e96d591e7e
... which works properly when intptr_t is bigger than int and makes MSVC happy about this. Bug: v8:9183 Change-Id: I224eff00c1cbcb9a8c9f16eadaec078db7cf16db Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1601511 Reviewed-by: Toon Verwaest <verwaest@chromium.org> Commit-Queue: Igor Sheludko <ishell@chromium.org> Cr-Commit-Position: refs/heads/master@{#61405}
1577 lines
51 KiB
C++
1577 lines
51 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_GLOBALS_H_
|
|
#define V8_GLOBALS_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <limits>
|
|
#include <ostream>
|
|
|
|
#include "include/v8-internal.h"
|
|
#include "src/base/atomic-utils.h"
|
|
#include "src/base/build_config.h"
|
|
#include "src/base/flags.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/base/macros.h"
|
|
|
|
#define V8_INFINITY std::numeric_limits<double>::infinity()
|
|
|
|
namespace v8 {
|
|
|
|
namespace base {
|
|
class Mutex;
|
|
class RecursiveMutex;
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Determine whether we are running in a simulated environment.
|
|
// Setting USE_SIMULATOR explicitly from the build script will force
|
|
// the use of a simulated environment.
|
|
#if !defined(USE_SIMULATOR)
|
|
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#endif
|
|
|
|
// Determine whether the architecture uses an embedded constant pool
|
|
// (contiguous constant pool embedded in code object).
|
|
#if V8_TARGET_ARCH_PPC
|
|
#define V8_EMBEDDED_CONSTANT_POOL true
|
|
#else
|
|
#define V8_EMBEDDED_CONSTANT_POOL false
|
|
#endif
|
|
|
|
#ifdef V8_TARGET_ARCH_ARM
|
|
// Set stack limit lower for ARM than for other architectures because
|
|
// stack allocating MacroAssembler takes 120K bytes.
|
|
// See issue crbug.com/405338
|
|
#define V8_DEFAULT_STACK_SIZE_KB 864
|
|
#else
|
|
// Slightly less than 1MB, since Windows' default stack size for
|
|
// the main execution thread is 1MB for both 32 and 64-bit.
|
|
#define V8_DEFAULT_STACK_SIZE_KB 984
|
|
#endif
|
|
|
|
// Minimum stack size in KB required by compilers.
|
|
constexpr int kStackSpaceRequiredForCompilation = 40;
|
|
|
|
// Determine whether double field unboxing feature is enabled.
|
|
#if V8_TARGET_ARCH_64_BIT && !defined(V8_COMPRESS_POINTERS)
|
|
#define V8_DOUBLE_FIELDS_UNBOXING true
|
|
#else
|
|
#define V8_DOUBLE_FIELDS_UNBOXING false
|
|
#endif
|
|
|
|
// Some types of tracing require the SFI to store a unique ID.
|
|
#if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION)
|
|
#define V8_SFI_HAS_UNIQUE_ID true
|
|
#else
|
|
#define V8_SFI_HAS_UNIQUE_ID false
|
|
#endif
|
|
|
|
#if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_X64)
|
|
#define V8_OS_WIN_X64 true
|
|
#endif
|
|
|
|
// Superclass for classes only using static method functions.
|
|
// The subclass of AllStatic cannot be instantiated at all.
