Find(this_entry->object_);
}
if (that_entry == NULL ||
(that_entry->state_ == HCheckTableEntry::CHECKED &&
this_entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) ||
(this_entry->state_ == HCheckTableEntry::CHECKED &&
that_entry->state_ == HCheckTableEntry::UNCHECKED_STABLE)) {
this_entry->object_ = NULL;
compact = true;
} else {
this_entry->maps_ =
this_entry->maps_->Union(that_entry->maps_, zone);
this_entry->state_ = HCheckTableEntry::StateMerge(
this_entry->state_, that_entry->state_);
if (this_entry->check_ != that_entry->check_) {
this_entry->check_ = NULL;
}
ASSERT(this_entry->maps_->size() > 0);
}
}
if (compact) Compact();
}
if (FLAG_trace_check_elimination) {
PrintF("B%d checkmaps-table merged with B%d table:\n",
succ->block_id(), pred_block->block_id());
Print(this);
}
return this;
}
void ReduceCheckMaps(HCheckMaps* instr) {
HValue* object = instr->value()->ActualValue();
HCheckTableEntry* entry = Find(object);
if (entry != NULL) {
// entry found;
HGraph* graph = instr->block()->graph();
if (entry->maps_->IsSubset(instr->maps())) {
// The first check is more strict; the second is redundant.
if (entry->check_ != NULL) {
ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_);
TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n",
instr->id(), instr->block()->block_id(), entry->check_->id()));
instr->DeleteAndReplaceWith(entry->check_);
INC_STAT(redundant_);
} else if (entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) {
ASSERT_EQ(NULL, entry->check_);
TRACE(("Marking redundant CheckMaps #%d at B%d as stability check\n",
instr->id(), instr->block()->block_id()));
instr->set_maps(entry->maps_->Copy(graph->zone()));
instr->MarkAsStabilityCheck();
entry->state_ = HCheckTableEntry::CHECKED_STABLE;
} else if (!instr->IsStabilityCheck()) {
TRACE(("Marking redundant CheckMaps #%d at B%d as dead\n",
instr->id(), instr->block()->block_id()));
// Mark check as dead but leave it in the graph as a checkpoint for
// subsequent checks.
instr->SetFlag(HValue::kIsDead);
entry->check_ = instr;
INC_STAT(removed_);
}
return;
}
MapSet intersection = instr->maps()->Intersect(
entry->maps_, graph->zone());
if (intersection->size() == 0) {
// Intersection is empty; probably megamorphic.
INC_STAT(empty_);
entry->object_ = NULL;
Compact();
} else {
// Update set of maps in the entry.
entry->maps_ = intersection;
// Update state of the entry.
if (instr->maps_are_stable() ||
entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) {
entry->state_ = HCheckTableEntry::CHECKED_STABLE;
}
if (intersection->size() != instr->maps()->size()) {
// Narrow set of maps in the second check maps instruction.
if (entry->check_ != NULL &&
entry->check_->block() == instr->block() &&
entry->check_->IsCheckMaps()) {
// There is a check in the same block so replace it with a more
// strict check and eliminate the second check entirely.
HCheckMaps* check = HCheckMaps::cast(entry->check_);
ASSERT(!check->IsStabilityCheck());
TRACE(("CheckMaps #%d at B%d narrowed\n", check->id(),
check->block()->block_id()));
// Update map set and ensure that the check is alive.
check->set_maps(intersection);
check->ClearFlag(HValue::kIsDead);
TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n",
instr->id(), instr->block()->block_id(), entry->check_->id()));
instr->DeleteAndReplaceWith(entry->check_);
} else {
TRACE(("CheckMaps #%d at B%d narrowed\n", instr->id(),
instr->block()->block_id()));
instr->set_maps(intersection);
entry->check_ = instr->IsStabilityCheck() ? NULL : instr;
}
if (FLAG_trace_check_elimination) {
Print(this);
}
INC_STAT(narrowed_);
}
}
} else {
// No entry; insert a new one.
