8e719ea472
R=mvstanton@chromium.org Review URL: https://chromiumcodereview.appspot.com/20298002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15881 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
6957 lines
201 KiB
C++
6957 lines
201 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_HYDROGEN_INSTRUCTIONS_H_
|
|
#define V8_HYDROGEN_INSTRUCTIONS_H_
|
|
|
|
#include "v8.h"
|
|
|
|
#include "allocation.h"
|
|
#include "code-stubs.h"
|
|
#include "data-flow.h"
|
|
#include "deoptimizer.h"
|
|
#include "small-pointer-list.h"
|
|
#include "string-stream.h"
|
|
#include "v8conversions.h"
|
|
#include "v8utils.h"
|
|
#include "zone.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Forward declarations.
|
|
class HBasicBlock;
|
|
class HEnvironment;
|
|
class HInferRepresentationPhase;
|
|
class HInstruction;
|
|
class HLoopInformation;
|
|
class HValue;
|
|
class LInstruction;
|
|
class LChunkBuilder;
|
|
|
|
|
|
#define HYDROGEN_ABSTRACT_INSTRUCTION_LIST(V) \
|
|
V(ArithmeticBinaryOperation) \
|
|
V(BinaryOperation) \
|
|
V(BitwiseBinaryOperation) \
|
|
V(ControlInstruction) \
|
|
V(Instruction) \
|
|
|
|
|
|
#define HYDROGEN_CONCRETE_INSTRUCTION_LIST(V) \
|
|
V(AbnormalExit) \
|
|
V(AccessArgumentsAt) \
|
|
V(Add) \
|
|
V(Allocate) \
|
|
V(ApplyArguments) \
|
|
V(ArgumentsElements) \
|
|
V(ArgumentsLength) \
|
|
V(ArgumentsObject) \
|
|
V(Bitwise) \
|
|
V(BitNot) \
|
|
V(BlockEntry) \
|
|
V(BoundsCheck) \
|
|
V(BoundsCheckBaseIndexInformation) \
|
|
V(Branch) \
|
|
V(CallConstantFunction) \
|
|
V(CallFunction) \
|
|
V(CallGlobal) \
|
|
V(CallKeyed) \
|
|
V(CallKnownGlobal) \
|
|
V(CallNamed) \
|
|
V(CallNew) \
|
|
V(CallNewArray) \
|
|
V(CallRuntime) \
|
|
V(CallStub) \
|
|
V(Change) \
|
|
V(CheckFunction) \
|
|
V(CheckHeapObject) \
|
|
V(CheckInstanceType) \
|
|
V(CheckMaps) \
|
|
V(CheckMapValue) \
|
|
V(CheckPrototypeMaps) \
|
|
V(CheckSmi) \
|
|
V(ClampToUint8) \
|
|
V(ClassOfTestAndBranch) \
|
|
V(CompareNumericAndBranch) \
|
|
V(CompareGeneric) \
|
|
V(CompareObjectEqAndBranch) \
|
|
V(CompareMap) \
|
|
V(Constant) \
|
|
V(Context) \
|
|
V(DateField) \
|
|
V(DebugBreak) \
|
|
V(DeclareGlobals) \
|
|
V(Deoptimize) \
|
|
V(Div) \
|
|
V(DummyUse) \
|
|
V(ElementsKind) \
|
|
V(EnterInlined) \
|
|
V(EnvironmentMarker) \
|
|
V(ForceRepresentation) \
|
|
V(ForInCacheArray) \
|
|
V(ForInPrepareMap) \
|
|
V(FunctionLiteral) \
|
|
V(GetCachedArrayIndex) \
|
|
V(GlobalObject) \
|
|
V(GlobalReceiver) \
|
|
V(Goto) \
|
|
V(HasCachedArrayIndexAndBranch) \
|
|
V(HasInstanceTypeAndBranch) \
|
|
V(InductionVariableAnnotation) \
|
|
V(InnerAllocatedObject) \
|
|
V(InstanceOf) \
|
|
V(InstanceOfKnownGlobal) \
|
|
V(InstanceSize) \
|
|
V(InvokeFunction) \
|
|
V(IsConstructCallAndBranch) \
|
|
V(IsObjectAndBranch) \
|
|
V(IsNumberAndBranch) \
|
|
V(IsStringAndBranch) \
|
|
V(IsSmiAndBranch) \
|
|
V(IsUndetectableAndBranch) \
|
|
V(LeaveInlined) \
|
|
V(LinkObjectInList) \
|
|
V(LoadContextSlot) \
|
|
V(LoadExternalArrayPointer) \
|
|
V(LoadFieldByIndex) \
|
|
V(LoadFunctionPrototype) \
|
|
V(LoadGlobalCell) \
|
|
V(LoadGlobalGeneric) \
|
|
V(LoadKeyed) \
|
|
V(LoadKeyedGeneric) \
|
|
V(LoadNamedField) \
|
|
V(LoadNamedFieldPolymorphic) \
|
|
V(LoadNamedGeneric) \
|
|
V(MapEnumLength) \
|
|
V(MathFloorOfDiv) \
|
|
V(MathMinMax) \
|
|
V(Mod) \
|
|
V(Mul) \
|
|
V(NumericConstraint) \
|
|
V(OsrEntry) \
|
|
V(OuterContext) \
|
|
V(Parameter) \
|
|
V(Power) \
|
|
V(PushArgument) \
|
|
V(Random) \
|
|
V(RegExpLiteral) \
|
|
V(Return) \
|
|
V(Ror) \
|
|
V(Sar) \
|
|
V(SeqStringSetChar) \
|
|
V(Shl) \
|
|
V(Shr) \
|
|
V(Simulate) \
|
|
V(StackCheck) \
|
|
V(StoreContextSlot) \
|
|
V(StoreGlobalCell) \
|
|
V(StoreGlobalGeneric) \
|
|
V(StoreKeyed) \
|
|
V(StoreKeyedGeneric) \
|
|
V(StoreNamedField) \
|
|
V(StoreNamedGeneric) \
|
|
V(StringAdd) \
|
|
V(StringCharCodeAt) \
|
|
V(StringCharFromCode) \
|
|
V(StringCompareAndBranch) \
|
|
V(StringLength) \
|
|
V(Sub) \
|
|
V(ThisFunction) \
|
|
V(Throw) \
|
|
V(ToFastProperties) \
|
|
V(TransitionElementsKind) \
|
|
V(TrapAllocationMemento) \
|
|
V(Typeof) \
|
|
V(TypeofIsAndBranch) \
|
|
V(UnaryMathOperation) \
|
|
V(UnknownOSRValue) \
|
|
V(UseConst) \
|
|
V(ValueOf) \
|
|
V(WrapReceiver)
|
|
|
|
#define GVN_TRACKED_FLAG_LIST(V) \
|
|
V(Maps) \
|
|
V(NewSpacePromotion)
|
|
|
|
#define GVN_UNTRACKED_FLAG_LIST(V) \
|
|
V(ArrayElements) \
|
|
V(ArrayLengths) \
|
|
V(BackingStoreFields) \
|
|
V(Calls) \
|
|
V(ContextSlots) \
|
|
V(DoubleArrayElements) \
|
|
V(DoubleFields) \
|
|
V(ElementsKind) \
|
|
V(ElementsPointer) \
|
|
V(GlobalVars) \
|
|
V(InobjectFields) \
|
|
V(OsrEntries) \
|
|
V(SpecializedArrayElements)
|
|
|
|
|
|
#define DECLARE_ABSTRACT_INSTRUCTION(type) \
|
|
virtual bool Is##type() const { return true; } \
|
|
static H##type* cast(HValue* value) { \
|
|
ASSERT(value->Is##type()); \
|
|
return reinterpret_cast<H##type*>(value); \
|
|
}
|
|
|
|
|
|
#define DECLARE_CONCRETE_INSTRUCTION(type) \
|
|
virtual LInstruction* CompileToLithium(LChunkBuilder* builder); \
|
|
static H##type* cast(HValue* value) { \
|
|
ASSERT(value->Is##type()); \
|
|
return reinterpret_cast<H##type*>(value); \
|
|
} \
|
|
virtual Opcode opcode() const { return HValue::k##type; }
|
|
|
|
|
|
class Range: public ZoneObject {
|
|
public:
|
|
Range()
|
|
: lower_(kMinInt),
|
|
upper_(kMaxInt),
|
|
next_(NULL),
|
|
can_be_minus_zero_(false) { }
|
|
|
|
Range(int32_t lower, int32_t upper)
|
|
: lower_(lower),
|
|
upper_(upper),
|
|
next_(NULL),
|
|
can_be_minus_zero_(false) { }
|
|
|
|
int32_t upper() const { return upper_; }
|
|
int32_t lower() const { return lower_; }
|
|
Range* next() const { return next_; }
|
|
Range* CopyClearLower(Zone* zone) const {
|
|
return new(zone) Range(kMinInt, upper_);
|
|
}
|
|
Range* CopyClearUpper(Zone* zone) const {
|
|
return new(zone) Range(lower_, kMaxInt);
|
|
}
|
|
Range* Copy(Zone* zone) const {
|
|
Range* result = new(zone) Range(lower_, upper_);
|
|
result->set_can_be_minus_zero(CanBeMinusZero());
|
|
return result;
|
|
}
|
|
int32_t Mask() const;
|
|
void set_can_be_minus_zero(bool b) { can_be_minus_zero_ = b; }
|
|
bool CanBeMinusZero() const { return CanBeZero() && can_be_minus_zero_; }
|
|
bool CanBeZero() const { return upper_ >= 0 && lower_ <= 0; }
|
|
bool CanBeNegative() const { return lower_ < 0; }
|
|
bool CanBePositive() const { return upper_ > 0; }
|
|
bool Includes(int value) const { return lower_ <= value && upper_ >= value; }
|
|
bool IsMostGeneric() const {
|
|
return lower_ == kMinInt && upper_ == kMaxInt && CanBeMinusZero();
|
|
}
|
|
bool IsInSmiRange() const {
|
|
return lower_ >= Smi::kMinValue && upper_ <= Smi::kMaxValue;
|
|
}
|
|
void ClampToSmi() {
|
|
lower_ = Max(lower_, Smi::kMinValue);
|
|
upper_ = Min(upper_, Smi::kMaxValue);
|
|
}
|
|
void KeepOrder();
|
|
#ifdef DEBUG
|
|
void Verify() const;
|
|
#endif
|
|
|
|
void StackUpon(Range* other) {
|
|
Intersect(other);
|
|
next_ = other;
|
|
}
|
|
|
|
void Intersect(Range* other);
|
|
void Union(Range* other);
|
|
void CombinedMax(Range* other);
|
|
void CombinedMin(Range* other);
|
|
|
|
void AddConstant(int32_t value);
|
|
void Sar(int32_t value);
|
|
void Shl(int32_t value);
|
|
bool AddAndCheckOverflow(const Representation& r, Range* other);
|
|
bool SubAndCheckOverflow(const Representation& r, Range* other);
|
|
bool MulAndCheckOverflow(const Representation& r, Range* other);
|
|
|
|
private:
|
|
int32_t lower_;
|
|
int32_t upper_;
|
|
Range* next_;
|
|
bool can_be_minus_zero_;
|
|
};
|
|
|
|
|
|
class UniqueValueId {
|
|
public:
|
|
UniqueValueId() : raw_address_(NULL) { }
|
|
|
|
explicit UniqueValueId(Object* object) {
|
|
raw_address_ = reinterpret_cast<Address>(object);
|
|
ASSERT(IsInitialized());
|
|
}
|
|
|
|
explicit UniqueValueId(Handle<Object> handle) {
|
|
static const Address kEmptyHandleSentinel = reinterpret_cast<Address>(1);
|
|
if (handle.is_null()) {
|
|
raw_address_ = kEmptyHandleSentinel;
|
|
} else {
|
|
raw_address_ = reinterpret_cast<Address>(*handle);
|
|
ASSERT_NE(kEmptyHandleSentinel, raw_address_);
|
|
}
|
|
ASSERT(IsInitialized());
|
|
}
|
|
|
|
bool IsInitialized() const { return raw_address_ != NULL; }
|
|
|
|
bool operator==(const UniqueValueId& other) const {
|
|
ASSERT(IsInitialized() && other.IsInitialized());
|
|
return raw_address_ == other.raw_address_;
|
|
}
|
|
|
|
bool operator!=(const UniqueValueId& other) const {
|
|
ASSERT(IsInitialized() && other.IsInitialized());
|
|
return raw_address_ != other.raw_address_;
|
|
}
|
|
|
|
intptr_t Hashcode() const {
|
|
ASSERT(IsInitialized());
|
|
return reinterpret_cast<intptr_t>(raw_address_);
|
|
}
|
|
|
|
private:
|
|
Address raw_address_;
|
|
};
|
|
|
|
|
|
class HType {
|
|
public:
|
|
HType() : type_(kUninitialized) { }
|
|
|
|
static HType Tagged() { return HType(kTagged); }
|
|
static HType TaggedPrimitive() { return HType(kTaggedPrimitive); }
|
|
static HType TaggedNumber() { return HType(kTaggedNumber); }
|
|
static HType Smi() { return HType(kSmi); }
|
|
static HType HeapNumber() { return HType(kHeapNumber); }
|
|
static HType String() { return HType(kString); }
|
|
static HType Boolean() { return HType(kBoolean); }
|
|
static HType NonPrimitive() { return HType(kNonPrimitive); }
|
|
static HType JSArray() { return HType(kJSArray); }
|
|
static HType JSObject() { return HType(kJSObject); }
|
|
static HType Uninitialized() { return HType(kUninitialized); }
|
|
|
|
// Return the weakest (least precise) common type.
|
|
HType Combine(HType other) {
|
|
return HType(static_cast<Type>(type_ & other.type_));
|
|
}
|
|
|
|
bool Equals(const HType& other) const {
|
|
return type_ == other.type_;
|
|
}
|
|
|
|
bool IsSubtypeOf(const HType& other) {
|
|
return Combine(other).Equals(other);
|
|
}
|
|
|
|
bool IsTagged() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kTagged) == kTagged);
|
|
}
|
|
|
|
bool IsTaggedPrimitive() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kTaggedPrimitive) == kTaggedPrimitive);
|
|
}
|
|
|
|
bool IsTaggedNumber() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kTaggedNumber) == kTaggedNumber);
|
|
}
|
|
|
|
bool IsSmi() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kSmi) == kSmi);
|
|
}
|
|
|
|
bool IsHeapNumber() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kHeapNumber) == kHeapNumber);
|
|
}
|
|
|
|
bool IsString() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kString) == kString);
|
|
}
|
|
|
|
bool IsNonString() const {
|
|
return IsTaggedPrimitive() || IsSmi() || IsHeapNumber() ||
|
|
IsBoolean() || IsJSArray();
|
|
}
|
|
|
|
bool IsBoolean() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kBoolean) == kBoolean);
|
|
}
|
|
|
|
bool IsNonPrimitive() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kNonPrimitive) == kNonPrimitive);
|
|
}
|
|
|
|
bool IsJSArray() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kJSArray) == kJSArray);
|
|
}
|
|
|
|
bool IsJSObject() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return ((type_ & kJSObject) == kJSObject);
|
|
}
|
|
|
|
bool IsUninitialized() const {
|
|
return type_ == kUninitialized;
|
|
}
|
|
|
|
bool IsHeapObject() const {
|
|
ASSERT(type_ != kUninitialized);
|
|
return IsHeapNumber() || IsString() || IsBoolean() || IsNonPrimitive();
|
|
}
|
|
|
|
static HType TypeFromValue(Handle<Object> value);
|
|
|
|
const char* ToString();
|
|
|
|
private:
|
|
enum Type {
|
|
kTagged = 0x1, // 0000 0000 0000 0001
|
|
kTaggedPrimitive = 0x5, // 0000 0000 0000 0101
|
|
kTaggedNumber = 0xd, // 0000 0000 0000 1101
|
|
kSmi = 0x1d, // 0000 0000 0001 1101
|
|
kHeapNumber = 0x2d, // 0000 0000 0010 1101
|
|
kString = 0x45, // 0000 0000 0100 0101
|
|
kBoolean = 0x85, // 0000 0000 1000 0101
|
|
kNonPrimitive = 0x101, // 0000 0001 0000 0001
|
|
kJSObject = 0x301, // 0000 0011 0000 0001
|
|
kJSArray = 0x701, // 0000 0111 0000 0001
|
|
kUninitialized = 0x1fff // 0001 1111 1111 1111
|
|
};
|
|
|
|
// Make sure type fits in int16.
|
|
STATIC_ASSERT(kUninitialized < (1 << (2 * kBitsPerByte)));
|
|
|
|
explicit HType(Type t) : type_(t) { }
|
|
|
|
int16_t type_;
|
|
};
|
|
|
|
|
|
class HUseListNode: public ZoneObject {
|
|
public:
|
|
HUseListNode(HValue* value, int index, HUseListNode* tail)
|
|
: tail_(tail), value_(value), index_(index) {
|
|
}
|
|
|
|
HUseListNode* tail();
|
|
HValue* value() const { return value_; }
|
|
int index() const { return index_; }
|
|
|
|
void set_tail(HUseListNode* list) { tail_ = list; }
|
|
|
|
#ifdef DEBUG
|
|
void Zap() {
|
|
tail_ = reinterpret_cast<HUseListNode*>(1);
|
|
value_ = NULL;
|
|
index_ = -1;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
HUseListNode* tail_;
|
|
HValue* value_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
// We reuse use list nodes behind the scenes as uses are added and deleted.
|
|
// This class is the safe way to iterate uses while deleting them.
|
|
class HUseIterator BASE_EMBEDDED {
|
|
public:
|
|
bool Done() { return current_ == NULL; }
|
|
void Advance();
|
|
|
|
HValue* value() {
|
|
ASSERT(!Done());
|
|
return value_;
|
|
}
|
|
|
|
int index() {
|
|
ASSERT(!Done());
|
|
return index_;
|
|
}
|
|
|
|
private:
|
|
explicit HUseIterator(HUseListNode* head);
|
|
|
|
HUseListNode* current_;
|
|
HUseListNode* next_;
|
|
HValue* value_;
|
|
int index_;
|
|
|
|
friend class HValue;
|
|
};
|
|
|
|
|
|
// There must be one corresponding kDepends flag for every kChanges flag and
|
|
// the order of the kChanges flags must be exactly the same as of the kDepends
|
|
// flags. All tracked flags should appear before untracked ones.
|
|
enum GVNFlag {
|
|
// Declare global value numbering flags.
|
|
#define DECLARE_FLAG(type) kChanges##type, kDependsOn##type,
|
|
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
|
|
#undef DECLARE_FLAG
|
|
kAfterLastFlag,
|
|
kLastFlag = kAfterLastFlag - 1,
|
|
#define COUNT_FLAG(type) + 1
|
|
kNumberOfTrackedSideEffects = 0 GVN_TRACKED_FLAG_LIST(COUNT_FLAG)
|
|
#undef COUNT_FLAG
|
|
};
|
|
|
|
|
|
class NumericRelation {
|
|
public:
|
|
enum Kind { NONE, EQ, GT, GE, LT, LE, NE };
|
|
static const char* MnemonicFromKind(Kind kind) {
|
|
switch (kind) {
|
|
case NONE: return "NONE";
|
|
case EQ: return "EQ";
|
|
case GT: return "GT";
|
|
case GE: return "GE";
|
|
case LT: return "LT";
|
|
case LE: return "LE";
|
|
case NE: return "NE";
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
const char* Mnemonic() const { return MnemonicFromKind(kind_); }
|
|
|
|
static NumericRelation None() { return NumericRelation(NONE); }
|
|
static NumericRelation Eq() { return NumericRelation(EQ); }
|
|
static NumericRelation Gt() { return NumericRelation(GT); }
|
|
static NumericRelation Ge() { return NumericRelation(GE); }
|
|
static NumericRelation Lt() { return NumericRelation(LT); }
|
|
static NumericRelation Le() { return NumericRelation(LE); }
|
|
static NumericRelation Ne() { return NumericRelation(NE); }
|
|
|
|
bool IsNone() { return kind_ == NONE; }
|
|
|
|
static NumericRelation FromToken(Token::Value token) {
|
|
switch (token) {
|
|
case Token::EQ: return Eq();
|
|
case Token::EQ_STRICT: return Eq();
|
|
case Token::LT: return Lt();
|
|
case Token::GT: return Gt();
|
|
case Token::LTE: return Le();
|
|
case Token::GTE: return Ge();
|
|
case Token::NE: return Ne();
|
|
case Token::NE_STRICT: return Ne();
|
|
default: return None();
|
|
}
|
|
}
|
|
|
|
// The semantics of "Reversed" is that if "x rel y" is true then also
|
|
// "y rel.Reversed() x" is true, and that rel.Reversed().Reversed() == rel.
|
|
NumericRelation Reversed() {
|
|
switch (kind_) {
|
|
case NONE: return None();
|
|
case EQ: return Eq();
|
|
case GT: return Lt();
|
|
case GE: return Le();
|
|
case LT: return Gt();
|
|
case LE: return Ge();
|
|
case NE: return Ne();
|
|
}
|
|
UNREACHABLE();
|
|
return None();
|
|
}
|
|
|
|
// The semantics of "Negated" is that if "x rel y" is true then also
|
|
// "!(x rel.Negated() y)" is true.
|
|
NumericRelation Negated() {
|
|
switch (kind_) {
|
|
case NONE: return None();
|
|
case EQ: return Ne();
|
|
case GT: return Le();
|
|
case GE: return Lt();
|
|
case LT: return Ge();
|
|
case LE: return Gt();
|
|
case NE: return Eq();
|
|
}
|
|
UNREACHABLE();
|
|
return None();
|
|
}
|
|
|
|
// The semantics of "Implies" is that if "x rel y" is true
|
|
// then also "x other_relation y" is true.
|
|
bool Implies(NumericRelation other_relation) {
|
|
switch (kind_) {
|
|
case NONE: return false;
|
|
case EQ: return (other_relation.kind_ == EQ)
|
|
|| (other_relation.kind_ == GE)
|
|
|| (other_relation.kind_ == LE);
|
|
case GT: return (other_relation.kind_ == GT)
|
|
|| (other_relation.kind_ == GE)
|
|
|| (other_relation.kind_ == NE);
|
|
case LT: return (other_relation.kind_ == LT)
|
|
|| (other_relation.kind_ == LE)
|
|
|| (other_relation.kind_ == NE);
|
|
case GE: return (other_relation.kind_ == GE);
|
|
case LE: return (other_relation.kind_ == LE);
|
|
case NE: return (other_relation.kind_ == NE);
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
// The semantics of "IsExtendable" is that if
|
|
// "rel.IsExtendable(direction)" is true then
|
|
// "x rel y" implies "(x + direction) rel y" .
|
|
bool IsExtendable(int direction) {
|
|
switch (kind_) {
|
|
case NONE: return false;
|
|
case EQ: return false;
|
|
case GT: return (direction >= 0);
|
|
case GE: return (direction >= 0);
|
|
case LT: return (direction <= 0);
|
|
case LE: return (direction <= 0);
|
|
case NE: return false;
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
// CompoundImplies returns true when
|
|
// "((x + my_offset) >> my_scale) rel y" implies
|
|
// "((x + other_offset) >> other_scale) other_relation y".
|
|
bool CompoundImplies(NumericRelation other_relation,
|
|
int my_offset,
|
|
int my_scale,
|
|
int other_offset = 0,
|
|
int other_scale = 0) {
|
|
return Implies(other_relation) && ComponentsImply(
|
|
my_offset, my_scale, other_offset, other_scale);
|
|
}
|
|
|
|
private:
|
|
// ComponentsImply returns true when
|
|
// "((x + my_offset) >> my_scale) rel y" implies
|
|
// "((x + other_offset) >> other_scale) rel y".
|
|
bool ComponentsImply(int my_offset,
|
|
int my_scale,
|
|
int other_offset,
|
|
int other_scale) {
|
|
switch (kind_) {
|
|
case NONE: break; // Fall through to UNREACHABLE().