|
|
class AllStatic {
|
|
#ifdef DEBUG
|
|
public:
|
|
AllStatic() = delete;
|
|
#endif
|
|
};
|
|
|
|
typedef uint8_t byte;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Constants
|
|
|
|
constexpr int KB = 1024;
|
|
constexpr int MB = KB * KB;
|
|
constexpr int GB = KB * KB * KB;
|
|
constexpr int kMaxInt = 0x7FFFFFFF;
|
|
constexpr int kMinInt = -kMaxInt - 1;
|
|
constexpr int kMaxInt8 = (1 << 7) - 1;
|
|
constexpr int kMinInt8 = -(1 << 7);
|
|
constexpr int kMaxUInt8 = (1 << 8) - 1;
|
|
constexpr int kMinUInt8 = 0;
|
|
constexpr int kMaxInt16 = (1 << 15) - 1;
|
|
constexpr int kMinInt16 = -(1 << 15);
|
|
constexpr int kMaxUInt16 = (1 << 16) - 1;
|
|
constexpr int kMinUInt16 = 0;
|
|
|
|
constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu;
|
|
constexpr int kMinUInt32 = 0;
|
|
|
|
constexpr int kUInt8Size = sizeof(uint8_t);
|
|
constexpr int kByteSize = sizeof(byte);
|
|
constexpr int kCharSize = sizeof(char);
|
|
constexpr int kShortSize = sizeof(short); // NOLINT
|
|
constexpr int kUInt16Size = sizeof(uint16_t);
|
|
constexpr int kIntSize = sizeof(int);
|
|
constexpr int kInt32Size = sizeof(int32_t);
|
|
constexpr int kInt64Size = sizeof(int64_t);
|
|
constexpr int kUInt32Size = sizeof(uint32_t);
|
|
constexpr int kSizetSize = sizeof(size_t);
|
|
constexpr int kFloatSize = sizeof(float);
|
|
constexpr int kDoubleSize = sizeof(double);
|
|
constexpr int kIntptrSize = sizeof(intptr_t);
|
|
constexpr int kUIntptrSize = sizeof(uintptr_t);
|
|
constexpr int kSystemPointerSize = sizeof(void*);
|
|
constexpr int kSystemPointerHexDigits = kSystemPointerSize == 4 ? 8 : 12;
|
|
constexpr int kPCOnStackSize = kSystemPointerSize;
|
|
constexpr int kFPOnStackSize = kSystemPointerSize;
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
|
|
constexpr int kElidedFrameSlots = kPCOnStackSize / kSystemPointerSize;
|
|
#else
|
|
constexpr int kElidedFrameSlots = 0;
|
|
#endif
|
|
|
|
constexpr int kDoubleSizeLog2 = 3;
|
|
#if V8_TARGET_ARCH_ARM64
|
|
// ARM64 only supports direct calls within a 128 MB range.
|
|
constexpr size_t kMaxWasmCodeMB = 128;
|
|
#else
|
|
constexpr size_t kMaxWasmCodeMB = 1024;
|
|
#endif
|
|
constexpr size_t kMaxWasmCodeMemory = kMaxWasmCodeMB * MB;
|
|
|
|
#if V8_HOST_ARCH_64_BIT
|
|
constexpr int kSystemPointerSizeLog2 = 3;
|
|
constexpr intptr_t kIntptrSignBit =
|
|
static_cast<intptr_t>(uintptr_t{0x8000000000000000});
|
|
constexpr bool kRequiresCodeRange = true;
|
|
#if V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr size_t kMaximalCodeRangeSize = 512 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
|
|
#else
|
|
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
|
|
#endif
|
|
#if V8_OS_WIN
|
|
constexpr size_t kMinimumCodeRangeSize = 4 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 1;
|
|
#else
|
|
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
#else
|
|
constexpr int kSystemPointerSizeLog2 = 2;
|
|
constexpr intptr_t kIntptrSignBit = 0x80000000;
|
|
#if V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 2048LL * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
|
|
#else
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
|
|
#endif
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
|
|
STATIC_ASSERT(kSystemPointerSize == (1 << kSystemPointerSizeLog2));
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
static_assert(
|
|
kSystemPointerSize == kInt64Size,
|
|
"Pointer compression can be enabled only for 64-bit architectures");
|
|
|
|
constexpr int kTaggedSize = kInt32Size;
|
|
constexpr int kTaggedSizeLog2 = 2;
|
|
|
|
// These types define raw and atomic storage types for tagged values stored
|
|
// on V8 heap.
|
|
using Tagged_t = int32_t;
|
|
using AtomicTagged_t = base::Atomic32;
|
|
|
|
#else
|
|
|
|
constexpr int kTaggedSize = kSystemPointerSize;
|
|
constexpr int kTaggedSizeLog2 = kSystemPointerSizeLog2;
|
|
|
|
// These types define raw and atomic storage types for tagged values stored
|
|
// on V8 heap.