HCheckTableEntry::State state = instr->maps_are_stable()
? HCheckTableEntry::CHECKED_STABLE
: HCheckTableEntry::CHECKED;
HCheckMaps* check = instr->IsStabilityCheck() ? NULL : instr;
Insert(object, check, instr->maps(), state);
}
}
void ReduceCheckInstanceType(HCheckInstanceType* instr) {
HValue* value = instr->value()->ActualValue();
HCheckTableEntry* entry = Find(value);
if (entry == NULL) {
if (instr->check() == HCheckInstanceType::IS_STRING) {
Insert(value, NULL, string_maps(), HCheckTableEntry::CHECKED);
}
return;
}
UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(
entry->maps_->size(), zone());
for (int i = 0; i < entry->maps_->size(); ++i) {
InstanceType type;
Unique<Map> map = entry->maps_->at(i);
{
// This is safe, because maps don't move and their instance type does
// not change.
AllowHandleDereference allow_deref;
type = map.handle()->instance_type();
}
if (instr->is_interval_check()) {
InstanceType first_type, last_type;
instr->GetCheckInterval(&first_type, &last_type);
if (first_type <= type && type <= last_type) maps->Add(map, zone());
} else {
uint8_t mask, tag;
instr->GetCheckMaskAndTag(&mask, &tag);
if ((type & mask) == tag) maps->Add(map, zone());
}
}
if (maps->size() == entry->maps_->size()) {
TRACE(("Removing redundant CheckInstanceType #%d at B%d\n",
instr->id(), instr->block()->block_id()));
EnsureChecked(entry, value, instr);
instr->DeleteAndReplaceWith(value);
INC_STAT(removed_cit_);
} else if (maps->size() != 0) {
entry->maps_ = maps;
if (entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) {
entry->state_ = HCheckTableEntry::CHECKED_STABLE;
}
}
}
void ReduceLoadNamedField(HLoadNamedField* instr) {
// Reduce a load of the map field when it is known to be a constant.
if (!instr->access().IsMap()) {
// Check if we introduce field maps here.
MapSet maps = instr->maps();
if (maps != NULL) {
ASSERT_NE(0, maps->size());
Insert(instr, NULL, maps, HCheckTableEntry::UNCHECKED_STABLE);
}
return;
}
HValue* object = instr->object()->ActualValue();
HCheckTableEntry* entry = Find(object);
if (entry == NULL || entry->maps_->size() != 1) return; // Not a constant.
EnsureChecked(entry, object, instr);
Unique<Map> map = entry->maps_->at(0);
bool map_is_stable = (entry->state_ != HCheckTableEntry::CHECKED);
HConstant* constant = HConstant::CreateAndInsertBefore(
instr->block()->graph()->zone(), map, map_is_stable, instr);
instr->DeleteAndReplaceWith(constant);
INC_STAT(loads_);
}
void ReduceCheckHeapObject(HCheckHeapObject* instr) {
HValue* value = instr->value()->ActualValue();
if (Find(value) != NULL) {
// If the object has known maps, it's definitely a heap object.
instr->DeleteAndReplaceWith(value);
INC_STAT(removed_cho_);
}
}
void ReduceStoreNamedField(HStoreNamedField* instr) {
HValue* object = instr->object()->ActualValue();
if (instr->has_transition()) {
// This store transitions the object to a new map.
Kill(object);
HConstant* c_transition = HConstant::cast(instr->transition());
HCheckTableEntry::State state = c_transition->HasStableMapValue()
? HCheckTableEntry::CHECKED_STABLE
: HCheckTableEntry::CHECKED;
Insert(object, NULL, c_transition->MapValue(), state);
} else if (instr->access().IsMap()) {
// This is a store directly to the map field of the object.
Kill(object);
if (!instr->value()->IsConstant()) return;
HConstant* c_value = HConstant::cast(instr->value());
HCheckTableEntry::State state = c_value->HasStableMapValue()
? HCheckTableEntry::CHECKED_STABLE
: HCheckTableEntry::CHECKED;
Insert(object, NULL, c_value->MapValue(), state);
} else {
// If the instruction changes maps, it should be handled above.