|
|
case EQ:
|
|
case NE: return my_offset == other_offset && my_scale == other_scale;
|
|
case GT:
|
|
case GE: return my_offset <= other_offset && my_scale >= other_scale;
|
|
case LT:
|
|
case LE: return my_offset >= other_offset && my_scale <= other_scale;
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
explicit NumericRelation(Kind kind) : kind_(kind) {}
|
|
|
|
Kind kind_;
|
|
};
|
|
|
|
|
|
class DecompositionResult BASE_EMBEDDED {
|
|
public:
|
|
DecompositionResult() : base_(NULL), offset_(0), scale_(0) {}
|
|
|
|
HValue* base() { return base_; }
|
|
int offset() { return offset_; }
|
|
int scale() { return scale_; }
|
|
|
|
bool Apply(HValue* other_base, int other_offset, int other_scale = 0) {
|
|
if (base_ == NULL) {
|
|
base_ = other_base;
|
|
offset_ = other_offset;
|
|
scale_ = other_scale;
|
|
return true;
|
|
} else {
|
|
if (scale_ == 0) {
|
|
base_ = other_base;
|
|
offset_ += other_offset;
|
|
scale_ = other_scale;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SwapValues(HValue** other_base, int* other_offset, int* other_scale) {
|
|
swap(&base_, other_base);
|
|
swap(&offset_, other_offset);
|
|
swap(&scale_, other_scale);
|
|
}
|
|
|
|
private:
|
|
template <class T> void swap(T* a, T* b) {
|
|
T c(*a);
|
|
*a = *b;
|
|
*b = c;
|
|
}
|
|
|
|
HValue* base_;
|
|
int offset_;
|
|
int scale_;
|
|
};
|
|
|
|
|
|
class RangeEvaluationContext BASE_EMBEDDED {
|
|
public:
|
|
RangeEvaluationContext(HValue* value, HValue* upper);
|
|
|
|
HValue* lower_bound() { return lower_bound_; }
|
|
HValue* lower_bound_guarantee() { return lower_bound_guarantee_; }
|
|
HValue* candidate() { return candidate_; }
|
|
HValue* upper_bound() { return upper_bound_; }
|
|
HValue* upper_bound_guarantee() { return upper_bound_guarantee_; }
|
|
int offset() { return offset_; }
|
|
int scale() { return scale_; }
|
|
|
|
bool is_range_satisfied() {
|
|
return lower_bound_guarantee() != NULL && upper_bound_guarantee() != NULL;
|
|
}
|
|
|
|
void set_lower_bound_guarantee(HValue* guarantee) {
|
|
lower_bound_guarantee_ = ConvertGuarantee(guarantee);
|
|
}
|
|
void set_upper_bound_guarantee(HValue* guarantee) {
|
|
upper_bound_guarantee_ = ConvertGuarantee(guarantee);
|
|
}
|
|
|
|
void swap_candidate(DecompositionResult* other_candicate) {
|
|
other_candicate->SwapValues(&candidate_, &offset_, &scale_);
|
|
}
|
|
|
|
private:
|
|
HValue* ConvertGuarantee(HValue* guarantee);
|
|
|
|
HValue* lower_bound_;
|
|
HValue* lower_bound_guarantee_;
|
|
HValue* candidate_;
|
|
HValue* upper_bound_;
|
|
HValue* upper_bound_guarantee_;
|
|
int offset_;
|
|
int scale_;
|
|
};
|
|
|
|
|
|
typedef EnumSet<GVNFlag> GVNFlagSet;
|
|
|
|
|
|
class HValue: public ZoneObject {
|
|
public:
|
|
static const int kNoNumber = -1;
|
|
|
|
enum Flag {
|
|
kFlexibleRepresentation,
|
|
kCannotBeTagged,
|
|
// Participate in Global Value Numbering, i.e. elimination of
|
|
// unnecessary recomputations. If an instruction sets this flag, it must
|
|
// implement DataEquals(), which will be used to determine if other
|
|
// occurrences of the instruction are indeed the same.
|
|
kUseGVN,
|
|
// Track instructions that are dominating side effects. If an instruction
|
|
// sets this flag, it must implement HandleSideEffectDominator() and should
|
|
// indicate which side effects to track by setting GVN flags.
|
|
kTrackSideEffectDominators,
|
|
kCanOverflow,
|
|
kBailoutOnMinusZero,
|
|
kCanBeDivByZero,
|
|
kAllowUndefinedAsNaN,
|
|
kIsArguments,
|
|
kTruncatingToInt32,
|
|
kAllUsesTruncatingToInt32,
|
|
kTruncatingToSmi,
|
|
kAllUsesTruncatingToSmi,
|
|
// Set after an instruction is killed.
|
|
kIsDead,
|
|
// Instructions that are allowed to produce full range unsigned integer
|
|
// values are marked with kUint32 flag. If arithmetic shift or a load from
|
|
// EXTERNAL_UNSIGNED_INT_ELEMENTS array is not marked with this flag
|
|
// it will deoptimize if result does not fit into signed integer range.
|
|
// HGraph::ComputeSafeUint32Operations is responsible for setting this
|
|
// flag.
|
|
kUint32,
|
|
// If a phi is involved in the evaluation of a numeric constraint the
|
|
// recursion can cause an endless cycle: we use this flag to exit the loop.
|
|
kNumericConstraintEvaluationInProgress,
|
|
// This flag is set to true after the SetupInformativeDefinitions() pass
|
|
// has processed this instruction.
|
|
kIDefsProcessingDone,
|
|
kHasNoObservableSideEffects,
|
|
// Indicates the instruction is live during dead code elimination.
|
|
kIsLive,
|
|
|
|
// HEnvironmentMarkers are deleted before dead code
|
|
// elimination takes place, so they can repurpose the kIsLive flag:
|
|
kEndsLiveRange = kIsLive,
|
|
|
|
// TODO(everyone): Don't forget to update this!
|
|
kLastFlag = kIsLive
|
|
};
|
|
|
|
STATIC_ASSERT(kLastFlag < kBitsPerInt);
|
|
|
|
static const int kChangesToDependsFlagsLeftShift = 1;
|
|
|
|
static GVNFlag ChangesFlagFromInt(int x) {
|
|
return static_cast<GVNFlag>(x * 2);
|
|
}
|
|
static GVNFlag DependsOnFlagFromInt(int x) {
|
|
return static_cast<GVNFlag>(x * 2 + 1);
|
|
}
|
|
static GVNFlagSet ConvertChangesToDependsFlags(GVNFlagSet flags) {
|
|
return GVNFlagSet(flags.ToIntegral() << kChangesToDependsFlagsLeftShift);
|
|
}
|
|
|
|
static HValue* cast(HValue* value) { return value; }
|
|
|
|
enum Opcode {
|
|
// Declare a unique enum value for each hydrogen instruction.
|
|
#define DECLARE_OPCODE(type) k##type,
|
|
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
|
|
kPhi
|
|
#undef DECLARE_OPCODE
|
|
};
|
|
virtual Opcode opcode() const = 0;
|
|
|
|
// Declare a non-virtual predicates for each concrete HInstruction or HValue.
|
|
#define DECLARE_PREDICATE(type) \
|
|
bool Is##type() const { return opcode() == k##type; }
|
|
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
|
|
#undef DECLARE_PREDICATE
|
|
bool IsPhi() const { return opcode() == kPhi; }
|
|
|
|
// Declare virtual predicates for abstract HInstruction or HValue
|
|
#define DECLARE_PREDICATE(type) \
|
|
virtual bool Is##type() const { return false; }
|
|
HYDROGEN_ABSTRACT_INSTRUCTION_LIST(DECLARE_PREDICATE)
|
|
#undef DECLARE_PREDICATE
|
|
|
|
HValue() : block_(NULL),
|
|
id_(kNoNumber),
|
|
type_(HType::Tagged()),
|
|
use_list_(NULL),
|
|
range_(NULL),
|
|
flags_(0) {}
|
|
virtual ~HValue() {}
|
|
|
|
HBasicBlock* block() const { return block_; }
|
|
void SetBlock(HBasicBlock* block);
|
|
int LoopWeight() const;
|
|
|
|
// Note: Never call this method for an unlinked value.
|
|
Isolate* isolate() const;
|
|
|
|
int id() const { return id_; }
|
|
void set_id(int id) { id_ = id; }
|
|
|
|
HUseIterator uses() const { return HUseIterator(use_list_); }
|
|
|
|
virtual bool EmitAtUses() { return false; }
|
|
|
|
Representation representation() const { return representation_; }
|
|
void ChangeRepresentation(Representation r) {
|
|
ASSERT(CheckFlag(kFlexibleRepresentation));
|
|
ASSERT(!CheckFlag(kCannotBeTagged) || !r.IsTagged());
|
|
RepresentationChanged(r);
|
|
representation_ = r;
|
|
if (r.IsTagged()) {
|
|
// Tagged is the bottom of the lattice, don't go any further.
|
|
ClearFlag(kFlexibleRepresentation);
|
|
}
|
|
}
|
|
virtual void AssumeRepresentation(Representation r);
|
|
|
|
virtual Representation KnownOptimalRepresentation() {
|
|
Representation r = representation();
|
|
if (r.IsTagged()) {
|
|
HType t = type();
|
|
if (t.IsSmi()) return Representation::Smi();
|
|
if (t.IsHeapNumber()) return Representation::Double();
|
|
if (t.IsHeapObject()) return r;
|
|
return Representation::None();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
HType type() const { return type_; }
|
|
void set_type(HType new_type) {
|
|
ASSERT(new_type.IsSubtypeOf(type_));
|
|
type_ = new_type;
|
|
}
|
|
|
|
bool IsHeapObject() {
|
|
return representation_.IsHeapObject() || type_.IsHeapObject();
|
|
}
|
|
|
|
// An operation needs to override this function iff:
|
|
// 1) it can produce an int32 output.
|
|
// 2) the true value of its output can potentially be minus zero.
|
|
// The implementation must set a flag so that it bails out in the case where
|
|
// it would otherwise output what should be a minus zero as an int32 zero.
|
|
// If the operation also exists in a form that takes int32 and outputs int32
|
|
// then the operation should return its input value so that we can propagate
|
|
// back. There are three operations that need to propagate back to more than
|
|
// one input. They are phi and binary div and mul. They always return NULL
|
|
// and expect the caller to take care of things.
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited) {
|
|
visited->Add(id());
|
|
return NULL;
|
|
}
|
|
|
|
// There are HInstructions that do not really change a value, they
|
|
// only add pieces of information to it (like bounds checks, map checks,
|
|
// smi checks...).
|
|
// We call these instructions "informative definitions", or "iDef".
|
|
// One of the iDef operands is special because it is the value that is
|
|
// "transferred" to the output, we call it the "redefined operand".
|
|
// If an HValue is an iDef it must override RedefinedOperandIndex() so that
|
|
// it does not return kNoRedefinedOperand;
|
|
static const int kNoRedefinedOperand = -1;
|
|
virtual int RedefinedOperandIndex() { return kNoRedefinedOperand; }
|
|
bool IsInformativeDefinition() {
|
|
return RedefinedOperandIndex() != kNoRedefinedOperand;
|
|
}
|
|
HValue* RedefinedOperand() {
|
|
return IsInformativeDefinition() ? OperandAt(RedefinedOperandIndex())
|
|
: NULL;
|
|
}
|
|
|
|
// A purely informative definition is an idef that will not emit code and
|
|
// should therefore be removed from the graph in the RestoreActualValues
|
|
// phase (so that live ranges will be shorter).
|
|
virtual bool IsPurelyInformativeDefinition() { return false; }
|
|
|
|
// This method must always return the original HValue SSA definition
|
|
// (regardless of any iDef of this value).
|
|
HValue* ActualValue() {
|
|
return IsInformativeDefinition() ? RedefinedOperand()->ActualValue()
|
|
: this;
|
|
}
|
|
|
|
virtual void AddInformativeDefinitions() {}
|
|
|
|
void UpdateRedefinedUsesWhileSettingUpInformativeDefinitions() {
|
|
UpdateRedefinedUsesInner<TestDominanceUsingProcessedFlag>();
|
|
}
|
|
void UpdateRedefinedUses() {
|
|
UpdateRedefinedUsesInner<Dominates>();
|
|
}
|
|
|
|
bool IsInteger32Constant();
|
|
int32_t GetInteger32Constant();
|
|
bool EqualsInteger32Constant(int32_t value);
|
|
|
|
bool IsDefinedAfter(HBasicBlock* other) const;
|
|
|
|
// Operands.
|
|
virtual int OperandCount() = 0;
|
|
virtual HValue* OperandAt(int index) const = 0;
|
|
void SetOperandAt(int index, HValue* value);
|
|
|
|
void DeleteAndReplaceWith(HValue* other);
|
|
void ReplaceAllUsesWith(HValue* other);
|
|
bool HasNoUses() const { return use_list_ == NULL; }
|
|
bool HasMultipleUses() const {
|
|
return use_list_ != NULL && use_list_->tail() != NULL;
|
|
}
|
|
int UseCount() const;
|
|
|
|
// Mark this HValue as dead and to be removed from other HValues' use lists.
|
|
void Kill();
|
|
|
|
int flags() const { return flags_; }
|
|
void SetFlag(Flag f) { flags_ |= (1 << f); }
|
|
void ClearFlag(Flag f) { flags_ &= ~(1 << f); }
|
|
bool CheckFlag(Flag f) const { return (flags_ & (1 << f)) != 0; }
|
|
|
|
// Returns true if the flag specified is set for all uses, false otherwise.
|
|
bool CheckUsesForFlag(Flag f);
|
|
// Returns true if the flag specified is set for all uses, and this set
|
|
// of uses is non-empty.
|
|
bool HasAtLeastOneUseWithFlagAndNoneWithout(Flag f);
|
|
|
|
GVNFlagSet gvn_flags() const { return gvn_flags_; }
|
|
void SetGVNFlag(GVNFlag f) { gvn_flags_.Add(f); }
|
|
void ClearGVNFlag(GVNFlag f) { gvn_flags_.Remove(f); }
|
|
bool CheckGVNFlag(GVNFlag f) const { return gvn_flags_.Contains(f); }
|
|
void SetAllSideEffects() { gvn_flags_.Add(AllSideEffectsFlagSet()); }
|
|
void ClearAllSideEffects() {
|
|
gvn_flags_.Remove(AllSideEffectsFlagSet());
|
|
}
|
|
bool HasSideEffects() const {
|
|
return gvn_flags_.ContainsAnyOf(AllSideEffectsFlagSet());
|
|
}
|
|
bool HasObservableSideEffects() const {
|
|
return !CheckFlag(kHasNoObservableSideEffects) &&
|
|
gvn_flags_.ContainsAnyOf(AllObservableSideEffectsFlagSet());
|
|
}
|
|
|
|
GVNFlagSet DependsOnFlags() const {
|
|
GVNFlagSet result = gvn_flags_;
|
|
result.Intersect(AllDependsOnFlagSet());
|
|
return result;
|
|
}
|
|
|
|
GVNFlagSet SideEffectFlags() const {
|
|
GVNFlagSet result = gvn_flags_;
|
|
result.Intersect(AllSideEffectsFlagSet());
|
|
return result;
|
|
}
|
|
|
|
GVNFlagSet ChangesFlags() const {
|
|
GVNFlagSet result = gvn_flags_;
|
|
result.Intersect(AllChangesFlagSet());
|
|
return result;
|
|
}
|
|
|
|
GVNFlagSet ObservableChangesFlags() const {
|
|
GVNFlagSet result = gvn_flags_;
|
|
result.Intersect(AllChangesFlagSet());
|
|
result.Intersect(AllObservableSideEffectsFlagSet());
|
|
return result;
|
|
}
|
|
|
|
Range* range() const { return range_; }
|
|
// TODO(svenpanne) We should really use the null object pattern here.
|
|
bool HasRange() const { return range_ != NULL; }
|
|
bool CanBeNegative() const { return !HasRange() || range()->CanBeNegative(); }
|
|
bool CanBeZero() const { return !HasRange() || range()->CanBeZero(); }
|
|
bool RangeCanInclude(int value) const {
|
|
return !HasRange() || range()->Includes(value);
|
|
}
|
|
void AddNewRange(Range* r, Zone* zone);
|
|
void RemoveLastAddedRange();
|
|
void ComputeInitialRange(Zone* zone);
|
|
|
|
// Escape analysis helpers.
|
|
virtual bool HasEscapingOperandAt(int index) { return true; }
|
|
|
|
// Representation helpers.
|
|
virtual Representation observed_input_representation(int index) {
|
|
return Representation::None();
|
|
}
|
|
virtual Representation RequiredInputRepresentation(int index) = 0;
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
|
|
// This gives the instruction an opportunity to replace itself with an
|
|
// instruction that does the same in some better way. To replace an
|
|
// instruction with a new one, first add the new instruction to the graph,
|
|
// then return it. Return NULL to have the instruction deleted.
|
|
virtual HValue* Canonicalize() { return this; }
|
|
|
|
bool Equals(HValue* other);
|
|
virtual intptr_t Hashcode();
|
|
|
|
// Compute unique ids upfront that is safe wrt GC and parallel recompilation.
|
|
virtual void FinalizeUniqueValueId() { }
|
|
|
|
// Printing support.
|
|
virtual void PrintTo(StringStream* stream) = 0;
|
|
void PrintNameTo(StringStream* stream);
|
|
void PrintTypeTo(StringStream* stream);
|
|
void PrintRangeTo(StringStream* stream);
|
|
void PrintChangesTo(StringStream* stream);
|
|
|
|
const char* Mnemonic() const;
|
|
|
|
// Type information helpers.
|
|
bool HasMonomorphicJSObjectType();
|
|
|
|
// TODO(mstarzinger): For now instructions can override this function to
|
|
// specify statically known types, once HType can convey more information
|
|
// it should be based on the HType.
|
|
virtual Handle<Map> GetMonomorphicJSObjectMap() { return Handle<Map>(); }
|
|
|
|
// Updated the inferred type of this instruction and returns true if
|
|
// it has changed.
|
|
bool UpdateInferredType();
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
// This function must be overridden for instructions which have the
|
|
// kTrackSideEffectDominators flag set, to track instructions that are
|
|
// dominating side effects.
|
|
virtual void HandleSideEffectDominator(GVNFlag side_effect,
|
|
HValue* dominator) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Check if this instruction has some reason that prevents elimination.
|
|
bool CannotBeEliminated() const {
|
|
return HasObservableSideEffects() || !IsDeletable();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify() = 0;
|
|
#endif
|
|
|
|
bool IsRelationTrue(NumericRelation relation,
|
|
HValue* other,
|
|
int offset = 0,
|
|
int scale = 0);
|
|
|
|
bool TryGuaranteeRange(HValue* upper_bound);
|
|
virtual bool TryDecompose(DecompositionResult* decomposition) {
|
|
if (RedefinedOperand() != NULL) {
|
|
return RedefinedOperand()->TryDecompose(decomposition);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
void TryGuaranteeRangeRecursive(RangeEvaluationContext* context);
|
|
|
|
enum RangeGuaranteeDirection {
|
|
DIRECTION_NONE = 0,
|
|
DIRECTION_UPPER = 1,
|
|
DIRECTION_LOWER = 2,
|
|
DIRECTION_BOTH = DIRECTION_UPPER | DIRECTION_LOWER
|
|
};
|
|
virtual void SetResponsibilityForRange(RangeGuaranteeDirection direction) {}
|
|
virtual void TryGuaranteeRangeChanging(RangeEvaluationContext* context) {}
|
|
|
|
// This function must be overridden for instructions with flag kUseGVN, to
|
|
// compare the non-Operand parts of the instruction.
|
|
virtual bool DataEquals(HValue* other) {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
virtual Representation RepresentationFromInputs() {
|
|
return representation();
|
|
}
|
|
Representation RepresentationFromUses();
|
|
Representation RepresentationFromUseRequirements();
|
|
bool HasNonSmiUse();
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason);
|
|
void AddDependantsToWorklist(HInferRepresentationPhase* h_infer);
|
|
|
|
virtual void RepresentationChanged(Representation to) { }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
virtual void DeleteFromGraph() = 0;
|
|
virtual void InternalSetOperandAt(int index, HValue* value) = 0;
|
|
void clear_block() {
|
|
ASSERT(block_ != NULL);
|
|
block_ = NULL;
|
|
}
|
|
|
|
void set_representation(Representation r) {
|
|
ASSERT(representation_.IsNone() && !r.IsNone());
|
|
representation_ = r;
|
|
}
|
|
|
|
// Signature of a function testing if a HValue properly dominates another.
|
|
typedef bool (*DominanceTest)(HValue*, HValue*);
|
|
|
|
// Simple implementation of DominanceTest implemented walking the chain
|
|
// of Hinstructions (used in UpdateRedefinedUsesInner).
|
|
static bool Dominates(HValue* dominator, HValue* dominated);
|
|
|
|
// A fast implementation of DominanceTest that works only for the
|
|
// "current" instruction in the SetupInformativeDefinitions() phase.
|
|
// During that phase we use a flag to mark processed instructions, and by
|
|
// checking the flag we can quickly test if an instruction comes before or
|
|
// after the "current" one.
|
|
static bool TestDominanceUsingProcessedFlag(HValue* dominator,
|
|
HValue* dominated);
|
|
|
|
// If we are redefining an operand, update all its dominated uses (the
|
|
// function that checks if a use is dominated is the template argument).
|
|
template<DominanceTest TestDominance>
|
|
void UpdateRedefinedUsesInner() {
|
|
HValue* input = RedefinedOperand();
|
|
if (input != NULL) {
|
|
for (HUseIterator uses = input->uses(); !uses.Done(); uses.Advance()) {
|
|
HValue* use = uses.value();
|
|
if (TestDominance(this, use)) {
|
|
use->SetOperandAt(uses.index(), this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Informative definitions can override this method to state any numeric
|
|
// relation they provide on the redefined value.
|
|
// Returns true if it is guaranteed that:
|
|
// ((this + offset) >> scale) relation other
|
|
virtual bool IsRelationTrueInternal(NumericRelation relation,
|
|
HValue* other,
|
|
int offset = 0,
|
|
int scale = 0) {
|
|
return false;
|
|
}
|
|
|
|
static GVNFlagSet AllDependsOnFlagSet() {
|
|
GVNFlagSet result;
|
|
// Create changes mask.
|
|
#define ADD_FLAG(type) result.Add(kDependsOn##type);
|
|
GVN_TRACKED_FLAG_LIST(ADD_FLAG)
|
|
GVN_UNTRACKED_FLAG_LIST(ADD_FLAG)
|
|
#undef ADD_FLAG
|
|
return result;
|
|
}
|
|
|
|
static GVNFlagSet AllChangesFlagSet() {
|
|
GVNFlagSet result;
|
|
// Create changes mask.
|
|
#define ADD_FLAG(type) result.Add(kChanges##type);
|
|
GVN_TRACKED_FLAG_LIST(ADD_FLAG)
|
|
GVN_UNTRACKED_FLAG_LIST(ADD_FLAG)
|
|
#undef ADD_FLAG
|
|
return result;
|
|
}
|
|
|
|
// A flag mask to mark an instruction as having arbitrary side effects.
|
|
static GVNFlagSet AllSideEffectsFlagSet() {
|
|
GVNFlagSet result = AllChangesFlagSet();
|
|
result.Remove(kChangesOsrEntries);
|
|
return result;
|
|
}
|
|
|
|
// A flag mask of all side effects that can make observable changes in
|
|
// an executing program (i.e. are not safe to repeat, move or remove);
|
|
static GVNFlagSet AllObservableSideEffectsFlagSet() {
|
|
GVNFlagSet result = AllChangesFlagSet();
|
|
result.Remove(kChangesNewSpacePromotion);
|
|
result.Remove(kChangesElementsKind);
|
|
result.Remove(kChangesElementsPointer);
|
|
result.Remove(kChangesMaps);
|
|
return result;
|
|
}
|
|
|
|
// Remove the matching use from the use list if present. Returns the
|
|
// removed list node or NULL.
|
|
HUseListNode* RemoveUse(HValue* value, int index);
|
|
|
|
void RegisterUse(int index, HValue* new_value);
|
|
|
|
HBasicBlock* block_;
|
|
|
|
// The id of this instruction in the hydrogen graph, assigned when first
|
|
// added to the graph. Reflects creation order.
|
|
int id_;
|
|
|
|
Representation representation_;
|
|
HType type_;
|
|
HUseListNode* use_list_;
|
|
Range* range_;
|
|
int flags_;
|
|
GVNFlagSet gvn_flags_;
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return false; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HValue);
|
|
};
|
|
|
|
|
|
class HInstruction: public HValue {
|
|
public:
|
|
HInstruction* next() const { return next_; }
|
|
HInstruction* previous() const { return previous_; }
|
|
|
|
virtual void PrintTo(StringStream* stream);
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
bool IsLinked() const { return block() != NULL; }
|
|
void Unlink();
|
|
void InsertBefore(HInstruction* next);
|
|
void InsertAfter(HInstruction* previous);
|
|
|
|
// The position is a write-once variable.