|
|
using Tagged_t = Address;
|
|
using AtomicTagged_t = base::AtomicWord;
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
|
|
// Defines whether the branchless or branchful implementation of pointer
|
|
// decompression should be used.
|
|
constexpr bool kUseBranchlessPtrDecompression = true;
|
|
|
|
STATIC_ASSERT(kTaggedSize == (1 << kTaggedSizeLog2));
|
|
|
|
using AsAtomicTagged = base::AsAtomicPointerImpl<AtomicTagged_t>;
|
|
STATIC_ASSERT(sizeof(Tagged_t) == kTaggedSize);
|
|
STATIC_ASSERT(sizeof(AtomicTagged_t) == kTaggedSize);
|
|
|
|
STATIC_ASSERT(kTaggedSize == kApiTaggedSize);
|
|
|
|
// TODO(ishell): use kTaggedSize or kSystemPointerSize instead.
|
|
#ifndef V8_COMPRESS_POINTERS
|
|
constexpr int kPointerSize = kSystemPointerSize;
|
|
constexpr int kPointerSizeLog2 = kSystemPointerSizeLog2;
|
|
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
|
|
#endif
|
|
|
|
constexpr int kEmbedderDataSlotSize = kSystemPointerSize;
|
|
|
|
constexpr int kEmbedderDataSlotSizeInTaggedSlots =
|
|
kEmbedderDataSlotSize / kTaggedSize;
|
|
STATIC_ASSERT(kEmbedderDataSlotSize >= kSystemPointerSize);
|
|
|
|
constexpr int kExternalAllocationSoftLimit =
|
|
internal::Internals::kExternalAllocationSoftLimit;
|
|
|
|
// Maximum object size that gets allocated into regular pages. Objects larger
|
|
// than that size are allocated in large object space and are never moved in
|
|
// memory. This also applies to new space allocation, since objects are never
|
|
// migrated from new space to large object space. Takes double alignment into
|
|
// account.
|
|
//
|
|
// Current value: half of the page size.
|
|
constexpr int kMaxRegularHeapObjectSize = (1 << (kPageSizeBits - 1));
|
|
|
|
constexpr int kBitsPerByte = 8;
|
|
constexpr int kBitsPerByteLog2 = 3;
|
|
constexpr int kBitsPerSystemPointer = kSystemPointerSize * kBitsPerByte;
|
|
constexpr int kBitsPerInt = kIntSize * kBitsPerByte;
|
|
|
|
// IEEE 754 single precision floating point number bit layout.
|
|
constexpr uint32_t kBinary32SignMask = 0x80000000u;
|
|
constexpr uint32_t kBinary32ExponentMask = 0x7f800000u;
|
|
constexpr uint32_t kBinary32MantissaMask = 0x007fffffu;
|
|
constexpr int kBinary32ExponentBias = 127;
|
|
constexpr int kBinary32MaxExponent = 0xFE;
|
|
constexpr int kBinary32MinExponent = 0x01;
|
|
constexpr int kBinary32MantissaBits = 23;
|
|
constexpr int kBinary32ExponentShift = 23;
|
|
|
|
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
|
|
// other bits set.
|
|
constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
|
|
|
|
// Latin1/UTF-16 constants
|
|
// Code-point values in Unicode 4.0 are 21 bits wide.
|
|
// Code units in UTF-16 are 16 bits wide.
|
|
typedef uint16_t uc16;
|
|
typedef int32_t uc32;
|
|
constexpr int kOneByteSize = kCharSize;
|
|
constexpr int kUC16Size = sizeof(uc16); // NOLINT
|
|
|
|
// 128 bit SIMD value size.
|
|
constexpr int kSimd128Size = 16;
|
|
|
|
// FUNCTION_ADDR(f) gets the address of a C function f.