CHECK(!instr->CheckChangesFlag(kMaps));
}
}
void ReduceCompareMap(HCompareMap* instr) {
HCheckTableEntry* entry = Find(instr->value()->ActualValue());
if (entry == NULL) return;
EnsureChecked(entry, instr->value(), instr);
int succ;
if (entry->maps_->Contains(instr->map())) {
if (entry->maps_->size() != 1) {
TRACE(("CompareMap #%d for #%d at B%d can't be eliminated: "
"ambiguous set of maps\n", instr->id(), instr->value()->id(),
instr->block()->block_id()));
return;
}
succ = 0;
INC_STAT(compares_true_);
} else {
succ = 1;
INC_STAT(compares_false_);
}
TRACE(("Marking redundant CompareMap #%d for #%d at B%d as %s\n",
instr->id(), instr->value()->id(), instr->block()->block_id(),
succ == 0 ? "true" : "false"));
instr->set_known_successor_index(succ);
int unreachable_succ = 1 - succ;
instr->block()->MarkSuccEdgeUnreachable(unreachable_succ);
}
void ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch* instr) {
HValue* left = instr->left()->ActualValue();
HCheckTableEntry* le = Find(left);
if (le == NULL) return;
HValue* right = instr->right()->ActualValue();
HCheckTableEntry* re = Find(right);
if (re == NULL) return;
EnsureChecked(le, left, instr);
EnsureChecked(re, right, instr);
// TODO(bmeurer): Add a predicate here instead of computing the intersection
MapSet intersection = le->maps_->Intersect(re->maps_, zone());
if (intersection->size() > 0) return;
TRACE(("Marking redundant CompareObjectEqAndBranch #%d at B%d as false\n",
instr->id(), instr->block()->block_id()));
int succ = 1;
instr->set_known_successor_index(succ);
int unreachable_succ = 1 - succ;
instr->block()->MarkSuccEdgeUnreachable(unreachable_succ);
}
void ReduceIsStringAndBranch(HIsStringAndBranch* instr) {
HValue* value = instr->value()->ActualValue();
HCheckTableEntry* entry = Find(value);
if (entry == NULL) return;
EnsureChecked(entry, value, instr);
int succ;
if (entry->maps_->IsSubset(string_maps())) {
TRACE(("Marking redundant IsStringAndBranch #%d at B%d as true\n",
instr->id(), instr->block()->block_id()));
succ = 0;
} else {
MapSet intersection = entry->maps_->Intersect(string_maps(), zone());
if (intersection->size() > 0) return;
TRACE(("Marking redundant IsStringAndBranch #%d at B%d as false\n",
instr->id(), instr->block()->block_id()));
succ = 1;
}
instr->set_known_successor_index(succ);
int unreachable_succ = 1 - succ;
instr->block()->MarkSuccEdgeUnreachable(unreachable_succ);
}
void ReduceTransitionElementsKind(HTransitionElementsKind* instr) {
HValue* object = instr->object()->ActualValue();
HCheckTableEntry* entry = Find(object);
// Can only learn more about an object that already has a known set of maps.
if (entry == NULL) return;
EnsureChecked(entry, object, instr);
if (entry->maps_->Contains(instr->original_map())) {
// If the object has the original map, it will be transitioned.
UniqueSet<Map>* maps = entry->maps_->Copy(zone());
maps->Remove(instr->original_map());
maps->Add(instr->transitioned_map(), zone());
entry->maps_ = maps;
} else {
// Object does not have the given map, thus the transition is redundant.
instr->DeleteAndReplaceWith(object);
INC_STAT(transitions_);
}
}
void EnsureChecked(HCheckTableEntry* entry,
HValue* value,
HInstruction* instr) {
if (entry->state_ != HCheckTableEntry::UNCHECKED_STABLE) return;
HGraph* graph = instr->block()->graph();
HCheckMaps* check = HCheckMaps::CreateAndInsertBefore(
graph->zone(), value, entry->maps_->Copy(graph->zone()), true, instr);
check->MarkAsStabilityCheck();
entry->state_ = HCheckTableEntry::CHECKED_STABLE;
entry->check_ = NULL;
}
// Kill everything in the table.