|
|
int position() const { return position_; }
|
|
bool has_position() const { return position_ != RelocInfo::kNoPosition; }
|
|
void set_position(int position) {
|
|
ASSERT(!has_position());
|
|
ASSERT(position != RelocInfo::kNoPosition);
|
|
position_ = position;
|
|
}
|
|
|
|
bool CanTruncateToInt32() const { return CheckFlag(kTruncatingToInt32); }
|
|
|
|
virtual LInstruction* CompileToLithium(LChunkBuilder* builder) = 0;
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify();
|
|
#endif
|
|
|
|
virtual bool IsCall() { return false; }
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(Instruction)
|
|
|
|
protected:
|
|
HInstruction()
|
|
: next_(NULL),
|
|
previous_(NULL),
|
|
position_(RelocInfo::kNoPosition) {
|
|
SetGVNFlag(kDependsOnOsrEntries);
|
|
}
|
|
|
|
virtual void DeleteFromGraph() { Unlink(); }
|
|
|
|
private:
|
|
void InitializeAsFirst(HBasicBlock* block) {
|
|
ASSERT(!IsLinked());
|
|
SetBlock(block);
|
|
}
|
|
|
|
void PrintMnemonicTo(StringStream* stream);
|
|
|
|
HInstruction* next_;
|
|
HInstruction* previous_;
|
|
int position_;
|
|
|
|
friend class HBasicBlock;
|
|
};
|
|
|
|
|
|
template<int V>
|
|
class HTemplateInstruction : public HInstruction {
|
|
public:
|
|
int OperandCount() { return V; }
|
|
HValue* OperandAt(int i) const { return inputs_[i]; }
|
|
|
|
protected:
|
|
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
|
|
|
|
private:
|
|
EmbeddedContainer<HValue*, V> inputs_;
|
|
};
|
|
|
|
|
|
class HControlInstruction: public HInstruction {
|
|
public:
|
|
virtual HBasicBlock* SuccessorAt(int i) = 0;
|
|
virtual int SuccessorCount() = 0;
|
|
virtual void SetSuccessorAt(int i, HBasicBlock* block) = 0;
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HBasicBlock* FirstSuccessor() {
|
|
return SuccessorCount() > 0 ? SuccessorAt(0) : NULL;
|
|
}
|
|
HBasicBlock* SecondSuccessor() {
|
|
return SuccessorCount() > 1 ? SuccessorAt(1) : NULL;
|
|
}
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(ControlInstruction)
|
|
};
|
|
|
|
|
|
class HSuccessorIterator BASE_EMBEDDED {
|
|
public:
|
|
explicit HSuccessorIterator(HControlInstruction* instr)
|
|
: instr_(instr), current_(0) { }
|
|
|
|
bool Done() { return current_ >= instr_->SuccessorCount(); }
|
|
HBasicBlock* Current() { return instr_->SuccessorAt(current_); }
|
|
void Advance() { current_++; }
|
|
|
|
private:
|
|
HControlInstruction* instr_;
|
|
int current_;
|
|
};
|
|
|
|
|
|
template<int S, int V>
|
|
class HTemplateControlInstruction: public HControlInstruction {
|
|
public:
|
|
int SuccessorCount() { return S; }
|
|
HBasicBlock* SuccessorAt(int i) { return successors_[i]; }
|
|
void SetSuccessorAt(int i, HBasicBlock* block) { successors_[i] = block; }
|
|
|
|
int OperandCount() { return V; }
|
|
HValue* OperandAt(int i) const { return inputs_[i]; }
|
|
|
|
|
|
protected:
|
|
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
|
|
|
|
private:
|
|
EmbeddedContainer<HBasicBlock*, S> successors_;
|
|
EmbeddedContainer<HValue*, V> inputs_;
|
|
};
|
|
|
|
|
|
class HBlockEntry: public HTemplateInstruction<0> {
|
|
public:
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(BlockEntry)
|
|
};
|
|
|
|
|
|
class HDummyUse: public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HDummyUse(HValue* value) {
|
|
SetOperandAt(0, value);
|
|
// Pretend to be a Smi so that the HChange instructions inserted
|
|
// before any use generate as little code as possible.
|
|
set_representation(Representation::Tagged());
|
|
set_type(HType::Smi());
|
|
}
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return false; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(DummyUse);
|
|
};
|
|
|
|
|
|
class HNumericConstraint : public HTemplateInstruction<2> {
|
|
public:
|
|
static HNumericConstraint* AddToGraph(HValue* constrained_value,
|
|
NumericRelation relation,
|
|
HValue* related_value,
|
|
HInstruction* insertion_point = NULL);
|
|
|
|
HValue* constrained_value() { return OperandAt(0); }
|
|
HValue* related_value() { return OperandAt(1); }
|
|
NumericRelation relation() { return relation_; }
|
|
|
|
virtual int RedefinedOperandIndex() { return 0; }
|
|
virtual bool IsPurelyInformativeDefinition() { return true; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return representation();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual bool IsRelationTrueInternal(NumericRelation other_relation,
|
|
HValue* other_related_value,
|
|
int offset = 0,
|
|
int scale = 0) {
|
|
if (related_value() == other_related_value) {
|
|
return relation().CompoundImplies(other_relation, offset, scale);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(NumericConstraint)
|
|
|
|
private:
|
|
HNumericConstraint(HValue* constrained_value,
|
|
NumericRelation relation,
|
|
HValue* related_value)
|
|
: relation_(relation) {
|
|
SetOperandAt(0, constrained_value);
|
|
SetOperandAt(1, related_value);
|
|
}
|
|
|
|
NumericRelation relation_;
|
|
};
|
|
|
|
|
|
class HDeoptimize: public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HDeoptimize(Deoptimizer::BailoutType type) : type_(type) {}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
Deoptimizer::BailoutType type() { return type_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Deoptimize)
|
|
|
|
private:
|
|
Deoptimizer::BailoutType type_;
|
|
};
|
|
|
|
|
|
// Inserts an int3/stop break instruction for debugging purposes.
|
|
class HDebugBreak: public HTemplateInstruction<0> {
|
|
public:
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(DebugBreak)
|
|
};
|
|
|
|
|
|
class HGoto: public HTemplateControlInstruction<1, 0> {
|
|
public:
|
|
explicit HGoto(HBasicBlock* target) {
|
|
SetSuccessorAt(0, target);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Goto)
|
|
};
|
|
|
|
|
|
class HUnaryControlInstruction: public HTemplateControlInstruction<2, 1> {
|
|
public:
|
|
HUnaryControlInstruction(HValue* value,
|
|
HBasicBlock* true_target,
|
|
HBasicBlock* false_target) {
|
|
SetOperandAt(0, value);
|
|
SetSuccessorAt(0, true_target);
|
|
SetSuccessorAt(1, false_target);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
};
|
|
|
|
|
|
class HBranch: public HUnaryControlInstruction {
|
|
public:
|
|
HBranch(HValue* value,
|
|
ToBooleanStub::Types expected_input_types = ToBooleanStub::Types(),
|
|
HBasicBlock* true_target = NULL,
|
|
HBasicBlock* false_target = NULL)
|
|
: HUnaryControlInstruction(value, true_target, false_target),
|
|
expected_input_types_(expected_input_types) {
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
virtual Representation observed_input_representation(int index);
|
|
|
|
ToBooleanStub::Types expected_input_types() const {
|
|
return expected_input_types_;
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Branch)
|
|
|
|
private:
|
|
ToBooleanStub::Types expected_input_types_;
|
|
};
|
|
|
|
|
|
class HCompareMap: public HUnaryControlInstruction {
|
|
public:
|
|
HCompareMap(HValue* value,
|
|
Handle<Map> map,
|
|
HBasicBlock* true_target = NULL,
|
|
HBasicBlock* false_target = NULL)
|
|
: HUnaryControlInstruction(value, true_target, false_target),
|
|
map_(map) {
|
|
ASSERT(!map.is_null());
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
Handle<Map> map() const { return map_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CompareMap)
|
|
|
|
private:
|
|
Handle<Map> map_;
|
|
};
|
|
|
|
|
|
class HReturn: public HTemplateControlInstruction<0, 3> {
|
|
public:
|
|
HReturn(HValue* value, HValue* context, HValue* parameter_count) {
|
|
SetOperandAt(0, value);
|
|
SetOperandAt(1, context);
|
|
SetOperandAt(2, parameter_count);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
HValue* context() { return OperandAt(1); }
|
|
HValue* parameter_count() { return OperandAt(2); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Return)
|
|
};
|
|
|
|
|
|
class HAbnormalExit: public HTemplateControlInstruction<0, 0> {
|
|
public:
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(AbnormalExit)
|
|
};
|
|
|
|
|
|
class HUnaryOperation: public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HUnaryOperation(HValue* value) {
|
|
SetOperandAt(0, value);
|
|
}
|
|
|
|
static HUnaryOperation* cast(HValue* value) {
|
|
return reinterpret_cast<HUnaryOperation*>(value);
|
|
}
|
|
|
|
HValue* value() const { return OperandAt(0); }
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
};
|
|
|
|
|
|
class HThrow: public HTemplateInstruction<2> {
|
|
public:
|
|
HThrow(HValue* context, HValue* value) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, value);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Throw)
|
|
};
|
|
|
|
|
|
class HUseConst: public HUnaryOperation {
|
|
public:
|
|
explicit HUseConst(HValue* old_value) : HUnaryOperation(old_value) { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(UseConst)
|
|
};
|
|
|
|
|
|
class HForceRepresentation: public HTemplateInstruction<1> {
|
|
public:
|
|
HForceRepresentation(HValue* value, Representation required_representation) {
|
|
SetOperandAt(0, value);
|
|
set_representation(required_representation);
|
|
}
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return representation(); // Same as the output representation.
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ForceRepresentation)
|
|
};
|
|
|
|
|
|
class HChange: public HUnaryOperation {
|
|
public:
|
|
HChange(HValue* value,
|
|
Representation to,
|
|
bool is_truncating_to_smi,
|
|
bool is_truncating_to_int32,
|
|
bool allow_undefined_as_nan)
|
|
: HUnaryOperation(value) {
|
|
ASSERT(!value->representation().IsNone());
|
|
ASSERT(!to.IsNone());
|
|
ASSERT(!value->representation().Equals(to));
|
|
set_representation(to);
|
|
SetFlag(kUseGVN);
|
|
if (allow_undefined_as_nan) SetFlag(kAllowUndefinedAsNaN);
|
|
if (is_truncating_to_smi) SetFlag(kTruncatingToSmi);
|
|
if (is_truncating_to_int32) SetFlag(kTruncatingToInt32);
|
|
if (value->representation().IsSmi() || value->type().IsSmi()) {
|
|
set_type(HType::Smi());
|
|
} else {
|
|
set_type(HType::TaggedNumber());
|
|
if (to.IsTagged()) SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
virtual HType CalculateInferredType();
|
|
virtual HValue* Canonicalize();
|
|
|
|
Representation from() const { return value()->representation(); }
|
|
Representation to() const { return representation(); }
|
|
bool allow_undefined_as_nan() const {
|
|
return CheckFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
bool deoptimize_on_minus_zero() const {
|
|
return CheckFlag(kBailoutOnMinusZero);
|
|
}
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return from();
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Change)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const {
|
|
return !from().IsTagged() || value()->type().IsSmi();
|
|
}
|
|
};
|
|
|
|
|
|
class HClampToUint8: public HUnaryOperation {
|
|
public:
|
|
explicit HClampToUint8(HValue* value)
|
|
: HUnaryOperation(value) {
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ClampToUint8)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
enum RemovableSimulate {
|
|
REMOVABLE_SIMULATE,
|
|
FIXED_SIMULATE
|
|
};
|
|
|
|
|
|
class HSimulate: public HInstruction {
|
|
public:
|
|
HSimulate(BailoutId ast_id,
|
|
int pop_count,
|
|
Zone* zone,
|
|
RemovableSimulate removable)
|
|
: ast_id_(ast_id),
|
|
pop_count_(pop_count),
|
|
values_(2, zone),
|
|
assigned_indexes_(2, zone),
|
|
zone_(zone),
|
|
removable_(removable) {}
|
|
virtual ~HSimulate() {}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
bool HasAstId() const { return !ast_id_.IsNone(); }
|
|
BailoutId ast_id() const { return ast_id_; }
|
|
void set_ast_id(BailoutId id) {
|
|
ASSERT(!HasAstId());
|
|
ast_id_ = id;
|
|
}
|
|
|
|
int pop_count() const { return pop_count_; }
|
|
const ZoneList<HValue*>* values() const { return &values_; }
|
|
int GetAssignedIndexAt(int index) const {
|
|
ASSERT(HasAssignedIndexAt(index));
|
|
return assigned_indexes_[index];
|
|
}
|
|
bool HasAssignedIndexAt(int index) const {
|
|
return assigned_indexes_[index] != kNoIndex;
|
|
}
|
|
void AddAssignedValue(int index, HValue* value) {
|
|
AddValue(index, value);
|
|
}
|
|
void AddPushedValue(HValue* value) {
|
|
AddValue(kNoIndex, value);
|
|
}
|
|
int ToOperandIndex(int environment_index) {
|
|
for (int i = 0; i < assigned_indexes_.length(); ++i) {
|
|
if (assigned_indexes_[i] == environment_index) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
virtual int OperandCount() { return values_.length(); }
|
|
virtual HValue* OperandAt(int index) const { return values_[index]; }
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return false; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
void MergeWith(ZoneList<HSimulate*>* list);
|
|
bool is_candidate_for_removal() { return removable_ == REMOVABLE_SIMULATE; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Simulate)
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify();
|
|
void set_closure(Handle<JSFunction> closure) { closure_ = closure; }
|
|
Handle<JSFunction> closure() const { return closure_; }
|
|
#endif
|
|
|
|
protected:
|
|
virtual void InternalSetOperandAt(int index, HValue* value) {
|
|
values_[index] = value;
|
|
}
|
|
|
|
private:
|
|
static const int kNoIndex = -1;
|
|
void AddValue(int index, HValue* value) {
|
|
assigned_indexes_.Add(index, zone_);
|
|
// Resize the list of pushed values.
|
|
values_.Add(NULL, zone_);
|
|
// Set the operand through the base method in HValue to make sure that the
|
|
// use lists are correctly updated.
|
|
SetOperandAt(values_.length() - 1, value);
|
|
}
|
|
bool HasValueForIndex(int index) {
|
|
for (int i = 0; i < assigned_indexes_.length(); ++i) {
|
|
if (assigned_indexes_[i] == index) return true;
|
|
}
|
|
return false;
|
|
}
|
|
BailoutId ast_id_;
|
|
int pop_count_;
|
|
ZoneList<HValue*> values_;
|
|
ZoneList<int> assigned_indexes_;
|
|
Zone* zone_;
|
|
RemovableSimulate removable_;
|
|
|
|
#ifdef DEBUG
|
|
Handle<JSFunction> closure_;
|
|
#endif
|
|
};
|
|
|
|
|
|
class HEnvironmentMarker: public HTemplateInstruction<1> {
|
|
public:
|
|
enum Kind { BIND, LOOKUP };
|
|
|
|
HEnvironmentMarker(Kind kind, int index)
|
|
: kind_(kind), index_(index), next_simulate_(NULL) { }
|
|
|
|
Kind kind() { return kind_; }
|
|
int index() { return index_; }
|
|
HSimulate* next_simulate() { return next_simulate_; }
|
|
void set_next_simulate(HSimulate* simulate) {
|
|
next_simulate_ = simulate;
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
#ifdef DEBUG
|
|
void set_closure(Handle<JSFunction> closure) {
|
|
ASSERT(closure_.is_null());
|
|
ASSERT(!closure.is_null());
|
|
closure_ = closure;
|
|
}
|
|
Handle<JSFunction> closure() const { return closure_; }
|
|
#endif
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(EnvironmentMarker);
|
|
|
|
private:
|
|
Kind kind_;
|
|
int index_;
|
|
HSimulate* next_simulate_;
|
|
|
|
#ifdef DEBUG
|
|
Handle<JSFunction> closure_;
|
|
#endif
|
|
};
|
|
|
|
|
|
class HStackCheck: public HTemplateInstruction<1> {
|
|
public:
|
|
enum Type {
|
|
kFunctionEntry,
|
|
kBackwardsBranch
|
|
};
|
|
|
|
HStackCheck(HValue* context, Type type) : type_(type) {
|
|
SetOperandAt(0, context);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
void Eliminate() {
|
|
// The stack check eliminator might try to eliminate the same stack
|
|
// check instruction multiple times.
|
|
if (IsLinked()) {
|
|
DeleteAndReplaceWith(NULL);
|
|
}
|
|
}
|
|
|
|
bool is_function_entry() { return type_ == kFunctionEntry; }
|
|
bool is_backwards_branch() { return type_ == kBackwardsBranch; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StackCheck)
|
|
|
|
private:
|
|
Type type_;
|
|
};
|
|
|
|
|
|
enum InliningKind {
|
|
NORMAL_RETURN, // Normal function/method call and return.
|
|
DROP_EXTRA_ON_RETURN, // Drop an extra value from the environment on return.
|
|
CONSTRUCT_CALL_RETURN, // Either use allocated receiver or return value.
|
|
GETTER_CALL_RETURN, // Returning from a getter, need to restore context.
|
|
SETTER_CALL_RETURN // Use the RHS of the assignment as the return value.
|
|
};
|
|
|
|
|
|
class HArgumentsObject;
|
|
|
|
|
|
class HEnterInlined: public HTemplateInstruction<0> {
|
|
public:
|
|
HEnterInlined(Handle<JSFunction> closure,
|
|
int arguments_count,
|
|
FunctionLiteral* function,
|
|
InliningKind inlining_kind,
|
|
Variable* arguments_var,
|
|
HArgumentsObject* arguments_object,
|
|
bool undefined_receiver,
|
|
Zone* zone)
|
|
: closure_(closure),
|
|
arguments_count_(arguments_count),
|
|
arguments_pushed_(false),
|
|
function_(function),
|
|
inlining_kind_(inlining_kind),
|
|
arguments_var_(arguments_var),
|
|
arguments_object_(arguments_object),
|
|
undefined_receiver_(undefined_receiver),
|
|
return_targets_(2, zone) {
|
|
}
|
|
|
|
void RegisterReturnTarget(HBasicBlock* return_target, Zone* zone);
|
|
ZoneList<HBasicBlock*>* return_targets() { return &return_targets_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
Handle<JSFunction> closure() const { return closure_; }
|
|
int arguments_count() const { return arguments_count_; }
|
|
bool arguments_pushed() const { return arguments_pushed_; }
|
|
void set_arguments_pushed() { arguments_pushed_ = true; }
|
|
FunctionLiteral* function() const { return function_; }
|
|
InliningKind inlining_kind() const { return inlining_kind_; }
|
|
bool undefined_receiver() const { return undefined_receiver_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
Variable* arguments_var() { return arguments_var_; }
|
|
HArgumentsObject* arguments_object() { return arguments_object_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(EnterInlined)
|
|
|
|
private:
|
|
Handle<JSFunction> closure_;
|
|
int arguments_count_;
|
|
bool arguments_pushed_;
|
|
FunctionLiteral* function_;
|
|
InliningKind inlining_kind_;
|
|
Variable* arguments_var_;
|
|
HArgumentsObject* arguments_object_;
|
|
bool undefined_receiver_;
|
|
ZoneList<HBasicBlock*> return_targets_;
|
|
};
|
|
|
|
|
|
class HLeaveInlined: public HTemplateInstruction<0> {
|
|
public:
|
|
HLeaveInlined() { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LeaveInlined)
|
|
};
|
|
|
|
|
|
class HPushArgument: public HUnaryOperation {
|
|
public:
|
|
explicit HPushArgument(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* argument() { return OperandAt(0); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(PushArgument)
|
|
};
|
|
|
|
|
|
class HThisFunction: public HTemplateInstruction<0> {
|
|
public:
|
|
HThisFunction() {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ThisFunction)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HContext: public HTemplateInstruction<0> {
|
|
public:
|
|
HContext() {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Context)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HOuterContext: public HUnaryOperation {
|
|
public:
|
|
explicit HOuterContext(HValue* inner) : HUnaryOperation(inner) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(OuterContext);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HDeclareGlobals: public HUnaryOperation {
|
|
public:
|
|
HDeclareGlobals(HValue* context,
|
|
Handle<FixedArray> pairs,
|
|
int flags)
|
|
: HUnaryOperation(context),
|
|
pairs_(pairs),
|
|
flags_(flags) {
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
Handle<FixedArray> pairs() const { return pairs_; }
|
|
int flags() const { return flags_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
private:
|
|
Handle<FixedArray> pairs_;
|
|
int flags_;
|
|
};
|
|
|
|
|
|
class HGlobalObject: public HUnaryOperation {
|
|
public:
|
|
explicit HGlobalObject(HValue* context) : HUnaryOperation(context) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(GlobalObject)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HGlobalReceiver: public HUnaryOperation {
|
|
public:
|
|
explicit HGlobalReceiver(HValue* global_object)
|
|
: HUnaryOperation(global_object) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
template <int V>
|
|
class HCall: public HTemplateInstruction<V> {
|
|
public:
|
|
// The argument count includes the receiver.