|
|
#define FUNCTION_ADDR(f) (reinterpret_cast<v8::internal::Address>(f))
|
|
|
|
// FUNCTION_CAST<F>(addr) casts an address into a function
|
|
// of type F. Used to invoke generated code from within C.
|
|
template <typename F>
|
|
F FUNCTION_CAST(byte* addr) {
|
|
return reinterpret_cast<F>(reinterpret_cast<Address>(addr));
|
|
}
|
|
|
|
template <typename F>
|
|
F FUNCTION_CAST(Address addr) {
|
|
return reinterpret_cast<F>(addr);
|
|
}
|
|
|
|
|
|
// Determine whether the architecture uses function descriptors
|
|
// which provide a level of indirection between the function pointer
|
|
// and the function entrypoint.
|
|
#if V8_HOST_ARCH_PPC && \
|
|
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && \
|
|
(!defined(_CALL_ELF) || _CALL_ELF == 1)))
|
|
#define USES_FUNCTION_DESCRIPTORS 1
|
|
#define FUNCTION_ENTRYPOINT_ADDRESS(f) \
|
|
(reinterpret_cast<v8::internal::Address*>( \
|
|
&(reinterpret_cast<intptr_t*>(f)[0])))
|
|
#else
|
|
#define USES_FUNCTION_DESCRIPTORS 0
|
|
#endif
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Declarations for use in both the preparser and the rest of V8.
|
|
|
|
// The Strict Mode (ECMA-262 5th edition, 4.2.2).
|
|
|
|
enum class LanguageMode : bool { kSloppy, kStrict };
|
|
static const size_t LanguageModeSize = 2;
|
|
|
|
inline size_t hash_value(LanguageMode mode) {
|
|
return static_cast<size_t>(mode);
|
|
}
|
|
|
|
inline const char* LanguageMode2String(LanguageMode mode) {
|
|
switch (mode) {
|
|
case LanguageMode::kSloppy:
|
|
return "sloppy";
|
|
case LanguageMode::kStrict:
|
|
return "strict";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, LanguageMode mode) {
|
|
return os << LanguageMode2String(mode);
|
|
}
|
|
|
|
inline bool is_sloppy(LanguageMode language_mode) {
|
|
return language_mode == LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_strict(LanguageMode language_mode) {
|
|
return language_mode != LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_valid_language_mode(int language_mode) {
|
|
return language_mode == static_cast<int>(LanguageMode::kSloppy) ||
|
|
language_mode == static_cast<int>(LanguageMode::kStrict);
|
|
}
|
|
|
|
inline LanguageMode construct_language_mode(bool strict_bit) {
|
|
return static_cast<LanguageMode>(strict_bit);
|
|
}
|
|
|
|
// Return kStrict if either of the language modes is kStrict, or kSloppy
|
|
// otherwise.
|
|
inline LanguageMode stricter_language_mode(LanguageMode mode1,
|
|
LanguageMode mode2) {
|
|
STATIC_ASSERT(LanguageModeSize == 2);
|
|
return static_cast<LanguageMode>(static_cast<int>(mode1) |
|
|
static_cast<int>(mode2));
|
|
}
|
|
|
|
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
|
|
// a keyed store is of the form a[expression] = foo.
|
|
enum class StoreOrigin { kMaybeKeyed, kNamed };
|
|
|
|
enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
|
|
|
// Enums used by CEntry.
|
|
enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
|
|
enum ArgvMode { kArgvOnStack, kArgvInRegister };
|
|
|
|
// This constant is used as an undefined value when passing source positions.
|
|
constexpr int kNoSourcePosition = -1;
|
|
|
|
// This constant is used to indicate missing deoptimization information.
|
|
constexpr int kNoDeoptimizationId = -1;
|
|
|
|
// Deoptimize bailout kind:
|
|
// - Eager: a check failed in the optimized code and deoptimization happens
|
|
// immediately.
|
|
// - Lazy: the code has been marked as dependent on some assumption which
|
|
// is checked elsewhere and can trigger deoptimization the next time the
|
|
// code is executed.
|
|
// - Soft: similar to lazy deoptimization, but does not contribute to the
|
|
// total deopt count which can lead to disabling optimization for a function.