void Kill() {
size_ = 0;
cursor_ = 0;
}
// Kill all unstable entries in the table.
void KillUnstableEntries() {
bool compact = false;
for (int i = 0; i < size_; ++i) {
HCheckTableEntry* entry = &entries_[i];
ASSERT_NOT_NULL(entry->object_);
if (entry->state_ == HCheckTableEntry::CHECKED) {
entry->object_ = NULL;
compact = true;
} else {
// All checked stable entries become unchecked stable.
entry->state_ = HCheckTableEntry::UNCHECKED_STABLE;
entry->check_ = NULL;
}
}
if (compact) Compact();
}
// Kill everything in the table that may alias {object}.
void Kill(HValue* object) {
bool compact = false;
for (int i = 0; i < size_; i++) {
HCheckTableEntry* entry = &entries_[i];
ASSERT(entry->object_ != NULL);
if (phase_->aliasing_->MayAlias(entry->object_, object)) {
entry->object_ = NULL;
compact = true;
}
}
if (compact) Compact();
ASSERT(Find(object) == NULL);
}
void Compact() {
// First, compact the array in place.
int max = size_, dest = 0, old_cursor = cursor_;
for (int i = 0; i < max; i++) {
if (entries_[i].object_ != NULL) {
if (dest != i) entries_[dest] = entries_[i];
dest++;
} else {
if (i < old_cursor) cursor_--;
size_--;
}
}
ASSERT(size_ == dest);
ASSERT(cursor_ <= size_);
// Preserve the age of the entries by moving the older entries to the end.
if (cursor_ == size_) return; // Cursor already points at end.
if (cursor_ != 0) {
// | L = oldest | R = newest | |
// ^ cursor ^ size ^ MAX
HCheckTableEntry tmp_entries[kMaxTrackedObjects];
int L = cursor_;
int R = size_ - cursor_;
MemMove(&tmp_entries[0], &entries_[0], L * sizeof(HCheckTableEntry));
MemMove(&entries_[0], &entries_[L], R * sizeof(HCheckTableEntry));
MemMove(&entries_[R], &tmp_entries[0], L * sizeof(HCheckTableEntry));
}
cursor_ = size_; // Move cursor to end.
}
static void Print(HCheckTable* table) {
if (table == NULL) {
PrintF(" unreachable\n");
return;
}
for (int i = 0; i < table->size_; i++) {
HCheckTableEntry* entry = &table->entries_[i];
ASSERT(entry->object_ != NULL);
PrintF(" checkmaps-table @%d: %s #%d ", i,
entry->object_->IsPhi() ? "phi" : "object", entry->object_->id());
if (entry->check_ != NULL) {
PrintF("check #%d ", entry->check_->id());
}
MapSet list = entry->maps_;
PrintF("%d %s maps { ", list->size(),
HCheckTableEntry::State2String(entry->state_));
for (int j = 0; j < list->size(); j++) {
if (j > 0) PrintF(", ");
PrintF("%" V8PRIxPTR, list->at(j).Hashcode());
}
PrintF(" }\n");
}
}
HCheckTableEntry* Find(HValue* object) {
for (int i = size_ - 1; i >= 0; i--) {
// Search from most-recently-inserted to least-recently-inserted.