|
|
explicit HCall<V>(int argument_count) : argument_count_(argument_count) {
|
|
this->set_representation(Representation::Tagged());
|
|
this->SetAllSideEffects();
|
|
}
|
|
|
|
virtual HType CalculateInferredType() { return HType::Tagged(); }
|
|
|
|
virtual int argument_count() const { return argument_count_; }
|
|
|
|
virtual bool IsCall() { return true; }
|
|
|
|
private:
|
|
int argument_count_;
|
|
};
|
|
|
|
|
|
class HUnaryCall: public HCall<1> {
|
|
public:
|
|
HUnaryCall(HValue* value, int argument_count)
|
|
: HCall<1>(argument_count) {
|
|
SetOperandAt(0, value);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
};
|
|
|
|
|
|
class HBinaryCall: public HCall<2> {
|
|
public:
|
|
HBinaryCall(HValue* first, HValue* second, int argument_count)
|
|
: HCall<2>(argument_count) {
|
|
SetOperandAt(0, first);
|
|
SetOperandAt(1, second);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* first() { return OperandAt(0); }
|
|
HValue* second() { return OperandAt(1); }
|
|
};
|
|
|
|
|
|
class HInvokeFunction: public HBinaryCall {
|
|
public:
|
|
HInvokeFunction(HValue* context, HValue* function, int argument_count)
|
|
: HBinaryCall(context, function, argument_count) {
|
|
}
|
|
|
|
HInvokeFunction(HValue* context,
|
|
HValue* function,
|
|
Handle<JSFunction> known_function,
|
|
int argument_count)
|
|
: HBinaryCall(context, function, argument_count),
|
|
known_function_(known_function) {
|
|
formal_parameter_count_ = known_function.is_null()
|
|
? 0 : known_function->shared()->formal_parameter_count();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return first(); }
|
|
HValue* function() { return second(); }
|
|
Handle<JSFunction> known_function() { return known_function_; }
|
|
int formal_parameter_count() const { return formal_parameter_count_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction)
|
|
|
|
private:
|
|
Handle<JSFunction> known_function_;
|
|
int formal_parameter_count_;
|
|
};
|
|
|
|
|
|
class HCallConstantFunction: public HCall<0> {
|
|
public:
|
|
HCallConstantFunction(Handle<JSFunction> function, int argument_count)
|
|
: HCall<0>(argument_count),
|
|
function_(function),
|
|
formal_parameter_count_(function->shared()->formal_parameter_count()) {}
|
|
|
|
Handle<JSFunction> function() const { return function_; }
|
|
int formal_parameter_count() const { return formal_parameter_count_; }
|
|
|
|
bool IsApplyFunction() const {
|
|
return function_->code() ==
|
|
Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction)
|
|
|
|
private:
|
|
Handle<JSFunction> function_;
|
|
int formal_parameter_count_;
|
|
};
|
|
|
|
|
|
class HCallKeyed: public HBinaryCall {
|
|
public:
|
|
HCallKeyed(HValue* context, HValue* key, int argument_count)
|
|
: HBinaryCall(context, key, argument_count) {
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return first(); }
|
|
HValue* key() { return second(); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallKeyed)
|
|
};
|
|
|
|
|
|
class HCallNamed: public HUnaryCall {
|
|
public:
|
|
HCallNamed(HValue* context, Handle<String> name, int argument_count)
|
|
: HUnaryCall(context, argument_count), name_(name) {
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* context() { return value(); }
|
|
Handle<String> name() const { return name_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallNamed)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
private:
|
|
Handle<String> name_;
|
|
};
|
|
|
|
|
|
class HCallFunction: public HBinaryCall {
|
|
public:
|
|
HCallFunction(HValue* context, HValue* function, int argument_count)
|
|
: HBinaryCall(context, function, argument_count) {
|
|
}
|
|
|
|
HValue* context() { return first(); }
|
|
HValue* function() { return second(); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallFunction)
|
|
};
|
|
|
|
|
|
class HCallGlobal: public HUnaryCall {
|
|
public:
|
|
HCallGlobal(HValue* context, Handle<String> name, int argument_count)
|
|
: HUnaryCall(context, argument_count), name_(name) {
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* context() { return value(); }
|
|
Handle<String> name() const { return name_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallGlobal)
|
|
|
|
private:
|
|
Handle<String> name_;
|
|
};
|
|
|
|
|
|
class HCallKnownGlobal: public HCall<0> {
|
|
public:
|
|
HCallKnownGlobal(Handle<JSFunction> target, int argument_count)
|
|
: HCall<0>(argument_count),
|
|
target_(target),
|
|
formal_parameter_count_(target->shared()->formal_parameter_count()) { }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
Handle<JSFunction> target() const { return target_; }
|
|
int formal_parameter_count() const { return formal_parameter_count_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal)
|
|
|
|
private:
|
|
Handle<JSFunction> target_;
|
|
int formal_parameter_count_;
|
|
};
|
|
|
|
|
|
class HCallNew: public HBinaryCall {
|
|
public:
|
|
HCallNew(HValue* context, HValue* constructor, int argument_count)
|
|
: HBinaryCall(context, constructor, argument_count) {
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return first(); }
|
|
HValue* constructor() { return second(); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallNew)
|
|
};
|
|
|
|
|
|
class HCallNewArray: public HCallNew {
|
|
public:
|
|
HCallNewArray(HValue* context, HValue* constructor, int argument_count,
|
|
Handle<Cell> type_cell, ElementsKind elements_kind)
|
|
: HCallNew(context, constructor, argument_count),
|
|
elements_kind_(elements_kind),
|
|
type_cell_(type_cell) {}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
Handle<Cell> property_cell() const {
|
|
return type_cell_;
|
|
}
|
|
|
|
ElementsKind elements_kind() const { return elements_kind_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallNewArray)
|
|
|
|
private:
|
|
ElementsKind elements_kind_;
|
|
Handle<Cell> type_cell_;
|
|
};
|
|
|
|
|
|
class HCallRuntime: public HCall<1> {
|
|
public:
|
|
HCallRuntime(HValue* context,
|
|
Handle<String> name,
|
|
const Runtime::Function* c_function,
|
|
int argument_count)
|
|
: HCall<1>(argument_count), c_function_(c_function), name_(name) {
|
|
SetOperandAt(0, context);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
const Runtime::Function* function() const { return c_function_; }
|
|
Handle<String> name() const { return name_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallRuntime)
|
|
|
|
private:
|
|
const Runtime::Function* c_function_;
|
|
Handle<String> name_;
|
|
};
|
|
|
|
|
|
class HMapEnumLength: public HUnaryOperation {
|
|
public:
|
|
explicit HMapEnumLength(HValue* value) : HUnaryOperation(value) {
|
|
set_type(HType::Smi());
|
|
set_representation(Representation::Smi());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(MapEnumLength)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HElementsKind: public HUnaryOperation {
|
|
public:
|
|
explicit HElementsKind(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ElementsKind)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HBitNot: public HUnaryOperation {
|
|
public:
|
|
explicit HBitNot(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kUseGVN);
|
|
SetFlag(kTruncatingToInt32);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Integer32();
|
|
}
|
|
virtual Representation observed_input_representation(int index) {
|
|
return Representation::Integer32();
|
|
}
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(BitNot)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HUnaryMathOperation: public HTemplateInstruction<2> {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* value,
|
|
BuiltinFunctionId op);
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
if (index == 0) {
|
|
return Representation::Tagged();
|
|
} else {
|
|
switch (op_) {
|
|
case kMathFloor:
|
|
case kMathRound:
|
|
case kMathSqrt:
|
|
case kMathPowHalf:
|
|
case kMathLog:
|
|
case kMathExp:
|
|
case kMathSin:
|
|
case kMathCos:
|
|
case kMathTan:
|
|
return Representation::Double();
|
|
case kMathAbs:
|
|
return representation();
|
|
default:
|
|
UNREACHABLE();
|
|
return Representation::None();
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual HValue* Canonicalize();
|
|
virtual Representation RepresentationFromInputs();
|
|
|
|
BuiltinFunctionId op() const { return op_; }
|
|
const char* OpName() const;
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HUnaryMathOperation* b = HUnaryMathOperation::cast(other);
|
|
return op_ == b->op();
|
|
}
|
|
|
|
private:
|
|
HUnaryMathOperation(HValue* context, HValue* value, BuiltinFunctionId op)
|
|
: op_(op) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, value);
|
|
switch (op) {
|
|
case kMathFloor:
|
|
case kMathRound:
|
|
// TODO(verwaest): Set representation to flexible int starting as smi.
|
|
set_representation(Representation::Integer32());
|
|
break;
|
|
case kMathAbs:
|
|
// Not setting representation here: it is None intentionally.
|
|
SetFlag(kFlexibleRepresentation);
|
|
// TODO(svenpanne) This flag is actually only needed if representation()
|
|
// is tagged, and not when it is an unboxed double or unboxed integer.
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
break;
|
|
case kMathLog:
|
|
case kMathSin:
|
|
case kMathCos:
|
|
case kMathTan:
|
|
set_representation(Representation::Double());
|
|
// These operations use the TranscendentalCache, so they may allocate.
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
break;
|
|
case kMathExp:
|
|
case kMathSqrt:
|
|
case kMathPowHalf:
|
|
set_representation(Representation::Double());
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
SetFlag(kUseGVN);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
BuiltinFunctionId op_;
|
|
};
|
|
|
|
|
|
class HLoadExternalArrayPointer: public HUnaryOperation {
|
|
public:
|
|
explicit HLoadExternalArrayPointer(HValue* value)
|
|
: HUnaryOperation(value) {
|
|
set_representation(Representation::External());
|
|
// The result of this instruction is idempotent as long as its inputs don't
|
|
// change. The external array of a specialized array elements object cannot
|
|
// change once set, so it's no necessary to introduce any additional
|
|
// dependencies on top of the inputs.
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadExternalArrayPointer)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HCheckMaps: public HTemplateInstruction<2> {
|
|
public:
|
|
static HCheckMaps* New(HValue* value, Handle<Map> map, Zone* zone,
|
|
CompilationInfo* info, HValue *typecheck = NULL);
|
|
static HCheckMaps* New(HValue* value, SmallMapList* maps, Zone* zone,
|
|
HValue *typecheck = NULL) {
|
|
HCheckMaps* check_map = new(zone) HCheckMaps(value, zone, typecheck);
|
|
for (int i = 0; i < maps->length(); i++) {
|
|
check_map->map_set_.Add(maps->at(i), zone);
|
|
}
|
|
check_map->map_set_.Sort();
|
|
return check_map;
|
|
}
|
|
|
|
static HCheckMaps* NewWithTransitions(HValue* value, Handle<Map> map,
|
|
Zone* zone, CompilationInfo* info);
|
|
|
|
bool CanOmitMapChecks() { return omit_; }
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return false; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual void HandleSideEffectDominator(GVNFlag side_effect,
|
|
HValue* dominator);
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
virtual HType CalculateInferredType();
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
SmallMapList* map_set() { return &map_set_; }
|
|
|
|
virtual void FinalizeUniqueValueId();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckMaps)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
ASSERT_EQ(map_set_.length(), map_unique_ids_.length());
|
|
HCheckMaps* b = HCheckMaps::cast(other);
|
|
// Relies on the fact that map_set has been sorted before.
|
|
if (map_unique_ids_.length() != b->map_unique_ids_.length()) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < map_unique_ids_.length(); i++) {
|
|
if (map_unique_ids_.at(i) != b->map_unique_ids_.at(i)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// Clients should use one of the static New* methods above.
|
|
HCheckMaps(HValue* value, Zone *zone, HValue* typecheck)
|
|
: omit_(false), map_unique_ids_(0, zone) {
|
|
SetOperandAt(0, value);
|
|
// Use the object value for the dependency if NULL is passed.
|
|
// TODO(titzer): do GVN flags already express this dependency?
|
|
SetOperandAt(1, typecheck != NULL ? typecheck : value);
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetFlag(kTrackSideEffectDominators);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
SetGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
|
|
void omit(CompilationInfo* info) {
|
|
omit_ = true;
|
|
for (int i = 0; i < map_set_.length(); i++) {
|
|
Handle<Map> map = map_set_.at(i);
|
|
map->AddDependentCompilationInfo(DependentCode::kPrototypeCheckGroup,
|
|
info);
|
|
}
|
|
}
|
|
|
|
bool omit_;
|
|
SmallMapList map_set_;
|
|
ZoneList<UniqueValueId> map_unique_ids_;
|
|
};
|
|
|
|
|
|
class HCheckFunction: public HUnaryOperation {
|
|
public:
|
|
HCheckFunction(HValue* value, Handle<JSFunction> function)
|
|
: HUnaryOperation(value), target_(function), target_unique_id_() {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
target_in_new_space_ = Isolate::Current()->heap()->InNewSpace(*function);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify();
|
|
#endif
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
target_unique_id_ = UniqueValueId(target_);
|
|
}
|
|
|
|
Handle<JSFunction> target() const { return target_; }
|
|
bool target_in_new_space() const { return target_in_new_space_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckFunction)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HCheckFunction* b = HCheckFunction::cast(other);
|
|
return target_unique_id_ == b->target_unique_id_;
|
|
}
|
|
|
|
private:
|
|
Handle<JSFunction> target_;
|
|
UniqueValueId target_unique_id_;
|
|
bool target_in_new_space_;
|
|
};
|
|
|
|
|
|
class HCheckInstanceType: public HUnaryOperation {
|
|
public:
|
|
static HCheckInstanceType* NewIsSpecObject(HValue* value, Zone* zone) {
|
|
return new(zone) HCheckInstanceType(value, IS_SPEC_OBJECT);
|
|
}
|
|
static HCheckInstanceType* NewIsJSArray(HValue* value, Zone* zone) {
|
|
return new(zone) HCheckInstanceType(value, IS_JS_ARRAY);
|
|
}
|
|
static HCheckInstanceType* NewIsString(HValue* value, Zone* zone) {
|
|
return new(zone) HCheckInstanceType(value, IS_STRING);
|
|
}
|
|
static HCheckInstanceType* NewIsInternalizedString(
|
|
HValue* value, Zone* zone) {
|
|
return new(zone) HCheckInstanceType(value, IS_INTERNALIZED_STRING);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
bool is_interval_check() const { return check_ <= LAST_INTERVAL_CHECK; }
|
|
void GetCheckInterval(InstanceType* first, InstanceType* last);
|
|
void GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType)
|
|
|
|
protected:
|
|
// TODO(ager): It could be nice to allow the ommision of instance
|
|
// type checks if we have already performed an instance type check
|
|
// with a larger range.
|
|
virtual bool DataEquals(HValue* other) {
|
|
HCheckInstanceType* b = HCheckInstanceType::cast(other);
|
|
return check_ == b->check_;
|
|
}
|
|
|
|
private:
|
|
enum Check {
|
|
IS_SPEC_OBJECT,
|
|
IS_JS_ARRAY,
|
|
IS_STRING,
|
|
IS_INTERNALIZED_STRING,
|
|
LAST_INTERVAL_CHECK = IS_JS_ARRAY
|
|
};
|
|
|
|
const char* GetCheckName();
|
|
|
|
HCheckInstanceType(HValue* value, Check check)
|
|
: HUnaryOperation(value), check_(check) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
const Check check_;
|
|
};
|
|
|
|
|
|
class HCheckSmi: public HUnaryOperation {
|
|
public:
|
|
explicit HCheckSmi(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Smi());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual HValue* Canonicalize() {
|
|
HType value_type = value()->type();
|
|
if (value_type.IsSmi()) {
|
|
return NULL;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckSmi)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
|
|
class HIsNumberAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HIsNumberAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) {
|
|
SetFlag(kFlexibleRepresentation);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsNumberAndBranch)
|
|
};
|
|
|
|
|
|
class HCheckHeapObject: public HUnaryOperation {
|
|
public:
|
|
explicit HCheckHeapObject(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify();
|
|
#endif
|
|
|
|
virtual HValue* Canonicalize() {
|
|
HType value_type = value()->type();
|
|
if (!value_type.IsUninitialized() && value_type.IsHeapObject()) {
|
|
return NULL;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckHeapObject)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
|
|
class HCheckPrototypeMaps: public HTemplateInstruction<0> {
|
|
public:
|
|
HCheckPrototypeMaps(Handle<JSObject> prototype,
|
|
Handle<JSObject> holder,
|
|
Zone* zone,
|
|
CompilationInfo* info)
|
|
: prototypes_(2, zone),
|
|
maps_(2, zone),
|
|
first_prototype_unique_id_(),
|
|
last_prototype_unique_id_(),
|
|
can_omit_prototype_maps_(true) {
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
// Keep a list of all objects on the prototype chain up to the holder
|
|
// and the expected maps.
|
|
while (true) {
|
|
prototypes_.Add(prototype, zone);
|
|
Handle<Map> map(prototype->map());
|
|
maps_.Add(map, zone);
|
|
can_omit_prototype_maps_ &= map->CanOmitPrototypeChecks();
|
|
if (prototype.is_identical_to(holder)) break;
|
|
prototype = Handle<JSObject>(JSObject::cast(prototype->GetPrototype()));
|
|
}
|
|
if (can_omit_prototype_maps_) {
|
|
// Mark in-flight compilation as dependent on those maps.
|
|
for (int i = 0; i < maps()->length(); i++) {
|
|
Handle<Map> map = maps()->at(i);
|
|
map->AddDependentCompilationInfo(DependentCode::kPrototypeCheckGroup,
|
|
info);
|
|
}
|
|
}
|
|
}
|
|
|
|
ZoneList<Handle<JSObject> >* prototypes() { return &prototypes_; }
|
|
|
|
ZoneList<Handle<Map> >* maps() { return &maps_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual intptr_t Hashcode() {
|
|
return first_prototype_unique_id_.Hashcode() * 17 +
|
|
last_prototype_unique_id_.Hashcode();
|
|
}
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
first_prototype_unique_id_ = UniqueValueId(prototypes_.first());
|
|
last_prototype_unique_id_ = UniqueValueId(prototypes_.last());
|
|
}
|
|
|
|
bool CanOmitPrototypeChecks() { return can_omit_prototype_maps_; }
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HCheckPrototypeMaps* b = HCheckPrototypeMaps::cast(other);
|
|
return first_prototype_unique_id_ == b->first_prototype_unique_id_ &&
|
|
last_prototype_unique_id_ == b->last_prototype_unique_id_;
|
|
}
|
|
|
|
private:
|
|
ZoneList<Handle<JSObject> > prototypes_;
|
|
ZoneList<Handle<Map> > maps_;
|
|
UniqueValueId first_prototype_unique_id_;
|
|
UniqueValueId last_prototype_unique_id_;
|
|
bool can_omit_prototype_maps_;
|
|
};
|
|
|
|
|
|
class InductionVariableData;
|
|
|
|
|
|
struct InductionVariableLimitUpdate {
|
|
InductionVariableData* updated_variable;
|
|
HValue* limit;
|
|
bool limit_is_upper;
|
|
bool limit_is_included;
|
|
|
|
InductionVariableLimitUpdate()
|
|
: updated_variable(NULL), limit(NULL),
|
|
limit_is_upper(false), limit_is_included(false) {}
|
|
};
|
|
|
|
|
|
class HBoundsCheck;
|
|
class HPhi;
|
|
class HConstant;
|
|
class HBitwise;
|
|
|
|
|
|
class InductionVariableData : public ZoneObject {
|
|
public:
|
|
class InductionVariableCheck : public ZoneObject {
|
|
public:
|
|
HBoundsCheck* check() { return check_; }
|
|
InductionVariableCheck* next() { return next_; }
|
|
bool HasUpperLimit() { return upper_limit_ >= 0; }
|
|
int32_t upper_limit() {
|
|
ASSERT(HasUpperLimit());
|
|
return upper_limit_;
|
|
}
|
|
void set_upper_limit(int32_t upper_limit) {
|
|
upper_limit_ = upper_limit;
|
|
}
|
|
|
|
bool processed() { return processed_; }
|
|
void set_processed() { processed_ = true; }
|
|
|
|
InductionVariableCheck(HBoundsCheck* check,
|
|
InductionVariableCheck* next,
|
|
int32_t upper_limit = kNoLimit)
|
|
: check_(check), next_(next), upper_limit_(upper_limit),
|
|
processed_(false) {}
|
|
|
|
private:
|
|
HBoundsCheck* check_;
|
|
InductionVariableCheck* next_;
|
|
int32_t upper_limit_;
|
|
bool processed_;
|
|
};
|
|
|
|
class ChecksRelatedToLength : public ZoneObject {
|
|
public:
|
|
HValue* length() { return length_; }
|
|
ChecksRelatedToLength* next() { return next_; }
|
|
InductionVariableCheck* checks() { return checks_; }
|
|
|
|
void AddCheck(HBoundsCheck* check, int32_t upper_limit = kNoLimit);
|
|
void CloseCurrentBlock();
|
|
|
|
ChecksRelatedToLength(HValue* length, ChecksRelatedToLength* next)
|
|
: length_(length), next_(next), checks_(NULL),
|
|
first_check_in_block_(NULL),
|
|
added_index_(NULL),
|
|
added_constant_(NULL),
|
|
current_and_mask_in_block_(0),
|
|
current_or_mask_in_block_(0) {}
|
|
|
|
private:
|
|
void UseNewIndexInCurrentBlock(Token::Value token,
|
|
int32_t mask,
|
|
HValue* index_base,
|
|
HValue* context);
|
|
|
|
HBoundsCheck* first_check_in_block() { return first_check_in_block_; }
|
|
HBitwise* added_index() { return added_index_; }
|
|
void set_added_index(HBitwise* index) { added_index_ = index; }
|
|
HConstant* added_constant() { return added_constant_; }
|
|
void set_added_constant(HConstant* constant) { added_constant_ = constant; }
|
|
int32_t current_and_mask_in_block() { return current_and_mask_in_block_; }
|
|
int32_t current_or_mask_in_block() { return current_or_mask_in_block_; }
|
|
int32_t current_upper_limit() { return current_upper_limit_; }
|
|
|
|
HValue* length_;
|
|
ChecksRelatedToLength* next_;
|
|
InductionVariableCheck* checks_;
|
|
|
|
HBoundsCheck* first_check_in_block_;
|
|
HBitwise* added_index_;
|
|
HConstant* added_constant_;
|
|
int32_t current_and_mask_in_block_;
|
|
int32_t current_or_mask_in_block_;
|
|
int32_t current_upper_limit_;
|
|
};
|
|
|
|
struct LimitFromPredecessorBlock {
|
|
InductionVariableData* variable;
|
|
Token::Value token;
|
|
HValue* limit;
|
|
HBasicBlock* other_target;
|
|
|
|
bool LimitIsValid() { return token != Token::ILLEGAL; }
|
|
|
|
bool LimitIsIncluded() {
|
|
return Token::IsEqualityOp(token) ||
|
|
token == Token::GTE || token == Token::LTE;
|
|
}
|
|
bool LimitIsUpper() {
|
|
return token == Token::LTE || token == Token::LT || token == Token::NE;
|
|
}
|
|
|
|
LimitFromPredecessorBlock()
|
|
: variable(NULL),
|
|
token(Token::ILLEGAL),
|
|
limit(NULL),
|
|
other_target(NULL) {}
|
|
};
|
|
|
|
static const int32_t kNoLimit = -1;
|
|
|
|
static InductionVariableData* ExaminePhi(HPhi* phi);
|
|
static void ComputeLimitFromPredecessorBlock(
|
|
HBasicBlock* block,
|
|
LimitFromPredecessorBlock* result);
|
|
static bool ComputeInductionVariableLimit(
|
|
HBasicBlock* block,
|
|
InductionVariableLimitUpdate* additional_limit);
|
|
|
|
struct BitwiseDecompositionResult {
|
|
HValue* base;
|
|
int32_t and_mask;
|
|
int32_t or_mask;
|
|
HValue* context;
|
|
|
|
BitwiseDecompositionResult()
|
|
: base(NULL), and_mask(0), or_mask(0), context(NULL) {}
|
|
};
|
|
static void DecomposeBitwise(HValue* value,
|
|
BitwiseDecompositionResult* result);
|
|
|
|
void AddCheck(HBoundsCheck* check, int32_t upper_limit = kNoLimit);
|
|
|
|
bool CheckIfBranchIsLoopGuard(Token::Value token,
|
|
HBasicBlock* current_branch,
|
|
HBasicBlock* other_branch);
|
|
|
|
void UpdateAdditionalLimit(InductionVariableLimitUpdate* update);
|
|
|
|
HPhi* phi() { return phi_; }
|
|
HValue* base() { return base_; }
|
|
int32_t increment() { return increment_; }
|
|
HValue* limit() { return limit_; }
|
|
bool limit_included() { return limit_included_; }
|
|
HBasicBlock* limit_validity() { return limit_validity_; }
|
|
HBasicBlock* induction_exit_block() { return induction_exit_block_; }
|
|
HBasicBlock* induction_exit_target() { return induction_exit_target_; }
|
|
ChecksRelatedToLength* checks() { return checks_; }
|
|
HValue* additional_upper_limit() { return additional_upper_limit_; }
|
|
bool additional_upper_limit_is_included() {
|
|
return additional_upper_limit_is_included_;
|
|
}
|
|
HValue* additional_lower_limit() { return additional_lower_limit_; }
|
|
bool additional_lower_limit_is_included() {
|
|
return additional_lower_limit_is_included_;
|
|
}
|
|
|
|
bool LowerLimitIsNonNegativeConstant() {
|
|
if (base()->IsInteger32Constant() && base()->GetInteger32Constant() >= 0) {
|
|
return true;
|
|
}
|
|
if (additional_lower_limit() != NULL &&
|
|
additional_lower_limit()->IsInteger32Constant() &&
|
|
additional_lower_limit()->GetInteger32Constant() >= 0) {
|
|
// Ignoring the corner case of !additional_lower_limit_is_included()
|
|
// is safe, handling it adds unneeded complexity.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int32_t ComputeUpperLimit(int32_t and_mask, int32_t or_mask);
|
|
|
|
private:
|
|
template <class T> void swap(T* a, T* b) {
|
|
T c(*a);
|
|
*a = *b;
|
|
*b = c;
|
|
}
|
|
|
|
InductionVariableData(HPhi* phi, HValue* base, int32_t increment)
|
|
: phi_(phi), base_(IgnoreOsrValue(base)), increment_(increment),
|
|
limit_(NULL), limit_included_(false), limit_validity_(NULL),
|
|
induction_exit_block_(NULL), induction_exit_target_(NULL),
|
|
checks_(NULL),
|
|
additional_upper_limit_(NULL),
|
|
additional_upper_limit_is_included_(false),
|
|
additional_lower_limit_(NULL),
|
|
additional_lower_limit_is_included_(false) {}
|
|
|
|
static int32_t ComputeIncrement(HPhi* phi, HValue* phi_operand);
|
|
|
|
static HValue* IgnoreOsrValue(HValue* v);
|
|
static InductionVariableData* GetInductionVariableData(HValue* v);
|
|
|
|
HPhi* phi_;
|
|
HValue* base_;
|
|
int32_t increment_;
|
|
HValue* limit_;
|
|
bool limit_included_;
|
|
HBasicBlock* limit_validity_;
|
|
HBasicBlock* induction_exit_block_;
|
|
HBasicBlock* induction_exit_target_;
|
|
ChecksRelatedToLength* checks_;
|
|
HValue* additional_upper_limit_;
|
|
bool additional_upper_limit_is_included_;
|
|
HValue* additional_lower_limit_;
|
|
bool additional_lower_limit_is_included_;
|
|
};
|
|
|
|
|
|
class HPhi: public HValue {
|
|
public:
|
|
HPhi(int merged_index, Zone* zone)
|
|
: inputs_(2, zone),
|
|
merged_index_(merged_index),
|
|
phi_id_(-1),
|
|
induction_variable_data_(NULL) {
|
|
for (int i = 0; i < Representation::kNumRepresentations; i++) {
|
|
non_phi_uses_[i] = 0;
|
|
indirect_uses_[i] = 0;
|
|
}
|
|
ASSERT(merged_index >= 0);
|
|
SetFlag(kFlexibleRepresentation);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual Representation RepresentationFromInputs();
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return representation();
|
|
}
|
|
virtual Representation KnownOptimalRepresentation() {
|
|
return representation();
|
|
}
|
|
virtual HType CalculateInferredType();
|
|
virtual int OperandCount() { return inputs_.length(); }
|
|
virtual HValue* OperandAt(int index) const { return inputs_[index]; }
|
|
HValue* GetRedundantReplacement();
|
|
void AddInput(HValue* value);
|
|
bool HasRealUses();
|
|
|
|
bool IsReceiver() const { return merged_index_ == 0; }
|
|
|
|
int merged_index() const { return merged_index_; }
|
|
|
|
InductionVariableData* induction_variable_data() {
|
|
return induction_variable_data_;
|
|
}
|
|
bool IsInductionVariable() {
|
|
return induction_variable_data_ != NULL;
|
|
}
|
|
bool IsLimitedInductionVariable() {
|
|
return IsInductionVariable() &&
|
|
induction_variable_data_->limit() != NULL;
|
|
}
|
|
void DetectInductionVariable() {
|
|
ASSERT(induction_variable_data_ == NULL);
|
|
induction_variable_data_ = InductionVariableData::ExaminePhi(this);
|
|
}
|
|
|
|
virtual void AddInformativeDefinitions();
|
|
|
|
virtual void PrintTo(StringStream* stream);
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify();
|
|
#endif
|
|
|
|
void InitRealUses(int id);
|
|
void AddNonPhiUsesFrom(HPhi* other);
|
|
void AddIndirectUsesTo(int* use_count);
|
|
|
|
int tagged_non_phi_uses() const {
|
|
return non_phi_uses_[Representation::kTagged];
|
|
}
|
|
int smi_non_phi_uses() const {
|
|
return non_phi_uses_[Representation::kSmi];
|
|
}
|
|
int int32_non_phi_uses() const {
|
|
return non_phi_uses_[Representation::kInteger32];
|
|
}
|
|
int double_non_phi_uses() const {
|
|
return non_phi_uses_[Representation::kDouble];
|
|
}
|
|
int tagged_indirect_uses() const {
|
|
return indirect_uses_[Representation::kTagged];
|
|
}
|
|
int smi_indirect_uses() const {
|
|
return indirect_uses_[Representation::kSmi];
|
|
}
|
|
int int32_indirect_uses() const {
|
|
return indirect_uses_[Representation::kInteger32];
|
|
}
|
|
int double_indirect_uses() const {
|
|
return indirect_uses_[Representation::kDouble];
|
|
}
|
|
int phi_id() { return phi_id_; }
|
|
|
|
static HPhi* cast(HValue* value) {
|
|
ASSERT(value->IsPhi());
|
|
return reinterpret_cast<HPhi*>(value);
|
|
}
|
|
virtual Opcode opcode() const { return HValue::kPhi; }
|
|
|
|
void SimplifyConstantInputs();
|
|
|
|
// TODO(titzer): we can't eliminate the receiver for generating backtraces
|
|
virtual bool IsDeletable() const { return !IsReceiver(); }
|
|
|
|
protected:
|
|
virtual void DeleteFromGraph();
|
|
virtual void InternalSetOperandAt(int index, HValue* value) {
|
|
inputs_[index] = value;
|
|
}
|
|
|
|
virtual bool IsRelationTrueInternal(NumericRelation relation,
|
|
HValue* other,
|
|
int offset = 0,
|
|
int scale = 0);
|
|
|
|
private:
|
|
ZoneList<HValue*> inputs_;
|
|
int merged_index_;
|
|
|
|
int non_phi_uses_[Representation::kNumRepresentations];
|
|
int indirect_uses_[Representation::kNumRepresentations];
|
|
int phi_id_;
|
|
InductionVariableData* induction_variable_data_;
|
|
};
|
|
|
|
|
|
class HInductionVariableAnnotation : public HUnaryOperation {
|
|
public:
|
|
static HInductionVariableAnnotation* AddToGraph(HPhi* phi,
|
|
NumericRelation relation,
|
|
int operand_index);
|
|
|
|
NumericRelation relation() { return relation_; }
|
|
HValue* induction_base() { return phi_->OperandAt(operand_index_); }
|
|
|
|
virtual int RedefinedOperandIndex() { return 0; }
|
|
virtual bool IsPurelyInformativeDefinition() { return true; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return representation();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual bool IsRelationTrueInternal(NumericRelation other_relation,
|
|
HValue* other_related_value,
|
|
int offset = 0,
|
|
int scale = 0) {
|
|
if (induction_base() == other_related_value) {
|
|
return relation().CompoundImplies(other_relation, offset, scale);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InductionVariableAnnotation)
|
|
|
|
private:
|
|
HInductionVariableAnnotation(HPhi* phi,
|
|
NumericRelation relation,
|
|
int operand_index)
|
|
: HUnaryOperation(phi),
|
|
phi_(phi), relation_(relation), operand_index_(operand_index) {
|
|
}
|
|
|
|
// We need to store the phi both here and in the instruction operand because
|
|
// the operand can change if a new idef of the phi is added between the phi
|
|
// and this instruction (inserting an idef updates every use).