|
|
enum class DeoptimizeKind : uint8_t {
|
|
kEager,
|
|
kSoft,
|
|
kLazy,
|
|
kLastDeoptimizeKind = kLazy
|
|
};
|
|
inline size_t hash_value(DeoptimizeKind kind) {
|
|
return static_cast<size_t>(kind);
|
|
}
|
|
inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
|
|
switch (kind) {
|
|
case DeoptimizeKind::kEager:
|
|
return os << "Eager";
|
|
case DeoptimizeKind::kSoft:
|
|
return os << "Soft";
|
|
case DeoptimizeKind::kLazy:
|
|
return os << "Lazy";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class IsolateAllocationMode {
|
|
// Allocate Isolate in C++ heap using default new/delete operators.
|
|
kInCppHeap,
|
|
|
|
// Allocate Isolate in a committed region inside V8 heap reservation.
|
|
kInV8Heap,
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
kDefault = kInV8Heap,
|
|
#else
|
|
kDefault = kInCppHeap,
|
|
#endif
|
|
};
|
|
|
|
// Indicates whether the lookup is related to sloppy-mode block-scoped
|
|
// function hoisting, and is a synthetic assignment for that.
|
|
enum class LookupHoistingMode { kNormal, kLegacySloppy };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const LookupHoistingMode& mode) {
|
|
switch (mode) {
|
|
case LookupHoistingMode::kNormal:
|
|
return os << "normal hoisting";
|
|
case LookupHoistingMode::kLegacySloppy:
|
|
return os << "legacy sloppy hoisting";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
static_assert(kSmiValueSize <= 32, "Unsupported Smi tagging scheme");
|
|
// Smi sign bit position must be 32-bit aligned so we can use sign extension
|
|
// instructions on 64-bit architectures without additional shifts.
|
|
static_assert((kSmiValueSize + kSmiShiftSize + kSmiTagSize) % 32 == 0,
|
|
"Unsupported Smi tagging scheme");
|
|
|
|
constexpr bool kIsSmiValueInUpper32Bits =
|
|
(kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 64;
|
|
constexpr bool kIsSmiValueInLower32Bits =
|
|
(kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 32;
|
|
static_assert(!SmiValuesAre32Bits() == SmiValuesAre31Bits(),
|
|
"Unsupported Smi tagging scheme");
|
|
static_assert(SmiValuesAre32Bits() == kIsSmiValueInUpper32Bits,
|
|
"Unsupported Smi tagging scheme");
|
|
static_assert(SmiValuesAre31Bits() == kIsSmiValueInLower32Bits,
|
|
"Unsupported Smi tagging scheme");
|
|
|
|
// Mask for the sign bit in a smi.
|
|
constexpr intptr_t kSmiSignMask = static_cast<intptr_t>(
|
|
uintptr_t{1} << (kSmiValueSize + kSmiShiftSize + kSmiTagSize - 1));
|
|
|
|
// Desired alignment for tagged pointers.
|
|
constexpr int kObjectAlignmentBits = kTaggedSizeLog2;
|
|
constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
|
|
constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
|
|
|
|
// Desired alignment for system pointers.
|
|
constexpr intptr_t kPointerAlignment = (1 << kSystemPointerSizeLog2);
|
|
constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
|
|
|
|
// Desired alignment for double values.
|
|
constexpr intptr_t kDoubleAlignment = 8;
|
|
constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
|
|
|
|
// Desired alignment for generated code is 32 bytes (to improve cache line
|
|
// utilization).
|
|
constexpr int kCodeAlignmentBits = 5;
|
|
constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
|
|
constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
|
|
|
|
const Address kWeakHeapObjectMask = 1 << 1;
|
|
|
|
// The lower 32 bits of the cleared weak reference value is always equal to
|
|
// the |kClearedWeakHeapObjectLower32| constant but on 64-bit architectures
|
|
// the value of the upper 32 bits part may be
|
|
// 1) zero when pointer compression is disabled,
|
|
// 2) upper 32 bits of the isolate root value when pointer compression is
|
|
// enabled.