HCheckTableEntry* entry = &entries_[i];
ASSERT(entry->object_ != NULL);
if (phase_->aliasing_->MustAlias(entry->object_, object)) return entry;
}
return NULL;
}
void Insert(HValue* object,
HInstruction* check,
Unique<Map> map,
HCheckTableEntry::State state) {
Insert(object, check, new(zone()) UniqueSet<Map>(map, zone()), state);
}
void Insert(HValue* object,
HInstruction* check,
MapSet maps,
HCheckTableEntry::State state) {
ASSERT(state != HCheckTableEntry::UNCHECKED_STABLE || check == NULL);
HCheckTableEntry* entry = &entries_[cursor_++];
entry->object_ = object;
entry->check_ = check;
entry->maps_ = maps;
entry->state_ = state;
// If the table becomes full, wrap around and overwrite older entries.
if (cursor_ == kMaxTrackedObjects) cursor_ = 0;
if (size_ < kMaxTrackedObjects) size_++;
}
Zone* zone() const { return phase_->zone(); }
MapSet string_maps() const { return phase_->string_maps(); }
friend class HCheckMapsEffects;
friend class HCheckEliminationPhase;
HCheckEliminationPhase* phase_;
HCheckTableEntry entries_[kMaxTrackedObjects];
int16_t cursor_; // Must be <= kMaxTrackedObjects
int16_t size_; // Must be <= kMaxTrackedObjects
STATIC_ASSERT(kMaxTrackedObjects < (1 << 15));
};
// Collects instructions that can cause effects that invalidate information
// needed for check elimination.
class HCheckMapsEffects : public ZoneObject {
public:
explicit HCheckMapsEffects(Zone* zone) : objects_(0, zone) { }
// Effects are _not_ disabled.
inline bool Disabled() const { return false; }
// Process a possibly side-effecting instruction.
void Process(HInstruction* instr, Zone* zone) {
switch (instr->opcode()) {
case HValue::kStoreNamedField: {
HStoreNamedField* store = HStoreNamedField::cast(instr);
if (store->access().IsMap() || store->has_transition()) {
objects_.Add(store->object(), zone);
}
break;
}
case HValue::kTransitionElementsKind: {
objects_.Add(HTransitionElementsKind::cast(instr)->object(), zone);
break;
}
default: {
flags_.Add(instr->ChangesFlags());
break;
}
}
}
// Apply these effects to the given check elimination table.
void Apply(HCheckTable* table) {
if (flags_.Contains(kOsrEntries)) {
// Uncontrollable map modifications; kill everything.
table->Kill();
return;
}
// Kill all unstable entries.
if (flags_.Contains(kElementsKind) || flags_.Contains(kMaps)) {
table->KillUnstableEntries();
}
// Kill maps for each object contained in these effects.
for (int i = 0; i < objects_.length(); ++i) {
table->Kill(objects_[i]->ActualValue());
}
}
// Union these effects with the other effects.
void Union(HCheckMapsEffects* that, Zone* zone) {
flags_.Add(that->flags_);
for (int i = 0; i < that->objects_.length(); ++i) {
objects_.Add(that->objects_[i], zone);
}
}
private:
ZoneList<HValue*> objects_;
GVNFlagSet flags_;
};
// The main routine of the analysis phase. Use the HFlowEngine for either a
// local or a global analysis.
void HCheckEliminationPhase::Run() {
HFlowEngine<HCheckTable, HCheckMapsEffects> engine(graph(), zone());
HCheckTable* table = new(zone()) HCheckTable(this);
if (GLOBAL) {
// Perform a global analysis.
engine.AnalyzeDominatedBlocks(graph()->blocks()->at(0), table);
} else {
// Perform only local analysis.
for (int i = 0; i < graph()->blocks()->length(); i++) {
table->Kill();
engine.AnalyzeOneBlock(graph()->blocks()->at(i), table);
}
}
if (FLAG_trace_check_elimination) PrintStats();
}
// Are we eliminated yet?
void HCheckEliminationPhase::PrintStats() {
#if DEBUG
#define PRINT_STAT(x) if (x##_ > 0) PrintF(" %-16s = %2d\n", #x, x##_)
#else
#define PRINT_STAT(x)
#endif
PRINT_STAT(redundant);
PRINT_STAT(removed);
PRINT_STAT(removed_cho);
PRINT_STAT(removed_cit);
PRINT_STAT(narrowed);
PRINT_STAT(loads);
PRINT_STAT(empty);
PRINT_STAT(compares_true);
PRINT_STAT(compares_false);
PRINT_STAT(transitions);
}
} } // namespace v8::internal