|
|
HPhi* phi_;
|
|
NumericRelation relation_;
|
|
int operand_index_;
|
|
};
|
|
|
|
|
|
class HArgumentsObject: public HTemplateInstruction<0> {
|
|
public:
|
|
HArgumentsObject(int count, Zone* zone) : values_(count, zone) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kIsArguments);
|
|
}
|
|
|
|
const ZoneList<HValue*>* arguments_values() const { return &values_; }
|
|
int arguments_count() const { return values_.length(); }
|
|
|
|
void AddArgument(HValue* argument, Zone* zone) {
|
|
values_.Add(NULL, zone); // Resize list.
|
|
SetOperandAt(values_.length() - 1, argument);
|
|
}
|
|
|
|
virtual int OperandCount() { return values_.length(); }
|
|
virtual HValue* OperandAt(int index) const { return values_[index]; }
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return false; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ArgumentsObject)
|
|
|
|
protected:
|
|
virtual void InternalSetOperandAt(int index, HValue* value) {
|
|
values_[index] = value;
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
ZoneList<HValue*> values_;
|
|
};
|
|
|
|
|
|
class HConstant: public HTemplateInstruction<0> {
|
|
public:
|
|
HConstant(Handle<Object> handle, Representation r = Representation::None());
|
|
HConstant(int32_t value,
|
|
Representation r = Representation::None(),
|
|
bool is_not_in_new_space = true,
|
|
Handle<Object> optional_handle = Handle<Object>::null());
|
|
HConstant(double value,
|
|
Representation r = Representation::None(),
|
|
bool is_not_in_new_space = true,
|
|
Handle<Object> optional_handle = Handle<Object>::null());
|
|
HConstant(Handle<Object> handle,
|
|
UniqueValueId unique_id,
|
|
Representation r,
|
|
HType type,
|
|
bool is_internalized_string,
|
|
bool is_not_in_new_space,
|
|
bool is_cell,
|
|
bool boolean_value);
|
|
|
|
Handle<Object> handle() {
|
|
if (handle_.is_null()) {
|
|
Factory* factory = Isolate::Current()->factory();
|
|
// Default arguments to is_not_in_new_space depend on this heap number
|
|
// to be tenured so that it's guaranteed not be be located in new space.
|
|
handle_ = factory->NewNumber(double_value_, TENURED);
|
|
}
|
|
AllowDeferredHandleDereference smi_check;
|
|
ASSERT(has_int32_value_ || !handle_->IsSmi());
|
|
return handle_;
|
|
}
|
|
|
|
bool InstanceOf(Handle<Map> map) {
|
|
return handle_->IsJSObject() &&
|
|
Handle<JSObject>::cast(handle_)->map() == *map;
|
|
}
|
|
|
|
bool IsSpecialDouble() const {
|
|
return has_double_value_ &&
|
|
(BitCast<int64_t>(double_value_) == BitCast<int64_t>(-0.0) ||
|
|
FixedDoubleArray::is_the_hole_nan(double_value_) ||
|
|
std::isnan(double_value_));
|
|
}
|
|
|
|
bool NotInNewSpace() const {
|
|
return is_not_in_new_space_;
|
|
}
|
|
|
|
bool ImmortalImmovable() const {
|
|
if (has_int32_value_) {
|
|
return false;
|
|
}
|
|
if (has_double_value_) {
|
|
if (IsSpecialDouble()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ASSERT(!handle_.is_null());
|
|
Heap* heap = isolate()->heap();
|
|
ASSERT(unique_id_ != UniqueValueId(heap->minus_zero_value()));
|
|
ASSERT(unique_id_ != UniqueValueId(heap->nan_value()));
|
|
return unique_id_ == UniqueValueId(heap->undefined_value()) ||
|
|
unique_id_ == UniqueValueId(heap->null_value()) ||
|
|
unique_id_ == UniqueValueId(heap->true_value()) ||
|
|
unique_id_ == UniqueValueId(heap->false_value()) ||
|
|
unique_id_ == UniqueValueId(heap->the_hole_value()) ||
|
|
unique_id_ == UniqueValueId(heap->empty_string());
|
|
}
|
|
|
|
bool IsCell() const {
|
|
return is_cell_;
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual Representation KnownOptimalRepresentation() {
|
|
if (HasSmiValue() && kSmiValueSize == 31) return Representation::Smi();
|
|
if (HasInteger32Value()) return Representation::Integer32();
|
|
if (HasNumberValue()) return Representation::Double();
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual bool EmitAtUses();
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
virtual HType CalculateInferredType();
|
|
bool IsInteger() { return handle()->IsSmi(); }
|
|
HConstant* CopyToRepresentation(Representation r, Zone* zone) const;
|
|
Maybe<HConstant*> CopyToTruncatedInt32(Zone* zone);
|
|
Maybe<HConstant*> CopyToTruncatedNumber(Zone* zone);
|
|
bool HasInteger32Value() const { return has_int32_value_; }
|
|
int32_t Integer32Value() const {
|
|
ASSERT(HasInteger32Value());
|
|
return int32_value_;
|
|
}
|
|
bool HasSmiValue() const { return has_smi_value_; }
|
|
bool HasDoubleValue() const { return has_double_value_; }
|
|
double DoubleValue() const {
|
|
ASSERT(HasDoubleValue());
|
|
return double_value_;
|
|
}
|
|
bool IsTheHole() const {
|
|
if (HasDoubleValue() && FixedDoubleArray::is_the_hole_nan(double_value_)) {
|
|
return true;
|
|
}
|
|
Heap* heap = isolate()->heap();
|
|
if (!handle_.is_null() && *handle_ == heap->the_hole_value()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool HasNumberValue() const { return has_double_value_; }
|
|
int32_t NumberValueAsInteger32() const {
|
|
ASSERT(HasNumberValue());
|
|
// Irrespective of whether a numeric HConstant can be safely
|
|
// represented as an int32, we store the (in some cases lossy)
|
|
// representation of the number in int32_value_.
|
|
return int32_value_;
|
|
}
|
|
bool HasStringValue() const {
|
|
if (has_double_value_ || has_int32_value_) return false;
|
|
ASSERT(!handle_.is_null());
|
|
return type_from_value_.IsString();
|
|
}
|
|
Handle<String> StringValue() const {
|
|
ASSERT(HasStringValue());
|
|
return Handle<String>::cast(handle_);
|
|
}
|
|
bool HasInternalizedStringValue() const {
|
|
return HasStringValue() && is_internalized_string_;
|
|
}
|
|
|
|
bool BooleanValue() const { return boolean_value_; }
|
|
|
|
virtual intptr_t Hashcode() {
|
|
if (has_int32_value_) {
|
|
return static_cast<intptr_t>(int32_value_);
|
|
} else if (has_double_value_) {
|
|
return static_cast<intptr_t>(BitCast<int64_t>(double_value_));
|
|
} else {
|
|
ASSERT(!handle_.is_null());
|
|
return unique_id_.Hashcode();
|
|
}
|
|
}
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
if (!has_double_value_) {
|
|
ASSERT(!handle_.is_null());
|
|
unique_id_ = UniqueValueId(handle_);
|
|
}
|
|
}
|
|
|
|
bool UniqueValueIdsMatch(UniqueValueId other) {
|
|
return !has_double_value_ && unique_id_ == other;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
virtual void Verify() { }
|
|
#endif
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Constant)
|
|
|
|
protected:
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual bool DataEquals(HValue* other) {
|
|
HConstant* other_constant = HConstant::cast(other);
|
|
if (has_int32_value_) {
|
|
return other_constant->has_int32_value_ &&
|
|
int32_value_ == other_constant->int32_value_;
|
|
} else if (has_double_value_) {
|
|
return other_constant->has_double_value_ &&
|
|
BitCast<int64_t>(double_value_) ==
|
|
BitCast<int64_t>(other_constant->double_value_);
|
|
} else {
|
|
ASSERT(!handle_.is_null());
|
|
return !other_constant->handle_.is_null() &&
|
|
unique_id_ == other_constant->unique_id_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
void Initialize(Representation r);
|
|
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
// If this is a numerical constant, handle_ either points to to the
|
|
// HeapObject the constant originated from or is null. If the
|
|
// constant is non-numeric, handle_ always points to a valid
|
|
// constant HeapObject.
|
|
Handle<Object> handle_;
|
|
UniqueValueId unique_id_;
|
|
|
|
// We store the HConstant in the most specific form safely possible.
|
|
// The two flags, has_int32_value_ and has_double_value_ tell us if
|
|
// int32_value_ and double_value_ hold valid, safe representations
|
|
// of the constant. has_int32_value_ implies has_double_value_ but
|
|
// not the converse.
|
|
bool has_smi_value_ : 1;
|
|
bool has_int32_value_ : 1;
|
|
bool has_double_value_ : 1;
|
|
bool is_internalized_string_ : 1; // TODO(yangguo): make this part of HType.
|
|
bool is_not_in_new_space_ : 1;
|
|
bool is_cell_ : 1;
|
|
bool boolean_value_ : 1;
|
|
int32_t int32_value_;
|
|
double double_value_;
|
|
HType type_from_value_;
|
|
};
|
|
|
|
|
|
class HBinaryOperation: public HTemplateInstruction<3> {
|
|
public:
|
|
HBinaryOperation(HValue* context, HValue* left, HValue* right)
|
|
: observed_output_representation_(Representation::None()) {
|
|
ASSERT(left != NULL && right != NULL);
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, left);
|
|
SetOperandAt(2, right);
|
|
observed_input_representation_[0] = Representation::None();
|
|
observed_input_representation_[1] = Representation::None();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* left() { return OperandAt(1); }
|
|
HValue* right() { return OperandAt(2); }
|
|
|
|
// True if switching left and right operands likely generates better code.
|
|
bool AreOperandsBetterSwitched() {
|
|
if (!IsCommutative()) return false;
|
|
|
|
// Constant operands are better off on the right, they can be inlined in
|
|
// many situations on most platforms.
|
|
if (left()->IsConstant()) return true;
|
|
if (right()->IsConstant()) return false;
|
|
|
|
// Otherwise, if there is only one use of the right operand, it would be
|
|
// better off on the left for platforms that only have 2-arg arithmetic
|
|
// ops (e.g ia32, x64) that clobber the left operand.
|
|
return right()->UseCount() == 1;
|
|
}
|
|
|
|
HValue* BetterLeftOperand() {
|
|
return AreOperandsBetterSwitched() ? right() : left();
|
|
}
|
|
|
|
HValue* BetterRightOperand() {
|
|
return AreOperandsBetterSwitched() ? left() : right();
|
|
}
|
|
|
|
void set_observed_input_representation(int index, Representation rep) {
|
|
ASSERT(index >= 1 && index <= 2);
|
|
observed_input_representation_[index - 1] = rep;
|
|
}
|
|
|
|
virtual void initialize_output_representation(Representation observed) {
|
|
observed_output_representation_ = observed;
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
if (index == 0) return Representation::Tagged();
|
|
return observed_input_representation_[index - 1];
|
|
}
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
Representation rep = !FLAG_smi_binop && new_rep.IsSmi()
|
|
? Representation::Integer32() : new_rep;
|
|
HValue::UpdateRepresentation(rep, h_infer, reason);
|
|
}
|
|
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
virtual Representation RepresentationFromInputs();
|
|
Representation RepresentationFromOutput();
|
|
virtual void AssumeRepresentation(Representation r);
|
|
|
|
virtual bool IsCommutative() const { return false; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
if (index == 0) return Representation::Tagged();
|
|
return representation();
|
|
}
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation)
|
|
|
|
private:
|
|
bool IgnoreObservedOutputRepresentation(Representation current_rep);
|
|
|
|
Representation observed_input_representation_[2];
|
|
Representation observed_output_representation_;
|
|
};
|
|
|
|
|
|
class HWrapReceiver: public HTemplateInstruction<2> {
|
|
public:
|
|
HWrapReceiver(HValue* receiver, HValue* function) {
|
|
set_representation(Representation::Tagged());
|
|
SetOperandAt(0, receiver);
|
|
SetOperandAt(1, function);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* receiver() { return OperandAt(0); }
|
|
HValue* function() { return OperandAt(1); }
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(WrapReceiver)
|
|
};
|
|
|
|
|
|
class HApplyArguments: public HTemplateInstruction<4> {
|
|
public:
|
|
HApplyArguments(HValue* function,
|
|
HValue* receiver,
|
|
HValue* length,
|
|
HValue* elements) {
|
|
set_representation(Representation::Tagged());
|
|
SetOperandAt(0, function);
|
|
SetOperandAt(1, receiver);
|
|
SetOperandAt(2, length);
|
|
SetOperandAt(3, elements);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// The length is untagged, all other inputs are tagged.
|
|
return (index == 2)
|
|
? Representation::Integer32()
|
|
: Representation::Tagged();
|
|
}
|
|
|
|
HValue* function() { return OperandAt(0); }
|
|
HValue* receiver() { return OperandAt(1); }
|
|
HValue* length() { return OperandAt(2); }
|
|
HValue* elements() { return OperandAt(3); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments)
|
|
};
|
|
|
|
|
|
class HArgumentsElements: public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HArgumentsElements(bool from_inlined) : from_inlined_(from_inlined) {
|
|
// The value produced by this instruction is a pointer into the stack
|
|
// that looks as if it was a smi because of alignment.
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
bool from_inlined() const { return from_inlined_; }
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
bool from_inlined_;
|
|
};
|
|
|
|
|
|
class HArgumentsLength: public HUnaryOperation {
|
|
public:
|
|
explicit HArgumentsLength(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HAccessArgumentsAt: public HTemplateInstruction<3> {
|
|
public:
|
|
HAccessArgumentsAt(HValue* arguments, HValue* length, HValue* index) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetOperandAt(0, arguments);
|
|
SetOperandAt(1, length);
|
|
SetOperandAt(2, index);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// The arguments elements is considered tagged.
|
|
return index == 0
|
|
? Representation::Tagged()
|
|
: Representation::Integer32();
|
|
}
|
|
|
|
HValue* arguments() { return OperandAt(0); }
|
|
HValue* length() { return OperandAt(1); }
|
|
HValue* index() { return OperandAt(2); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt)
|
|
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
|
|
class HBoundsCheckBaseIndexInformation;
|
|
|
|
|
|
class HBoundsCheck: public HTemplateInstruction<2> {
|
|
public:
|
|
// Normally HBoundsCheck should be created using the
|
|
// HGraphBuilder::AddBoundsCheck() helper.
|
|
// However when building stubs, where we know that the arguments are Int32,
|
|
// it makes sense to invoke this constructor directly.
|
|
HBoundsCheck(HValue* index, HValue* length)
|
|
: skip_check_(false),
|
|
base_(NULL), offset_(0), scale_(0),
|
|
responsibility_direction_(DIRECTION_NONE),
|
|
allow_equality_(false) {
|
|
SetOperandAt(0, index);
|
|
SetOperandAt(1, length);
|
|
SetFlag(kFlexibleRepresentation);
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
bool skip_check() const { return skip_check_; }
|
|
void set_skip_check() { skip_check_ = true; }
|
|
HValue* base() { return base_; }
|
|
int offset() { return offset_; }
|
|
int scale() { return scale_; }
|
|
bool index_can_increase() {
|
|
return (responsibility_direction_ & DIRECTION_LOWER) == 0;
|
|
}
|
|
bool index_can_decrease() {
|
|
return (responsibility_direction_ & DIRECTION_UPPER) == 0;
|
|
}
|
|
|
|
void ApplyIndexChange();
|
|
bool DetectCompoundIndex() {
|
|
ASSERT(base() == NULL);
|
|
|
|
DecompositionResult decomposition;
|
|
if (index()->TryDecompose(&decomposition)) {
|
|
base_ = decomposition.base();
|
|
offset_ = decomposition.offset();
|
|
scale_ = decomposition.scale();
|
|
return true;
|
|
} else {
|
|
base_ = index();
|
|
offset_ = 0;
|
|
scale_ = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int arg_index) {
|
|
return representation();
|
|
}
|
|
virtual bool IsDeletable() const {
|
|
return skip_check() && !FLAG_debug_code;
|
|
}
|
|
|
|
virtual bool IsRelationTrueInternal(NumericRelation relation,
|
|
HValue* related_value,
|
|
int offset = 0,
|
|
int scale = 0);
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
|
|
HValue* index() { return OperandAt(0); }
|
|
HValue* length() { return OperandAt(1); }
|
|
bool allow_equality() { return allow_equality_; }
|
|
void set_allow_equality(bool v) { allow_equality_ = v; }
|
|
|
|
virtual int RedefinedOperandIndex() { return 0; }
|
|
virtual bool IsPurelyInformativeDefinition() { return skip_check(); }
|
|
virtual void AddInformativeDefinitions();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck)
|
|
|
|
protected:
|
|
friend class HBoundsCheckBaseIndexInformation;
|
|
|
|
virtual void SetResponsibilityForRange(RangeGuaranteeDirection direction) {
|
|
responsibility_direction_ = static_cast<RangeGuaranteeDirection>(
|
|
responsibility_direction_ | direction);
|
|
}
|
|
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
virtual void TryGuaranteeRangeChanging(RangeEvaluationContext* context);
|
|
bool skip_check_;
|
|
HValue* base_;
|
|
int offset_;
|
|
int scale_;
|
|
RangeGuaranteeDirection responsibility_direction_;
|
|
bool allow_equality_;
|
|
};
|
|
|
|
|
|
class HBoundsCheckBaseIndexInformation: public HTemplateInstruction<2> {
|
|
public:
|
|
explicit HBoundsCheckBaseIndexInformation(HBoundsCheck* check) {
|
|
DecompositionResult decomposition;
|
|
if (check->index()->TryDecompose(&decomposition)) {
|
|
SetOperandAt(0, decomposition.base());
|
|
SetOperandAt(1, check);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
HValue* base_index() { return OperandAt(0); }
|
|
HBoundsCheck* bounds_check() { return HBoundsCheck::cast(OperandAt(1)); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(BoundsCheckBaseIndexInformation)
|
|
|
|
virtual Representation RequiredInputRepresentation(int arg_index) {
|
|
return representation();
|
|
}
|
|
|
|
virtual bool IsRelationTrueInternal(NumericRelation relation,
|
|
HValue* related_value,
|
|
int offset = 0,
|
|
int scale = 0);
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual int RedefinedOperandIndex() { return 0; }
|
|
virtual bool IsPurelyInformativeDefinition() { return true; }
|
|
|
|
protected:
|
|
virtual void SetResponsibilityForRange(RangeGuaranteeDirection direction) {
|
|
bounds_check()->SetResponsibilityForRange(direction);
|
|
}
|
|
virtual void TryGuaranteeRangeChanging(RangeEvaluationContext* context) {
|
|
bounds_check()->TryGuaranteeRangeChanging(context);
|
|
}
|
|
};
|
|
|
|
|
|
class HBitwiseBinaryOperation: public HBinaryOperation {
|
|
public:
|
|
HBitwiseBinaryOperation(HValue* context, HValue* left, HValue* right)
|
|
: HBinaryOperation(context, left, right) {
|
|
SetFlag(kFlexibleRepresentation);
|
|
SetFlag(kTruncatingToInt32);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual void RepresentationChanged(Representation to) {
|
|
if (!to.IsTagged()) {
|
|
ASSERT(to.IsSmiOrInteger32());
|
|
ClearAllSideEffects();
|
|
SetFlag(kUseGVN);
|
|
} else {
|
|
SetAllSideEffects();
|
|
ClearFlag(kUseGVN);
|
|
}
|
|
}
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
// We only generate either int32 or generic tagged bitwise operations.
|
|
if (new_rep.IsDouble()) new_rep = Representation::Integer32();
|
|
HBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
Representation r = HBinaryOperation::observed_input_representation(index);
|
|
if (r.IsDouble()) return Representation::Integer32();
|
|
return r;
|
|
}
|
|
|
|
virtual void initialize_output_representation(Representation observed) {
|
|
if (observed.IsDouble()) observed = Representation::Integer32();
|
|
HBinaryOperation::initialize_output_representation(observed);
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(BitwiseBinaryOperation)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HMathFloorOfDiv: public HBinaryOperation {
|
|
public:
|
|
HMathFloorOfDiv(HValue* context, HValue* left, HValue* right)
|
|
: HBinaryOperation(context, left, right) {
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kUseGVN);
|
|
SetFlag(kCanOverflow);
|
|
if (!right->IsConstant()) {
|
|
SetFlag(kCanBeDivByZero);
|
|
}
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Integer32();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HArithmeticBinaryOperation: public HBinaryOperation {
|
|
public:
|
|
HArithmeticBinaryOperation(HValue* context, HValue* left, HValue* right)
|
|
: HBinaryOperation(context, left, right) {
|
|
SetAllSideEffects();
|
|
SetFlag(kFlexibleRepresentation);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
virtual void RepresentationChanged(Representation to) {
|
|
if (to.IsTagged()) {
|
|
SetAllSideEffects();
|
|
ClearFlag(kUseGVN);
|
|
} else {
|
|
ClearAllSideEffects();
|
|
SetFlag(kUseGVN);
|
|
}
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(ArithmeticBinaryOperation)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HCompareGeneric: public HBinaryOperation {
|
|
public:
|
|
HCompareGeneric(HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
Token::Value token)
|
|
: HBinaryOperation(context, left, right), token_(token) {
|
|
ASSERT(Token::IsCompareOp(token));
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return index == 0
|
|
? Representation::Tagged()
|
|
: representation();
|
|
}
|
|
|
|
Token::Value token() const { return token_; }
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CompareGeneric)
|
|
|
|
private:
|
|
Token::Value token_;
|
|
};
|
|
|
|
|
|
class HCompareNumericAndBranch: public HTemplateControlInstruction<2, 2> {
|
|
public:
|
|
HCompareNumericAndBranch(HValue* left, HValue* right, Token::Value token)
|
|
: token_(token) {
|
|
SetFlag(kFlexibleRepresentation);
|
|
ASSERT(Token::IsCompareOp(token));
|
|
SetOperandAt(0, left);
|
|
SetOperandAt(1, right);
|
|
}
|
|
|
|
HValue* left() { return OperandAt(0); }
|
|
HValue* right() { return OperandAt(1); }
|
|
Token::Value token() const { return token_; }
|
|
|
|
void set_observed_input_representation(Representation left,
|
|
Representation right) {
|
|
observed_input_representation_[0] = left;
|
|
observed_input_representation_[1] = right;
|
|
}
|
|
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return representation();
|
|
}
|
|
virtual Representation observed_input_representation(int index) {
|
|
return observed_input_representation_[index];
|
|
}
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual void AddInformativeDefinitions();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch)
|
|
|
|
private:
|
|
Representation observed_input_representation_[2];
|
|
Token::Value token_;
|
|
};
|
|
|
|
|
|
class HCompareObjectEqAndBranch: public HTemplateControlInstruction<2, 2> {
|
|
public:
|
|
HCompareObjectEqAndBranch(HValue* left, HValue* right) {
|
|
SetOperandAt(0, left);
|
|
SetOperandAt(1, right);
|
|
}
|
|
|
|
HValue* left() { return OperandAt(0); }
|
|
HValue* right() { return OperandAt(1); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CompareObjectEqAndBranch)
|
|
};
|
|
|
|
|
|
class HIsObjectAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HIsObjectAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch)
|
|
};
|
|
|
|
class HIsStringAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HIsStringAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch)
|
|
};
|
|
|
|
|
|
class HIsSmiAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HIsSmiAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) { }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
|
|
class HIsUndetectableAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HIsUndetectableAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch)
|
|
};
|
|
|
|
|
|
class HStringCompareAndBranch: public HTemplateControlInstruction<2, 3> {
|
|
public:
|
|
HStringCompareAndBranch(HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
Token::Value token)
|
|
: token_(token) {
|
|
ASSERT(Token::IsCompareOp(token));
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, left);
|
|
SetOperandAt(2, right);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* left() { return OperandAt(1); }
|
|
HValue* right() { return OperandAt(2); }
|
|
Token::Value token() const { return token_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
Representation GetInputRepresentation() const {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch)
|
|
|
|
private:
|
|
Token::Value token_;
|
|
};
|
|
|
|
|
|
class HIsConstructCallAndBranch: public HTemplateControlInstruction<2, 0> {
|
|
public:
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch)
|
|
};
|
|
|
|
|
|
class HHasInstanceTypeAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
HHasInstanceTypeAndBranch(HValue* value, InstanceType type)
|
|
: HUnaryControlInstruction(value, NULL, NULL), from_(type), to_(type) { }
|
|
HHasInstanceTypeAndBranch(HValue* value, InstanceType from, InstanceType to)
|
|
: HUnaryControlInstruction(value, NULL, NULL), from_(from), to_(to) {
|
|
ASSERT(to == LAST_TYPE); // Others not implemented yet in backend.
|
|
}
|
|
|
|
InstanceType from() { return from_; }
|
|
InstanceType to() { return to_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch)
|
|
|
|
private:
|
|
InstanceType from_;
|
|
InstanceType to_; // Inclusive range, not all combinations work.
|
|
};
|
|
|
|
|
|
class HHasCachedArrayIndexAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
explicit HHasCachedArrayIndexAndBranch(HValue* value)
|
|
: HUnaryControlInstruction(value, NULL, NULL) { }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch)
|
|
};
|
|
|
|
|
|
class HGetCachedArrayIndex: public HUnaryOperation {
|
|
public:
|
|
explicit HGetCachedArrayIndex(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HClassOfTestAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
HClassOfTestAndBranch(HValue* value, Handle<String> class_name)
|
|
: HUnaryControlInstruction(value, NULL, NULL),
|
|
class_name_(class_name) { }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
Handle<String> class_name() const { return class_name_; }
|
|
|
|
private:
|
|
Handle<String> class_name_;
|
|
};
|
|
|
|
|
|
class HTypeofIsAndBranch: public HUnaryControlInstruction {
|
|
public:
|
|
HTypeofIsAndBranch(HValue* value, Handle<String> type_literal)
|
|
: HUnaryControlInstruction(value, NULL, NULL),
|
|
type_literal_(type_literal) { }
|
|
|
|
Handle<String> type_literal() { return type_literal_; }
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch)
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
private:
|
|
Handle<String> type_literal_;
|
|
};
|
|
|
|
|
|
class HInstanceOf: public HBinaryOperation {
|
|
public:
|
|
HInstanceOf(HValue* context, HValue* left, HValue* right)
|
|
: HBinaryOperation(context, left, right) {
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InstanceOf)
|
|
};
|
|
|
|
|
|
class HInstanceOfKnownGlobal: public HTemplateInstruction<2> {
|
|
public:
|
|
HInstanceOfKnownGlobal(HValue* context,
|
|
HValue* left,
|
|
Handle<JSFunction> right)
|
|
: function_(right) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, left);
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* left() { return OperandAt(1); }
|
|
Handle<JSFunction> function() { return function_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal)
|
|
|
|
private:
|
|
Handle<JSFunction> function_;
|
|
};
|
|
|
|
|
|
// TODO(mstarzinger): This instruction should be modeled as a load of the map
|
|
// field followed by a load of the instance size field once HLoadNamedField is
|
|
// flexible enough to accommodate byte-field loads.
|
|
class HInstanceSize: public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HInstanceSize(HValue* object) {
|
|
SetOperandAt(0, object);
|
|
set_representation(Representation::Integer32());
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InstanceSize)
|
|
};
|
|
|
|
|
|
class HPower: public HTemplateInstruction<2> {
|
|
public:
|
|
static HInstruction* New(Zone* zone, HValue* left, HValue* right);
|
|
|
|
HValue* left() { return OperandAt(0); }
|
|
HValue* right() const { return OperandAt(1); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return index == 0
|
|
? Representation::Double()
|
|
: Representation::None();
|
|
}
|
|
virtual Representation observed_input_representation(int index) {
|
|
return RequiredInputRepresentation(index);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Power)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
HPower(HValue* left, HValue* right) {
|
|
SetOperandAt(0, left);
|
|
SetOperandAt(1, right);
|
|
set_representation(Representation::Double());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
virtual bool IsDeletable() const {
|
|
return !right()->representation().IsTagged();
|
|
}
|
|
};
|
|
|
|
|
|
class HRandom: public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HRandom(HValue* global_object) {
|
|
SetOperandAt(0, global_object);
|
|
set_representation(Representation::Double());
|
|
}
|
|
|
|
HValue* global_object() { return OperandAt(0); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Random)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HAdd: public HArithmeticBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
// Add is only commutative if two integer values are added and not if two
|
|
// tagged values are added (because it might be a String concatenation).
|
|
virtual bool IsCommutative() const {
|
|
return !representation().IsTagged();
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual HType CalculateInferredType();
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual bool TryDecompose(DecompositionResult* decomposition) {
|
|
if (left()->IsInteger32Constant()) {
|
|
decomposition->Apply(right(), left()->GetInteger32Constant());
|
|
return true;
|
|
} else if (right()->IsInteger32Constant()) {
|
|
decomposition->Apply(left(), right()->GetInteger32Constant());
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Add)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HAdd(HValue* context, HValue* left, HValue* right)
|
|
: HArithmeticBinaryOperation(context, left, right) {
|
|
SetFlag(kCanOverflow);
|
|
}
|
|
};
|
|
|
|
|
|
class HSub: public HArithmeticBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual bool TryDecompose(DecompositionResult* decomposition) {
|
|
if (right()->IsInteger32Constant()) {
|
|
decomposition->Apply(left(), -right()->GetInteger32Constant());
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Sub)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HSub(HValue* context, HValue* left, HValue* right)
|
|
: HArithmeticBinaryOperation(context, left, right) {
|
|
SetFlag(kCanOverflow);
|
|
}
|
|
};
|
|
|
|
|
|
class HMul: public HArithmeticBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
static HInstruction* NewImul(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right) {
|
|
HMul* mul = new(zone) HMul(context, left, right);
|
|
// TODO(mstarzinger): Prevent bailout on minus zero for imul.
|
|
mul->AssumeRepresentation(Representation::Integer32());
|
|
mul->ClearFlag(HValue::kCanOverflow);
|
|
return mul;
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
// Only commutative if it is certain that not two objects are multiplicated.
|
|
virtual bool IsCommutative() const {
|
|
return !representation().IsTagged();
|
|
}
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HArithmeticBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Mul)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HMul(HValue* context, HValue* left, HValue* right)
|
|
: HArithmeticBinaryOperation(context, left, right) {
|
|
SetFlag(kCanOverflow);
|
|
}
|
|
};
|
|
|
|
|
|
class HMod: public HArithmeticBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
Maybe<int> fixed_right_arg);
|
|
|
|
Maybe<int> fixed_right_arg() const { return fixed_right_arg_; }
|
|
|
|
bool HasPowerOf2Divisor() {
|
|
if (right()->IsConstant() &&
|
|
HConstant::cast(right())->HasInteger32Value()) {
|
|
int32_t value = HConstant::cast(right())->Integer32Value();
|
|
return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HArithmeticBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Mod)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HMod(HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
Maybe<int> fixed_right_arg)
|
|
: HArithmeticBinaryOperation(context, left, right),
|
|
fixed_right_arg_(fixed_right_arg) {
|
|
SetFlag(kCanBeDivByZero);
|
|
SetFlag(kCanOverflow);
|
|
}
|
|
|
|
const Maybe<int> fixed_right_arg_;
|
|
};
|
|
|
|
|
|
class HDiv: public HArithmeticBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
bool HasPowerOf2Divisor() {
|
|
if (right()->IsInteger32Constant()) {
|
|
int32_t value = right()->GetInteger32Constant();
|
|
return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HArithmeticBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Div)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HDiv(HValue* context, HValue* left, HValue* right)
|
|
: HArithmeticBinaryOperation(context, left, right) {
|
|
SetFlag(kCanBeDivByZero);
|
|
SetFlag(kCanOverflow);
|
|
}
|
|
};
|
|
|
|
|
|
class HMathMinMax: public HArithmeticBinaryOperation {
|
|
public:
|
|
enum Operation { kMathMin, kMathMax };
|
|
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
Operation op);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return index == 0 ? Representation::Tagged()
|
|
: representation();
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
return RequiredInputRepresentation(index);
|
|
}
|
|
|
|
virtual void InferRepresentation(HInferRepresentationPhase* h_infer);
|
|
|
|
virtual Representation RepresentationFromInputs() {
|
|
Representation left_rep = left()->representation();
|
|
Representation right_rep = right()->representation();
|
|
Representation result = Representation::Smi();
|
|
result = result.generalize(left_rep);
|
|
result = result.generalize(right_rep);
|
|
if (result.IsTagged()) return Representation::Double();
|
|
return result;
|
|
}
|
|
|
|
virtual bool IsCommutative() const { return true; }
|
|
|
|
Operation operation() { return operation_; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(MathMinMax)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
return other->IsMathMinMax() &&
|
|
HMathMinMax::cast(other)->operation_ == operation_;
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HMathMinMax(HValue* context, HValue* left, HValue* right, Operation op)
|
|
: HArithmeticBinaryOperation(context, left, right),
|
|
operation_(op) { }
|
|
|
|
Operation operation_;
|
|
};
|
|
|
|
|
|
class HBitwise: public HBitwiseBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
Token::Value op,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
Token::Value op() const { return op_; }
|
|
|
|
virtual bool IsCommutative() const { return true; }
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Bitwise)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
return op() == HBitwise::cast(other)->op();
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
private:
|
|
HBitwise(Token::Value op, HValue* context, HValue* left, HValue* right)
|
|
: HBitwiseBinaryOperation(context, left, right), op_(op) {
|
|
ASSERT(op == Token::BIT_AND || op == Token::BIT_OR || op == Token::BIT_XOR);
|
|
// BIT_AND with a smi-range positive value will always unset the
|
|
// entire sign-extension of the smi-sign.
|
|
if (op == Token::BIT_AND &&
|
|
((left->IsConstant() &&
|
|
left->representation().IsSmi() &&
|
|
HConstant::cast(left)->Integer32Value() >= 0) ||
|
|
(right->IsConstant() &&
|
|
right->representation().IsSmi() &&
|
|
HConstant::cast(right)->Integer32Value() >= 0))) {
|
|
SetFlag(kTruncatingToSmi);
|
|
// BIT_OR with a smi-range negative value will always set the entire
|
|
// sign-extension of the smi-sign.
|
|
} else if (op == Token::BIT_OR &&
|
|
((left->IsConstant() &&
|
|
left->representation().IsSmi() &&
|
|
HConstant::cast(left)->Integer32Value() < 0) ||
|
|
(right->IsConstant() &&
|
|
right->representation().IsSmi() &&
|
|
HConstant::cast(right)->Integer32Value() < 0))) {
|
|
SetFlag(kTruncatingToSmi);
|
|
}
|
|
}
|
|
|
|
Token::Value op_;
|
|
};
|
|
|
|
|
|
class HShl: public HBitwiseBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HBitwiseBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Shl)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
HShl(HValue* context, HValue* left, HValue* right)
|
|
: HBitwiseBinaryOperation(context, left, right) { }
|
|
};
|
|
|
|
|
|
class HShr: public HBitwiseBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
virtual bool TryDecompose(DecompositionResult* decomposition) {
|
|
if (right()->IsInteger32Constant()) {
|
|
if (decomposition->Apply(left(), 0, right()->GetInteger32Constant())) {
|
|
// This is intended to look for HAdd and HSub, to handle compounds
|
|
// like ((base + offset) >> scale) with one single decomposition.
|
|
left()->TryDecompose(decomposition);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HBitwiseBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Shr)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
HShr(HValue* context, HValue* left, HValue* right)
|
|
: HBitwiseBinaryOperation(context, left, right) { }
|
|
};
|
|
|
|
|
|
class HSar: public HBitwiseBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right);
|
|
|
|
virtual bool TryDecompose(DecompositionResult* decomposition) {
|
|
if (right()->IsInteger32Constant()) {
|
|
if (decomposition->Apply(left(), 0, right()->GetInteger32Constant())) {
|
|
// This is intended to look for HAdd and HSub, to handle compounds
|
|
// like ((base + offset) >> scale) with one single decomposition.
|
|
left()->TryDecompose(decomposition);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HBitwiseBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Sar)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
HSar(HValue* context, HValue* left, HValue* right)
|
|
: HBitwiseBinaryOperation(context, left, right) { }
|
|
};
|
|
|
|
|
|
class HRor: public HBitwiseBinaryOperation {
|
|
public:
|
|
HRor(HValue* context, HValue* left, HValue* right)
|
|
: HBitwiseBinaryOperation(context, left, right) {
|
|
ChangeRepresentation(Representation::Integer32());
|
|
}
|
|
|
|
virtual void UpdateRepresentation(Representation new_rep,
|
|
HInferRepresentationPhase* h_infer,
|
|
const char* reason) {
|
|
if (new_rep.IsSmi()) new_rep = Representation::Integer32();
|
|
HBitwiseBinaryOperation::UpdateRepresentation(new_rep, h_infer, reason);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Ror)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
|
|
class HOsrEntry: public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HOsrEntry(BailoutId ast_id) : ast_id_(ast_id) {
|
|
SetGVNFlag(kChangesOsrEntries);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
BailoutId ast_id() const { return ast_id_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(OsrEntry)
|
|
|
|
private:
|
|
BailoutId ast_id_;
|
|
};
|
|
|
|
|
|
class HParameter: public HTemplateInstruction<0> {
|
|
public:
|
|
enum ParameterKind {
|
|
STACK_PARAMETER,
|
|
REGISTER_PARAMETER
|
|
};
|
|
|
|
explicit HParameter(unsigned index,
|
|
ParameterKind kind = STACK_PARAMETER)
|
|
: index_(index),
|
|
kind_(kind) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
explicit HParameter(unsigned index,
|
|
ParameterKind kind,
|
|
Representation r)
|
|
: index_(index),
|
|
kind_(kind) {
|
|
set_representation(r);
|
|
}
|
|
|
|
unsigned index() const { return index_; }
|
|
ParameterKind kind() const { return kind_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Parameter)
|
|
|
|
private:
|
|
unsigned index_;
|
|
ParameterKind kind_;
|
|
};
|
|
|
|
|
|
class HCallStub: public HUnaryCall {
|
|
public:
|
|
HCallStub(HValue* context, CodeStub::Major major_key, int argument_count)
|
|
: HUnaryCall(context, argument_count),
|
|
major_key_(major_key),
|
|
transcendental_type_(TranscendentalCache::kNumberOfCaches) {
|
|
}
|
|
|
|
CodeStub::Major major_key() { return major_key_; }
|
|
|
|
HValue* context() { return value(); }
|
|
|
|
void set_transcendental_type(TranscendentalCache::Type transcendental_type) {
|
|
transcendental_type_ = transcendental_type;
|
|
}
|
|
TranscendentalCache::Type transcendental_type() {
|
|
return transcendental_type_;
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CallStub)
|
|
|
|
private:
|
|
CodeStub::Major major_key_;
|
|
TranscendentalCache::Type transcendental_type_;
|
|
};
|
|
|
|
|
|
class HUnknownOSRValue: public HTemplateInstruction<0> {
|
|
public:
|
|
HUnknownOSRValue()
|
|
: incoming_value_(NULL) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
void set_incoming_value(HPhi* value) {
|
|
incoming_value_ = value;
|
|
}
|
|
|
|
HPhi* incoming_value() {
|
|
return incoming_value_;
|
|
}
|
|
|
|
virtual Representation KnownOptimalRepresentation() {
|
|
if (incoming_value_ == NULL) return Representation::None();
|
|
return incoming_value_->KnownOptimalRepresentation();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue)
|
|
|
|
private:
|
|
HPhi* incoming_value_;
|
|
};
|
|
|
|
|
|
class HLoadGlobalCell: public HTemplateInstruction<0> {
|
|
public:
|
|
HLoadGlobalCell(Handle<Cell> cell, PropertyDetails details)
|
|
: cell_(cell), details_(details), unique_id_() {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnGlobalVars);
|
|
}
|
|
|
|
Handle<Cell> cell() const { return cell_; }
|
|
bool RequiresHoleCheck() const;
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual intptr_t Hashcode() {
|
|
return unique_id_.Hashcode();
|
|
}
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
unique_id_ = UniqueValueId(cell_);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::None();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalCell)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HLoadGlobalCell* b = HLoadGlobalCell::cast(other);
|
|
return unique_id_ == b->unique_id_;
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return !RequiresHoleCheck(); }
|
|
|
|
Handle<Cell> cell_;
|
|
PropertyDetails details_;
|
|
UniqueValueId unique_id_;
|
|
};
|
|
|
|
|
|
class HLoadGlobalGeneric: public HTemplateInstruction<2> {
|
|
public:
|
|
HLoadGlobalGeneric(HValue* context,
|
|
HValue* global_object,
|
|
Handle<Object> name,
|
|
bool for_typeof)
|
|
: name_(name),
|
|
for_typeof_(for_typeof) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, global_object);
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* global_object() { return OperandAt(1); }
|
|
Handle<Object> name() const { return name_; }
|
|
bool for_typeof() const { return for_typeof_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric)
|
|
|
|
private:
|
|
Handle<Object> name_;
|
|
bool for_typeof_;
|
|
};
|
|
|
|
|
|
class HAllocate: public HTemplateInstruction<2> {
|
|
public:
|
|
enum Flags {
|
|
CAN_ALLOCATE_IN_NEW_SPACE = 1 << 0,
|
|
CAN_ALLOCATE_IN_OLD_DATA_SPACE = 1 << 1,
|
|
CAN_ALLOCATE_IN_OLD_POINTER_SPACE = 1 << 2,
|
|
ALLOCATE_DOUBLE_ALIGNED = 1 << 3,
|
|
PREFILL_WITH_FILLER = 1 << 4
|
|
};
|
|
|
|
HAllocate(HValue* context, HValue* size, HType type, Flags flags)
|
|
: flags_(flags) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, size);
|
|
set_type(type);
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kTrackSideEffectDominators);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
SetGVNFlag(kDependsOnNewSpacePromotion);
|
|
}
|
|
|
|
// Maximum instance size for which allocations will be inlined.
|
|
static const int kMaxInlineSize = 64 * kPointerSize;
|
|
|
|
static Flags DefaultFlags() {
|
|
return CAN_ALLOCATE_IN_NEW_SPACE;
|
|
}
|
|
|
|
static Flags DefaultFlags(ElementsKind kind) {
|
|
Flags flags = CAN_ALLOCATE_IN_NEW_SPACE;
|
|
if (IsFastDoubleElementsKind(kind)) {
|
|
flags = static_cast<HAllocate::Flags>(
|
|
flags | HAllocate::ALLOCATE_DOUBLE_ALIGNED);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* size() { return OperandAt(1); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
if (index == 0) {
|
|
return Representation::Tagged();
|
|
} else {
|
|
return Representation::Integer32();
|
|
}
|
|
}
|
|
|
|
virtual Handle<Map> GetMonomorphicJSObjectMap() {
|
|
return known_initial_map_;
|
|
}
|
|
|
|
void set_known_initial_map(Handle<Map> known_initial_map) {
|
|
known_initial_map_ = known_initial_map;
|
|
}
|
|
|
|
bool CanAllocateInNewSpace() const {
|
|
return (flags_ & CAN_ALLOCATE_IN_NEW_SPACE) != 0;
|
|
}
|
|
|
|
bool CanAllocateInOldDataSpace() const {
|
|
return (flags_ & CAN_ALLOCATE_IN_OLD_DATA_SPACE) != 0;
|
|
}
|
|
|
|
bool CanAllocateInOldPointerSpace() const {
|
|
return (flags_ & CAN_ALLOCATE_IN_OLD_POINTER_SPACE) != 0;
|
|
}
|
|
|
|
bool CanAllocateInOldSpace() const {
|
|
return CanAllocateInOldDataSpace() ||
|
|
CanAllocateInOldPointerSpace();
|
|
}
|
|
|
|
bool GuaranteedInNewSpace() const {
|
|
return CanAllocateInNewSpace() && !CanAllocateInOldSpace();
|
|
}
|
|
|
|
bool MustAllocateDoubleAligned() const {
|
|
return (flags_ & ALLOCATE_DOUBLE_ALIGNED) != 0;
|
|
}
|
|
|
|
bool MustPrefillWithFiller() const {
|
|
return (flags_ & PREFILL_WITH_FILLER) != 0;
|
|
}
|
|
|
|
void SetFlags(Flags flags) {
|
|
flags_ = static_cast<HAllocate::Flags>(flags_ | flags);
|
|
}
|
|
|
|
void UpdateSize(HValue* size) {
|
|
SetOperandAt(1, size);
|
|
}
|
|
|
|
virtual void HandleSideEffectDominator(GVNFlag side_effect,
|
|
HValue* dominator);
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Allocate)
|
|
|
|
private:
|
|
Flags flags_;
|
|
Handle<Map> known_initial_map_;
|
|
};
|
|
|
|
|
|
class HInnerAllocatedObject: public HTemplateInstruction<1> {
|
|
public:
|
|
HInnerAllocatedObject(HValue* value, int offset, HType type = HType::Tagged())
|
|
: offset_(offset) {
|
|
ASSERT(value->IsAllocate());
|
|
SetOperandAt(0, value);
|
|
set_type(type);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
HValue* base_object() { return OperandAt(0); }
|
|
int offset() { return offset_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject)
|
|
|
|
private:
|
|
int offset_;
|
|
};
|
|
|
|
|
|
inline bool StoringValueNeedsWriteBarrier(HValue* value) {
|
|
return !value->type().IsBoolean()
|
|
&& !value->type().IsSmi()
|
|
&& !(value->IsConstant() && HConstant::cast(value)->ImmortalImmovable());
|
|
}
|
|
|
|
|
|
inline bool ReceiverObjectNeedsWriteBarrier(HValue* object,
|
|
HValue* new_space_dominator) {
|
|
if (object->IsInnerAllocatedObject()) {
|
|
return ReceiverObjectNeedsWriteBarrier(
|
|
HInnerAllocatedObject::cast(object)->base_object(),
|
|
new_space_dominator);
|
|
}
|
|
if (object->IsConstant() && HConstant::cast(object)->IsCell()) {
|
|
return false;
|
|
}
|
|
if (object != new_space_dominator) return true;
|
|
if (object->IsAllocate()) {
|
|
return !HAllocate::cast(object)->GuaranteedInNewSpace();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
class HStoreGlobalCell: public HUnaryOperation {
|
|
public:
|
|
HStoreGlobalCell(HValue* value,
|
|
Handle<PropertyCell> cell,
|
|
PropertyDetails details)
|
|
: HUnaryOperation(value),
|
|
cell_(cell),
|
|
details_(details) {
|
|
SetGVNFlag(kChangesGlobalVars);
|
|
}
|
|
|
|
Handle<PropertyCell> cell() const { return cell_; }
|
|
bool RequiresHoleCheck() {
|
|
return !details_.IsDontDelete() || details_.IsReadOnly();
|
|
}
|
|
bool NeedsWriteBarrier() {
|
|
return StoringValueNeedsWriteBarrier(value());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalCell)
|
|
|
|
private:
|
|
Handle<PropertyCell> cell_;
|
|
PropertyDetails details_;
|
|
};
|
|
|
|
|
|
class HStoreGlobalGeneric: public HTemplateInstruction<3> {
|
|
public:
|
|
HStoreGlobalGeneric(HValue* context,
|
|
HValue* global_object,
|
|
Handle<Object> name,
|
|
HValue* value,
|
|
StrictModeFlag strict_mode_flag)
|
|
: name_(name),
|
|
strict_mode_flag_(strict_mode_flag) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, global_object);
|
|
SetOperandAt(2, value);
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* global_object() { return OperandAt(1); }
|
|
Handle<Object> name() const { return name_; }
|
|
HValue* value() { return OperandAt(2); }
|
|
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalGeneric)
|
|
|
|
private:
|
|
Handle<Object> name_;
|
|
StrictModeFlag strict_mode_flag_;
|
|
};
|
|
|
|
|
|
class HLoadContextSlot: public HUnaryOperation {
|
|
public:
|
|
enum Mode {
|
|
// Perform a normal load of the context slot without checking its value.
|
|
kNoCheck,
|
|
// Load and check the value of the context slot. Deoptimize if it's the
|
|
// hole value. This is used for checking for loading of uninitialized
|
|
// harmony bindings where we deoptimize into full-codegen generated code
|
|
// which will subsequently throw a reference error.
|
|
kCheckDeoptimize,
|
|
// Load and check the value of the context slot. Return undefined if it's
|
|
// the hole value. This is used for non-harmony const assignments
|
|
kCheckReturnUndefined
|
|
};
|
|
|
|
HLoadContextSlot(HValue* context, Variable* var)
|
|
: HUnaryOperation(context), slot_index_(var->index()) {
|
|
ASSERT(var->IsContextSlot());
|
|
switch (var->mode()) {
|
|
case LET:
|
|
case CONST_HARMONY:
|
|
mode_ = kCheckDeoptimize;
|
|
break;
|
|
case CONST:
|
|
mode_ = kCheckReturnUndefined;
|
|
break;
|
|
default:
|
|
mode_ = kNoCheck;
|
|
}
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnContextSlots);
|
|
}
|
|
|
|
int slot_index() const { return slot_index_; }
|
|
Mode mode() const { return mode_; }
|
|
|
|
bool DeoptimizesOnHole() {
|
|
return mode_ == kCheckDeoptimize;
|
|
}
|
|
|
|
bool RequiresHoleCheck() const {
|
|
return mode_ != kNoCheck;
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HLoadContextSlot* b = HLoadContextSlot::cast(other);
|
|
return (slot_index() == b->slot_index());
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return !RequiresHoleCheck(); }
|
|
|
|
int slot_index_;
|
|
Mode mode_;
|
|
};
|
|
|
|
|
|
class HStoreContextSlot: public HTemplateInstruction<2> {
|
|
public:
|
|
enum Mode {
|
|
// Perform a normal store to the context slot without checking its previous
|
|
// value.
|
|
kNoCheck,
|
|
// Check the previous value of the context slot and deoptimize if it's the
|
|
// hole value. This is used for checking for assignments to uninitialized
|
|
// harmony bindings where we deoptimize into full-codegen generated code
|
|
// which will subsequently throw a reference error.
|
|
kCheckDeoptimize,
|
|
// Check the previous value and ignore assignment if it isn't a hole value
|
|
kCheckIgnoreAssignment
|
|
};
|
|
|
|
HStoreContextSlot(HValue* context, int slot_index, Mode mode, HValue* value)
|
|
: slot_index_(slot_index), mode_(mode) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, value);
|
|
SetGVNFlag(kChangesContextSlots);
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
int slot_index() const { return slot_index_; }
|
|
Mode mode() const { return mode_; }
|
|
|
|
bool NeedsWriteBarrier() {
|
|
return StoringValueNeedsWriteBarrier(value());
|
|
}
|
|
|
|
bool DeoptimizesOnHole() {
|
|
return mode_ == kCheckDeoptimize;
|
|
}
|
|
|
|
bool RequiresHoleCheck() {
|
|
return mode_ != kNoCheck;
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot)
|
|
|
|
private:
|
|
int slot_index_;
|
|
Mode mode_;
|
|
};
|
|
|
|
|
|
// Represents an access to a portion of an object, such as the map pointer,
|
|
// array elements pointer, etc, but not accesses to array elements themselves.
|
|
class HObjectAccess {
|
|
public:
|
|
inline bool IsInobject() const {
|
|
return portion() != kBackingStore;
|
|
}
|
|
|
|
inline int offset() const {
|
|
return OffsetField::decode(value_);
|
|
}
|
|
|
|
inline Representation representation() const {
|
|
return Representation::FromKind(RepresentationField::decode(value_));
|
|
}
|
|
|
|
inline Handle<String> name() const {
|
|
return name_;
|
|
}
|
|
|
|
inline HObjectAccess WithRepresentation(Representation representation) {
|
|
return HObjectAccess(portion(), offset(), representation, name());
|
|
}
|
|
|
|
static HObjectAccess ForHeapNumberValue() {
|
|
return HObjectAccess(
|
|
kDouble, HeapNumber::kValueOffset, Representation::Double());
|
|
}
|
|
|
|
static HObjectAccess ForElementsPointer() {
|
|
return HObjectAccess(kElementsPointer, JSObject::kElementsOffset);
|
|
}
|
|
|
|
static HObjectAccess ForArrayLength(ElementsKind elements_kind) {
|
|
return HObjectAccess(
|
|
kArrayLengths, JSArray::kLengthOffset,
|
|
IsFastElementsKind(elements_kind) && FLAG_track_fields ?
|
|
Representation::Smi() : Representation::Tagged());
|
|
}
|
|
|
|
static HObjectAccess ForAllocationSiteTransitionInfo() {
|
|
return HObjectAccess(kInobject, AllocationSite::kTransitionInfoOffset);
|
|
}
|
|
|
|
static HObjectAccess ForAllocationSiteWeakNext() {
|
|
return HObjectAccess(kInobject, AllocationSite::kWeakNextOffset);
|
|
}
|
|
|
|
static HObjectAccess ForFixedArrayLength() {
|
|
return HObjectAccess(
|
|
kArrayLengths, FixedArray::kLengthOffset,
|
|
FLAG_track_fields ?
|
|
Representation::Smi() : Representation::Tagged());
|
|
}
|
|
|
|
static HObjectAccess ForPropertiesPointer() {
|
|
return HObjectAccess(kInobject, JSObject::kPropertiesOffset);
|
|
}
|
|
|
|
static HObjectAccess ForPrototypeOrInitialMap() {
|
|
return HObjectAccess(kInobject, JSFunction::kPrototypeOrInitialMapOffset);
|
|
}
|
|
|
|
static HObjectAccess ForMap() {
|
|
return HObjectAccess(kMaps, JSObject::kMapOffset);
|
|
}
|
|
|
|
static HObjectAccess ForPropertyCellValue() {
|
|
return HObjectAccess(kInobject, PropertyCell::kValueOffset);
|
|
}
|
|
|
|
static HObjectAccess ForCellValue() {
|
|
return HObjectAccess(kInobject, Cell::kValueOffset);
|
|
}
|
|
|
|
static HObjectAccess ForAllocationMementoSite() {
|
|
return HObjectAccess(kInobject, AllocationMemento::kAllocationSiteOffset);
|
|
}
|
|
|
|
// Create an access to an offset in a fixed array header.
|
|
static HObjectAccess ForFixedArrayHeader(int offset);
|
|
|
|
// Create an access to an in-object property in a JSObject.
|
|
static HObjectAccess ForJSObjectOffset(int offset,
|
|
Representation representation = Representation::Tagged());
|
|
|
|
// Create an access to an in-object property in a JSArray.
|
|
static HObjectAccess ForJSArrayOffset(int offset);
|
|
|
|
// Create an access to the backing store of an object.
|
|
static HObjectAccess ForBackingStoreOffset(int offset,
|
|
Representation representation = Representation::Tagged());
|
|
|
|
// Create an access to a resolved field (in-object or backing store).
|
|
static HObjectAccess ForField(Handle<Map> map,
|
|
LookupResult *lookup, Handle<String> name = Handle<String>::null());
|
|
|
|
// Create an access for the payload of a Cell or JSGlobalPropertyCell.
|
|
static HObjectAccess ForCellPayload(Isolate* isolate);
|
|
|
|
void PrintTo(StringStream* stream);
|
|
|
|
inline bool Equals(HObjectAccess that) const {
|
|
return value_ == that.value_; // portion and offset must match
|
|
}
|
|
|
|
protected:
|
|
void SetGVNFlags(HValue *instr, bool is_store);
|
|
|
|
private:
|
|
// internal use only; different parts of an object or array
|
|
enum Portion {
|
|
kMaps, // map of an object
|
|
kArrayLengths, // the length of an array
|
|
kElementsPointer, // elements pointer
|
|
kBackingStore, // some field in the backing store
|
|
kDouble, // some double field
|
|
kInobject // some other in-object field
|
|
};
|
|
|
|
HObjectAccess(Portion portion, int offset,
|
|
Representation representation = Representation::Tagged(),
|
|
Handle<String> name = Handle<String>::null())
|
|
: value_(PortionField::encode(portion) |
|
|
RepresentationField::encode(representation.kind()) |
|
|
OffsetField::encode(offset)),
|
|
name_(name) {
|
|
// assert that the fields decode correctly
|
|
ASSERT(this->offset() == offset);
|
|
ASSERT(this->portion() == portion);
|
|
ASSERT(RepresentationField::decode(value_) == representation.kind());
|
|
}
|
|
|
|
class PortionField : public BitField<Portion, 0, 3> {};
|
|
class RepresentationField : public BitField<Representation::Kind, 3, 3> {};
|
|
class OffsetField : public BitField<int, 6, 26> {};
|
|
|
|
uint32_t value_; // encodes portion, representation, and offset
|
|
Handle<String> name_;
|
|
|
|
friend class HLoadNamedField;
|
|
friend class HStoreNamedField;
|
|
|
|
inline Portion portion() const {
|
|
return PortionField::decode(value_);
|
|
}
|
|
};
|
|
|
|
|
|
class HLinkObjectInList: public HUnaryOperation {
|
|
public:
|
|
// There needs to be a mapping from every KnownList to an external reference
|
|
enum KnownList {
|
|
ALLOCATION_SITE_LIST
|
|
};
|
|
|
|
HLinkObjectInList(HValue* object, HObjectAccess store_field,
|
|
KnownList known_list)
|
|
: HUnaryOperation(object),
|
|
store_field_(store_field),
|
|
known_list_(known_list) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
HObjectAccess store_field() const { return store_field_; }
|
|
KnownList known_list() const { return known_list_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LinkObjectInList)
|
|
|
|
private:
|
|
HObjectAccess store_field_;
|
|
KnownList known_list_;
|
|
};
|
|
|
|
|
|
class HLoadNamedField: public HTemplateInstruction<2> {
|
|
public:
|
|
HLoadNamedField(HValue* object,
|
|
HObjectAccess access,
|
|
HValue* typecheck = NULL)
|
|
: access_(access) {
|
|
ASSERT(object != NULL);
|
|
SetOperandAt(0, object);
|
|
SetOperandAt(1, typecheck != NULL ? typecheck : object);
|
|
|
|
Representation representation = access.representation();
|
|
if (representation.IsSmi()) {
|
|
set_type(HType::Smi());
|
|
set_representation(representation);
|
|
} else if (representation.IsDouble()) {
|
|
set_representation(representation);
|
|
} else if (FLAG_track_heap_object_fields &&
|
|
representation.IsHeapObject()) {
|
|
set_type(HType::NonPrimitive());
|
|
set_representation(Representation::Tagged());
|
|
} else {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
access.SetGVNFlags(this, false);
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* typecheck() {
|
|
ASSERT(HasTypeCheck());
|
|
return OperandAt(1);
|
|
}
|
|
|
|
bool HasTypeCheck() const { return OperandAt(0) != OperandAt(1); }
|
|
HObjectAccess access() const { return access_; }
|
|
Representation field_representation() const {
|
|
return access_.representation();
|
|
}
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return false; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HLoadNamedField* b = HLoadNamedField::cast(other);
|
|
return access_.Equals(b->access_);
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
HObjectAccess access_;
|
|
};
|
|
|
|
|
|
class HLoadNamedFieldPolymorphic: public HTemplateInstruction<2> {
|
|
public:
|
|
HLoadNamedFieldPolymorphic(HValue* context,
|
|
HValue* object,
|
|
SmallMapList* types,
|
|
Handle<String> name,
|
|
Zone* zone);
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* object() { return OperandAt(1); }
|
|
SmallMapList* types() { return &types_; }
|
|
Handle<String> name() { return name_; }
|
|
bool need_generic() { return need_generic_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadNamedFieldPolymorphic)
|
|
|
|
static const int kMaxLoadPolymorphism = 4;
|
|
|
|
virtual void FinalizeUniqueValueId();
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* value);
|
|
|
|
private:
|
|
SmallMapList types_;
|
|
Handle<String> name_;
|
|
ZoneList<UniqueValueId> types_unique_ids_;
|
|
UniqueValueId name_unique_id_;
|
|
bool need_generic_;
|
|
};
|
|
|
|
|
|
|
|
class HLoadNamedGeneric: public HTemplateInstruction<2> {
|
|
public:
|
|
HLoadNamedGeneric(HValue* context, HValue* object, Handle<Object> name)
|
|
: name_(name) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, object);
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* object() { return OperandAt(1); }
|
|
Handle<Object> name() const { return name_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric)
|
|
|
|
private:
|
|
Handle<Object> name_;
|
|
};
|
|
|
|
|
|
class HLoadFunctionPrototype: public HUnaryOperation {
|
|
public:
|
|
explicit HLoadFunctionPrototype(HValue* function)
|
|
: HUnaryOperation(function) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnCalls);
|
|
}
|
|
|
|
HValue* function() { return OperandAt(0); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
};
|
|
|
|
class ArrayInstructionInterface {
|
|
public:
|
|
virtual HValue* GetKey() = 0;
|
|
virtual void SetKey(HValue* key) = 0;
|
|
virtual void SetIndexOffset(uint32_t index_offset) = 0;
|
|
virtual bool IsDehoisted() = 0;
|
|
virtual void SetDehoisted(bool is_dehoisted) = 0;
|
|
virtual ~ArrayInstructionInterface() { };
|
|
|
|
static Representation KeyedAccessIndexRequirement(Representation r) {
|
|
return r.IsInteger32() || kSmiValueSize != 31
|
|
? Representation::Integer32() : Representation::Smi();
|
|
}
|
|
};
|
|
|
|
|
|
enum LoadKeyedHoleMode {
|
|
NEVER_RETURN_HOLE,
|
|
ALLOW_RETURN_HOLE
|
|
};
|
|
|
|
|
|
class HLoadKeyed
|
|
: public HTemplateInstruction<3>, public ArrayInstructionInterface {
|
|
public:
|
|
HLoadKeyed(HValue* obj,
|
|
HValue* key,
|
|
HValue* dependency,
|
|
ElementsKind elements_kind,
|
|
LoadKeyedHoleMode mode = NEVER_RETURN_HOLE)
|
|
: bit_field_(0) {
|
|
bit_field_ = ElementsKindField::encode(elements_kind) |
|
|
HoleModeField::encode(mode);
|
|
|
|
SetOperandAt(0, obj);
|
|
SetOperandAt(1, key);
|
|
SetOperandAt(2, dependency != NULL ? dependency : obj);
|
|
|
|
if (!is_external()) {
|
|
// I can detect the case between storing double (holey and fast) and
|
|
// smi/object by looking at elements_kind_.
|
|
ASSERT(IsFastSmiOrObjectElementsKind(elements_kind) ||
|
|
IsFastDoubleElementsKind(elements_kind));
|
|
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
|
|
if (IsFastSmiElementsKind(elements_kind) &&
|
|
(!IsHoleyElementsKind(elements_kind) ||
|
|
mode == NEVER_RETURN_HOLE)) {
|
|
set_type(HType::Smi());
|
|
set_representation(Representation::Smi());
|
|
} else {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
SetGVNFlag(kDependsOnArrayElements);
|
|
} else {
|
|
set_representation(Representation::Double());
|
|
SetGVNFlag(kDependsOnDoubleArrayElements);
|
|
}
|
|
} else {
|
|
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
|
|
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
|
set_representation(Representation::Double());
|
|
} else {
|
|
set_representation(Representation::Integer32());
|
|
}
|
|
|
|
SetGVNFlag(kDependsOnSpecializedArrayElements);
|
|
// Native code could change the specialized array.
|
|
SetGVNFlag(kDependsOnCalls);
|
|
}
|
|
|
|
SetFlag(kUseGVN);
|
|
}
|
|
|
|
bool is_external() const {
|
|
return IsExternalArrayElementsKind(elements_kind());
|
|
}
|
|
HValue* elements() { return OperandAt(0); }
|
|
HValue* key() { return OperandAt(1); }
|
|
HValue* dependency() {
|
|
ASSERT(HasDependency());
|
|
return OperandAt(2);
|
|
}
|
|
bool HasDependency() const { return OperandAt(0) != OperandAt(2); }
|
|
uint32_t index_offset() { return IndexOffsetField::decode(bit_field_); }
|
|
void SetIndexOffset(uint32_t index_offset) {
|
|
bit_field_ = IndexOffsetField::update(bit_field_, index_offset);
|
|
}
|
|
HValue* GetKey() { return key(); }
|
|
void SetKey(HValue* key) { SetOperandAt(1, key); }
|
|
bool IsDehoisted() { return IsDehoistedField::decode(bit_field_); }
|
|
void SetDehoisted(bool is_dehoisted) {
|
|
bit_field_ = IsDehoistedField::update(bit_field_, is_dehoisted);
|
|
}
|
|
ElementsKind elements_kind() const {
|
|
return ElementsKindField::decode(bit_field_);
|
|
}
|
|
LoadKeyedHoleMode hole_mode() const {
|
|
return HoleModeField::decode(bit_field_);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// kind_fast: tagged[int32] (none)
|
|
// kind_double: tagged[int32] (none)
|
|
// kind_external: external[int32] (none)
|
|
if (index == 0) {
|
|
return is_external() ? Representation::External()
|
|
: Representation::Tagged();
|
|
}
|
|
if (index == 1) {
|
|
return ArrayInstructionInterface::KeyedAccessIndexRequirement(
|
|
OperandAt(1)->representation());
|
|
}
|
|
return Representation::None();
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
return RequiredInputRepresentation(index);
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
bool UsesMustHandleHole() const;
|
|
bool AllUsesCanTreatHoleAsNaN() const;
|
|
bool RequiresHoleCheck() const;
|
|
|
|
virtual Range* InferRange(Zone* zone);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadKeyed)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
if (!other->IsLoadKeyed()) return false;
|
|
HLoadKeyed* other_load = HLoadKeyed::cast(other);
|
|
|
|
if (IsDehoisted() && index_offset() != other_load->index_offset())
|
|
return false;
|
|
return elements_kind() == other_load->elements_kind();
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const {
|
|
return !RequiresHoleCheck();
|
|
}
|
|
|
|
// Establish some checks around our packed fields
|
|
enum LoadKeyedBits {
|
|
kBitsForElementsKind = 5,
|
|
kBitsForHoleMode = 1,
|
|
kBitsForIndexOffset = 25,
|
|
kBitsForIsDehoisted = 1,
|
|
|
|
kStartElementsKind = 0,
|
|
kStartHoleMode = kStartElementsKind + kBitsForElementsKind,
|
|
kStartIndexOffset = kStartHoleMode + kBitsForHoleMode,
|
|
kStartIsDehoisted = kStartIndexOffset + kBitsForIndexOffset
|
|
};
|
|
|
|
STATIC_ASSERT((kBitsForElementsKind + kBitsForIndexOffset +
|
|
kBitsForIsDehoisted) <= sizeof(uint32_t)*8);
|
|
STATIC_ASSERT(kElementsKindCount <= (1 << kBitsForElementsKind));
|
|
class ElementsKindField:
|
|
public BitField<ElementsKind, kStartElementsKind, kBitsForElementsKind>
|
|
{}; // NOLINT
|
|
class HoleModeField:
|
|
public BitField<LoadKeyedHoleMode, kStartHoleMode, kBitsForHoleMode>
|
|
{}; // NOLINT
|
|
class IndexOffsetField:
|
|
public BitField<uint32_t, kStartIndexOffset, kBitsForIndexOffset>
|
|
{}; // NOLINT
|
|
class IsDehoistedField:
|
|
public BitField<bool, kStartIsDehoisted, kBitsForIsDehoisted>
|
|
{}; // NOLINT
|
|
uint32_t bit_field_;
|
|
};
|
|
|
|
|
|
class HLoadKeyedGeneric: public HTemplateInstruction<3> {
|
|
public:
|
|
HLoadKeyedGeneric(HValue* context, HValue* obj, HValue* key) {
|
|
set_representation(Representation::Tagged());
|
|
SetOperandAt(0, obj);
|
|
SetOperandAt(1, key);
|
|
SetOperandAt(2, context);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* key() { return OperandAt(1); }
|
|
HValue* context() { return OperandAt(2); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// tagged[tagged]
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HValue* Canonicalize();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric)
|
|
};
|
|
|
|
|
|
class HStoreNamedField: public HTemplateInstruction<2> {
|
|
public:
|
|
HStoreNamedField(HValue* obj,
|
|
HObjectAccess access,
|
|
HValue* val)
|
|
: access_(access),
|
|
transition_(),
|
|
transition_unique_id_(),
|
|
new_space_dominator_(NULL),
|
|
write_barrier_mode_(UPDATE_WRITE_BARRIER) {
|
|
SetOperandAt(0, obj);
|
|
SetOperandAt(1, val);
|
|
access.SetGVNFlags(this, true);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField)
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return index == 1; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
if (index == 1 && field_representation().IsDouble()) {
|
|
return field_representation();
|
|
} else if (index == 1 && field_representation().IsSmi()) {
|
|
return field_representation();
|
|
}
|
|
return Representation::Tagged();
|
|
}
|
|
virtual void HandleSideEffectDominator(GVNFlag side_effect,
|
|
HValue* dominator) {
|
|
ASSERT(side_effect == kChangesNewSpacePromotion);
|
|
new_space_dominator_ = dominator;
|
|
}
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
void SkipWriteBarrier() { write_barrier_mode_ = SKIP_WRITE_BARRIER; }
|
|
bool IsSkipWriteBarrier() const {
|
|
return write_barrier_mode_ == SKIP_WRITE_BARRIER;
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
|
|
HObjectAccess access() const { return access_; }
|
|
Handle<Map> transition() const { return transition_; }
|
|
UniqueValueId transition_unique_id() const { return transition_unique_id_; }
|
|
void SetTransition(Handle<Map> map, CompilationInfo* info) {
|
|
ASSERT(transition_.is_null()); // Only set once.
|
|
if (map->CanBeDeprecated()) {
|
|
map->AddDependentCompilationInfo(DependentCode::kTransitionGroup, info);
|
|
}
|
|
transition_ = map;
|
|
}
|
|
HValue* new_space_dominator() const { return new_space_dominator_; }
|
|
|
|
bool NeedsWriteBarrier() {
|
|
ASSERT(!(FLAG_track_double_fields && field_representation().IsDouble()) ||
|
|
transition_.is_null());
|
|
if (IsSkipWriteBarrier()) return false;
|
|
if (field_representation().IsDouble()) return false;
|
|
if (field_representation().IsSmi()) return false;
|
|
return StoringValueNeedsWriteBarrier(value()) &&
|
|
ReceiverObjectNeedsWriteBarrier(object(), new_space_dominator());
|
|
}
|
|
|
|
bool NeedsWriteBarrierForMap() {
|
|
if (IsSkipWriteBarrier()) return false;
|
|
return ReceiverObjectNeedsWriteBarrier(object(), new_space_dominator());
|
|
}
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
transition_unique_id_ = UniqueValueId(transition_);
|
|
}
|
|
|
|
Representation field_representation() const {
|
|
return access_.representation();
|
|
}
|
|
|
|
private:
|
|
HObjectAccess access_;
|
|
Handle<Map> transition_;
|
|
UniqueValueId transition_unique_id_;
|
|
HValue* new_space_dominator_;
|
|
WriteBarrierMode write_barrier_mode_;
|
|
};
|
|
|
|
|
|
class HStoreNamedGeneric: public HTemplateInstruction<3> {
|
|
public:
|
|
HStoreNamedGeneric(HValue* context,
|
|
HValue* object,
|
|
Handle<String> name,
|
|
HValue* value,
|
|
StrictModeFlag strict_mode_flag)
|
|
: name_(name),
|
|
strict_mode_flag_(strict_mode_flag) {
|
|
SetOperandAt(0, object);
|
|
SetOperandAt(1, value);
|
|
SetOperandAt(2, context);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
HValue* context() { return OperandAt(2); }
|
|
Handle<String> name() { return name_; }
|
|
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric)
|
|
|
|
private:
|
|
Handle<String> name_;
|
|
StrictModeFlag strict_mode_flag_;
|
|
};
|
|
|
|
|
|
class HStoreKeyed
|
|
: public HTemplateInstruction<3>, public ArrayInstructionInterface {
|
|
public:
|
|
HStoreKeyed(HValue* obj, HValue* key, HValue* val,
|
|
ElementsKind elements_kind)
|
|
: elements_kind_(elements_kind),
|
|
index_offset_(0),
|
|
is_dehoisted_(false),
|
|
is_uninitialized_(false),
|
|
new_space_dominator_(NULL) {
|
|
SetOperandAt(0, obj);
|
|
SetOperandAt(1, key);
|
|
SetOperandAt(2, val);
|
|
|
|
if (IsFastObjectElementsKind(elements_kind)) {
|
|
SetFlag(kTrackSideEffectDominators);
|
|
SetGVNFlag(kDependsOnNewSpacePromotion);
|
|
}
|
|
if (is_external()) {
|
|
SetGVNFlag(kChangesSpecializedArrayElements);
|
|
SetFlag(kAllowUndefinedAsNaN);
|
|
} else if (IsFastDoubleElementsKind(elements_kind)) {
|
|
SetGVNFlag(kChangesDoubleArrayElements);
|
|
} else if (IsFastSmiElementsKind(elements_kind)) {
|
|
SetGVNFlag(kChangesArrayElements);
|
|
} else {
|
|
SetGVNFlag(kChangesArrayElements);
|
|
}
|
|
|
|
// EXTERNAL_{UNSIGNED_,}{BYTE,SHORT,INT}_ELEMENTS are truncating.
|
|
if (elements_kind >= EXTERNAL_BYTE_ELEMENTS &&
|
|
elements_kind <= EXTERNAL_UNSIGNED_INT_ELEMENTS) {
|
|
SetFlag(kTruncatingToInt32);
|
|
}
|
|
}
|
|
|
|
virtual bool HasEscapingOperandAt(int index) { return index != 0; }
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// kind_fast: tagged[int32] = tagged
|
|
// kind_double: tagged[int32] = double
|
|
// kind_smi : tagged[int32] = smi
|
|
// kind_external: external[int32] = (double | int32)
|
|
if (index == 0) {
|
|
return is_external() ? Representation::External()
|
|
: Representation::Tagged();
|
|
} else if (index == 1) {
|
|
return ArrayInstructionInterface::KeyedAccessIndexRequirement(
|
|
OperandAt(1)->representation());
|
|
}
|
|
|
|
ASSERT_EQ(index, 2);
|
|
if (IsDoubleOrFloatElementsKind(elements_kind())) {
|
|
return Representation::Double();
|
|
}
|
|
|
|
if (IsFastSmiElementsKind(elements_kind())) {
|
|
return Representation::Smi();
|
|
}
|
|
|
|
return is_external() ? Representation::Integer32()
|
|
: Representation::Tagged();
|
|
}
|
|
|
|
bool is_external() const {
|
|
return IsExternalArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
virtual Representation observed_input_representation(int index) {
|
|
if (index < 2) return RequiredInputRepresentation(index);
|
|
if (IsUninitialized()) {
|
|
return Representation::None();
|
|
}
|
|
if (IsFastSmiElementsKind(elements_kind())) {
|
|
return Representation::Smi();
|
|
}
|
|
if (IsDoubleOrFloatElementsKind(elements_kind())) {
|
|
return Representation::Double();
|
|
}
|
|
if (is_external()) {
|
|
return Representation::Integer32();
|
|
}
|
|
// For fast object elements kinds, don't assume anything.
|
|
return Representation::None();
|
|
}
|
|
|
|
HValue* elements() { return OperandAt(0); }
|
|
HValue* key() { return OperandAt(1); }
|
|
HValue* value() { return OperandAt(2); }
|
|
bool value_is_smi() const {
|
|
return IsFastSmiElementsKind(elements_kind_);
|
|
}
|
|
ElementsKind elements_kind() const { return elements_kind_; }
|
|
uint32_t index_offset() { return index_offset_; }
|
|
void SetIndexOffset(uint32_t index_offset) { index_offset_ = index_offset; }
|
|
HValue* GetKey() { return key(); }
|
|
void SetKey(HValue* key) { SetOperandAt(1, key); }
|
|
bool IsDehoisted() { return is_dehoisted_; }
|
|
void SetDehoisted(bool is_dehoisted) { is_dehoisted_ = is_dehoisted; }
|
|
bool IsUninitialized() { return is_uninitialized_; }
|
|
void SetUninitialized(bool is_uninitialized) {
|
|
is_uninitialized_ = is_uninitialized;
|
|
}
|
|
|
|
bool IsConstantHoleStore() {
|
|
return value()->IsConstant() && HConstant::cast(value())->IsTheHole();
|
|
}
|
|
|
|
virtual void HandleSideEffectDominator(GVNFlag side_effect,
|
|
HValue* dominator) {
|
|
ASSERT(side_effect == kChangesNewSpacePromotion);
|
|
new_space_dominator_ = dominator;
|
|
}
|
|
|
|
HValue* new_space_dominator() const { return new_space_dominator_; }
|
|
|
|
bool NeedsWriteBarrier() {
|
|
if (value_is_smi()) {
|
|
return false;
|
|
} else {
|
|
return StoringValueNeedsWriteBarrier(value()) &&
|
|
ReceiverObjectNeedsWriteBarrier(elements(), new_space_dominator());
|
|
}
|
|
}
|
|
|
|
bool NeedsCanonicalization();
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreKeyed)
|
|
|
|
private:
|
|
ElementsKind elements_kind_;
|
|
uint32_t index_offset_;
|
|
bool is_dehoisted_ : 1;
|
|
bool is_uninitialized_ : 1;
|
|
HValue* new_space_dominator_;
|
|
};
|
|
|
|
|
|
class HStoreKeyedGeneric: public HTemplateInstruction<4> {
|
|
public:
|
|
HStoreKeyedGeneric(HValue* context,
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* value,
|
|
StrictModeFlag strict_mode_flag)
|
|
: strict_mode_flag_(strict_mode_flag) {
|
|
SetOperandAt(0, object);
|
|
SetOperandAt(1, key);
|
|
SetOperandAt(2, value);
|
|
SetOperandAt(3, context);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* key() { return OperandAt(1); }
|
|
HValue* value() { return OperandAt(2); }
|
|
HValue* context() { return OperandAt(3); }
|
|
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// tagged[tagged] = tagged
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric)
|
|
|
|
private:
|
|
StrictModeFlag strict_mode_flag_;
|
|
};
|
|
|
|
|
|
class HTransitionElementsKind: public HTemplateInstruction<2> {
|
|
public:
|
|
HTransitionElementsKind(HValue* context,
|
|
HValue* object,
|
|
Handle<Map> original_map,
|
|
Handle<Map> transitioned_map)
|
|
: original_map_(original_map),
|
|
transitioned_map_(transitioned_map),
|
|
original_map_unique_id_(),
|
|
transitioned_map_unique_id_(),
|
|
from_kind_(original_map->elements_kind()),
|
|
to_kind_(transitioned_map->elements_kind()) {
|
|
SetOperandAt(0, object);
|
|
SetOperandAt(1, context);
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kChangesElementsKind);
|
|
if (original_map->has_fast_double_elements()) {
|
|
SetGVNFlag(kChangesElementsPointer);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
if (transitioned_map->has_fast_double_elements()) {
|
|
SetGVNFlag(kChangesElementsPointer);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* context() { return OperandAt(1); }
|
|
Handle<Map> original_map() { return original_map_; }
|
|
Handle<Map> transitioned_map() { return transitioned_map_; }
|
|
ElementsKind from_kind() { return from_kind_; }
|
|
ElementsKind to_kind() { return to_kind_; }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual void FinalizeUniqueValueId() {
|
|
original_map_unique_id_ = UniqueValueId(original_map_);
|
|
transitioned_map_unique_id_ = UniqueValueId(transitioned_map_);
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
HTransitionElementsKind* instr = HTransitionElementsKind::cast(other);
|
|
return original_map_unique_id_ == instr->original_map_unique_id_ &&
|
|
transitioned_map_unique_id_ == instr->transitioned_map_unique_id_;
|
|
}
|
|
|
|
private:
|
|
Handle<Map> original_map_;
|
|
Handle<Map> transitioned_map_;
|
|
UniqueValueId original_map_unique_id_;
|
|
UniqueValueId transitioned_map_unique_id_;
|
|
ElementsKind from_kind_;
|
|
ElementsKind to_kind_;
|
|
};
|
|
|
|
|
|
class HStringAdd: public HBinaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* left,
|
|
HValue* right,
|
|
StringAddFlags flags = STRING_ADD_CHECK_NONE);
|
|
|
|
StringAddFlags flags() const { return flags_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType() {
|
|
return HType::String();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StringAdd)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
private:
|
|
HStringAdd(HValue* context, HValue* left, HValue* right, StringAddFlags flags)
|
|
: HBinaryOperation(context, left, right), flags_(flags) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
|
|
// virtual bool IsDeletable() const { return true; }
|
|
|
|
const StringAddFlags flags_;
|
|
};
|
|
|
|
|
|
class HStringCharCodeAt: public HTemplateInstruction<3> {
|
|
public:
|
|
HStringCharCodeAt(HValue* context, HValue* string, HValue* index) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, string);
|
|
SetOperandAt(2, index);
|
|
set_representation(Representation::Integer32());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
// The index is supposed to be Integer32.
|
|
return index == 2
|
|
? Representation::Integer32()
|
|
: Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* string() { return OperandAt(1); }
|
|
HValue* index() { return OperandAt(2); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone) {
|
|
return new(zone) Range(0, String::kMaxUtf16CodeUnit);
|
|
}
|
|
|
|
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
|
|
// private:
|
|
// virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HStringCharFromCode: public HTemplateInstruction<2> {
|
|
public:
|
|
static HInstruction* New(Zone* zone,
|
|
HValue* context,
|
|
HValue* char_code);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return index == 0
|
|
? Representation::Tagged()
|
|
: Representation::Integer32();
|
|
}
|
|
virtual HType CalculateInferredType();
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode)
|
|
|
|
private:
|
|
HStringCharFromCode(HValue* context, HValue* char_code) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, char_code);
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
|
|
// virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HStringLength: public HUnaryOperation {
|
|
public:
|
|
static HInstruction* New(Zone* zone, HValue* string);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual HType CalculateInferredType() {
|
|
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
|
|
return HType::Smi();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(StringLength)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) { return true; }
|
|
|
|
virtual Range* InferRange(Zone* zone) {
|
|
return new(zone) Range(0, String::kMaxLength);
|
|
}
|
|
|
|
private:
|
|
explicit HStringLength(HValue* string) : HUnaryOperation(string) {
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
}
|
|
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
template <int V>
|
|
class HMaterializedLiteral: public HTemplateInstruction<V> {
|
|
public:
|
|
HMaterializedLiteral<V>(int index, int depth, AllocationSiteMode mode)
|
|
: literal_index_(index), depth_(depth), allocation_site_mode_(mode) {
|
|
this->set_representation(Representation::Tagged());
|
|
}
|
|
|
|
HMaterializedLiteral<V>(int index, int depth)
|
|
: literal_index_(index), depth_(depth),
|
|
allocation_site_mode_(DONT_TRACK_ALLOCATION_SITE) {
|
|
this->set_representation(Representation::Tagged());
|
|
}
|
|
|
|
int literal_index() const { return literal_index_; }
|
|
int depth() const { return depth_; }
|
|
AllocationSiteMode allocation_site_mode() const {
|
|
return allocation_site_mode_;
|
|
}
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
int literal_index_;
|
|
int depth_;
|
|
AllocationSiteMode allocation_site_mode_;
|
|
};
|
|
|
|
|
|
class HRegExpLiteral: public HMaterializedLiteral<1> {
|
|
public:
|
|
HRegExpLiteral(HValue* context,
|
|
Handle<FixedArray> literals,
|
|
Handle<String> pattern,
|
|
Handle<String> flags,
|
|
int literal_index)
|
|
: HMaterializedLiteral<1>(literal_index, 0),
|
|
literals_(literals),
|
|
pattern_(pattern),
|
|
flags_(flags) {
|
|
SetOperandAt(0, context);
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
Handle<FixedArray> literals() { return literals_; }
|
|
Handle<String> pattern() { return pattern_; }
|
|
Handle<String> flags() { return flags_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral)
|
|
|
|
private:
|
|
Handle<FixedArray> literals_;
|
|
Handle<String> pattern_;
|
|
Handle<String> flags_;
|
|
};
|
|
|
|
|
|
class HFunctionLiteral: public HTemplateInstruction<1> {
|
|
public:
|
|
HFunctionLiteral(HValue* context,
|
|
Handle<SharedFunctionInfo> shared,
|
|
bool pretenure)
|
|
: shared_info_(shared),
|
|
pretenure_(pretenure),
|
|
has_no_literals_(shared->num_literals() == 0),
|
|
is_generator_(shared->is_generator()),
|
|
language_mode_(shared->language_mode()) {
|
|
SetOperandAt(0, context);
|
|
set_representation(Representation::Tagged());
|
|
SetGVNFlag(kChangesNewSpacePromotion);
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
virtual HType CalculateInferredType();
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral)
|
|
|
|
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
|
|
bool pretenure() const { return pretenure_; }
|
|
bool has_no_literals() const { return has_no_literals_; }
|
|
bool is_generator() const { return is_generator_; }
|
|
LanguageMode language_mode() const { return language_mode_; }
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
|
|
Handle<SharedFunctionInfo> shared_info_;
|
|
bool pretenure_ : 1;
|
|
bool has_no_literals_ : 1;
|
|
bool is_generator_ : 1;
|
|
LanguageMode language_mode_;
|
|
};
|
|
|
|
|
|
class HTypeof: public HTemplateInstruction<2> {
|
|
public:
|
|
explicit HTypeof(HValue* context, HValue* value) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, value);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* value() { return OperandAt(1); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(Typeof)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HTrapAllocationMemento : public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HTrapAllocationMemento(HValue* obj) {
|
|
SetOperandAt(0, obj);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento)
|
|
};
|
|
|
|
|
|
class HToFastProperties: public HUnaryOperation {
|
|
public:
|
|
explicit HToFastProperties(HValue* value) : HUnaryOperation(value) {
|
|
// This instruction is not marked as having side effects, but
|
|
// changes the map of the input operand. Use it only when creating
|
|
// object literals via a runtime call.
|
|
ASSERT(value->IsCallRuntime());
|
|
#ifdef DEBUG
|
|
const Runtime::Function* function = HCallRuntime::cast(value)->function();
|
|
ASSERT(function->function_id == Runtime::kCreateObjectLiteral ||
|
|
function->function_id == Runtime::kCreateObjectLiteralShallow);
|
|
#endif
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ToFastProperties)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HValueOf: public HUnaryOperation {
|
|
public:
|
|
explicit HValueOf(HValue* value) : HUnaryOperation(value) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ValueOf)
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
class HDateField: public HUnaryOperation {
|
|
public:
|
|
HDateField(HValue* date, Smi* index)
|
|
: HUnaryOperation(date), index_(index) {
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
Smi* index() const { return index_; }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(DateField)
|
|
|
|
private:
|
|
Smi* index_;
|
|
};
|
|
|
|
|
|
class HSeqStringSetChar: public HTemplateInstruction<3> {
|
|
public:
|
|
HSeqStringSetChar(String::Encoding encoding,
|
|
HValue* string,
|
|
HValue* index,
|
|
HValue* value) : encoding_(encoding) {
|
|
SetOperandAt(0, string);
|
|
SetOperandAt(1, index);
|
|
SetOperandAt(2, value);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
String::Encoding encoding() { return encoding_; }
|
|
HValue* string() { return OperandAt(0); }
|
|
HValue* index() { return OperandAt(1); }
|
|
HValue* value() { return OperandAt(2); }
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return (index == 0) ? Representation::Tagged()
|
|
: Representation::Integer32();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar)
|
|
|
|
private:
|
|
String::Encoding encoding_;
|
|
};
|
|
|
|
|
|
class HCheckMapValue: public HTemplateInstruction<2> {
|
|
public:
|
|
HCheckMapValue(HValue* value,
|
|
HValue* map) {
|
|
SetOperandAt(0, value);
|
|
SetOperandAt(1, map);
|
|
set_representation(Representation::Tagged());
|
|
SetFlag(kUseGVN);
|
|
SetGVNFlag(kDependsOnMaps);
|
|
SetGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType() {
|
|
return HType::Tagged();
|
|
}
|
|
|
|
HValue* value() { return OperandAt(0); }
|
|
HValue* map() { return OperandAt(1); }
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(CheckMapValue)
|
|
|
|
protected:
|
|
virtual bool DataEquals(HValue* other) {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
class HForInPrepareMap : public HTemplateInstruction<2> {
|
|
public:
|
|
HForInPrepareMap(HValue* context,
|
|
HValue* object) {
|
|
SetOperandAt(0, context);
|
|
SetOperandAt(1, object);
|
|
set_representation(Representation::Tagged());
|
|
SetAllSideEffects();
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* context() { return OperandAt(0); }
|
|
HValue* enumerable() { return OperandAt(1); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType() {
|
|
return HType::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap);
|
|
};
|
|
|
|
|
|
class HForInCacheArray : public HTemplateInstruction<2> {
|
|
public:
|
|
HForInCacheArray(HValue* enumerable,
|
|
HValue* keys,
|
|
int idx) : idx_(idx) {
|
|
SetOperandAt(0, enumerable);
|
|
SetOperandAt(1, keys);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* enumerable() { return OperandAt(0); }
|
|
HValue* map() { return OperandAt(1); }
|
|
int idx() { return idx_; }
|
|
|
|
HForInCacheArray* index_cache() {
|
|
return index_cache_;
|
|
}
|
|
|
|
void set_index_cache(HForInCacheArray* index_cache) {
|
|
index_cache_ = index_cache;
|
|
}
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType() {
|
|
return HType::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray);
|
|
|
|
private:
|
|
int idx_;
|
|
HForInCacheArray* index_cache_;
|
|
};
|
|
|
|
|
|
class HLoadFieldByIndex : public HTemplateInstruction<2> {
|
|
public:
|
|
HLoadFieldByIndex(HValue* object,
|
|
HValue* index) {
|
|
SetOperandAt(0, object);
|
|
SetOperandAt(1, index);
|
|
set_representation(Representation::Tagged());
|
|
}
|
|
|
|
virtual Representation RequiredInputRepresentation(int index) {
|
|
return Representation::Tagged();
|
|
}
|
|
|
|
HValue* object() { return OperandAt(0); }
|
|
HValue* index() { return OperandAt(1); }
|
|
|
|
virtual void PrintDataTo(StringStream* stream);
|
|
|
|
virtual HType CalculateInferredType() {
|
|
return HType::Tagged();
|
|
}
|
|
|
|
DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex);
|
|
|
|
private:
|
|
virtual bool IsDeletable() const { return true; }
|
|
};
|
|
|
|
|
|
#undef DECLARE_INSTRUCTION
|
|
#undef DECLARE_CONCRETE_INSTRUCTION
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_HYDROGEN_INSTRUCTIONS_H_
|