|
|
// This is necessary to make pointer decompression computation also suitable
|
|
// for cleared weak reference.
|
|
// Note, that real heap objects can't have lower 32 bits equal to 3 because
|
|
// this offset belongs to page header. So, in either case it's enough to
|
|
// compare only the lower 32 bits of a MaybeObject value in order to figure
|
|
// out if it's a cleared reference or not.
|
|
const uint32_t kClearedWeakHeapObjectLower32 = 3;
|
|
|
|
// Zap-value: The value used for zapping dead objects.
|
|
// Should be a recognizable hex value tagged as a failure.
|
|
#ifdef V8_HOST_ARCH_64_BIT
|
|
constexpr uint64_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef};
|
|
constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf};
|
|
constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf};
|
|
constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf};
|
|
constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb};
|
|
constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef};
|
|
constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
|
|
#else
|
|
constexpr uint32_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint32_t kZapValue = 0xdeadbeef;
|
|
constexpr uint32_t kHandleZapValue = 0xbaddeaf;
|
|
constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf;
|
|
constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf;
|
|
constexpr uint32_t kSlotsZapValue = 0xbeefdeef;
|
|
constexpr uint32_t kDebugZapValue = 0xbadbaddb;
|
|
constexpr uint32_t kFreeListZapValue = 0xfeed1eaf;
|
|
#endif
|
|
|
|
constexpr int kCodeZapValue = 0xbadc0de;
|
|
constexpr uint32_t kPhantomReferenceZap = 0xca11bac;
|
|
|
|
// Page constants.
|
|
static const intptr_t kPageAlignmentMask = (intptr_t{1} << kPageSizeBits) - 1;
|
|
|
|
// On Intel architecture, cache line size is 64 bytes.
|
|
// On ARM it may be less (32 bytes), but as far this constant is
|
|
// used for aligning data, it doesn't hurt to align on a greater value.
|
|
#define PROCESSOR_CACHE_LINE_SIZE 64
|
|
|
|
// Constants relevant to double precision floating point numbers.
|
|
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
|
|
constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
|
|
|
|
enum class HeapObjectReferenceType {
|
|
WEAK,
|
|
STRONG,
|
|
};
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Forward declarations for frequently used classes
|
|
|
|
class AccessorInfo;
|
|
class Arguments;
|
|
class Assembler;
|
|
class ClassScope;
|
|
class Code;
|
|
class CodeSpace;
|
|
class Context;
|
|
class DeclarationScope;
|
|
class Debug;
|
|
class DebugInfo;
|
|
class Descriptor;
|
|
class DescriptorArray;
|
|
class TransitionArray;
|
|
class ExternalReference;
|
|
class FeedbackVector;
|
|
class FixedArray;
|
|
class Foreign;
|
|
class FreeStoreAllocationPolicy;
|
|
class FunctionTemplateInfo;
|
|
class GlobalDictionary;
|
|
template <typename T> class Handle;
|
|
class Heap;
|
|
class HeapObject;
|
|
class HeapObjectReference;
|
|
class IC;
|
|
class InterceptorInfo;
|
|
class Isolate;
|
|
class JSReceiver;
|
|
class JSArray;
|
|
class JSFunction;
|
|
class JSObject;
|
|
class LargeObjectSpace;
|
|
class MacroAssembler;
|
|
class Map;
|
|
class MapSpace;
|
|
class MarkCompactCollector;
|
|
template <typename T>
|
|
class MaybeHandle;
|
|
class MaybeObject;
|
|
class MemoryChunk;
|
|
class MessageLocation;
|
|
class ModuleScope;
|
|
class Name;
|
|
class NameDictionary;
|
|
class NativeContext;
|
|
class NewSpace;
|
|
class NewLargeObjectSpace;
|
|
class NumberDictionary;
|
|
class Object;
|
|
template <HeapObjectReferenceType kRefType, typename StorageType>
|
|
class TaggedImpl;
|
|
class CompressedObjectSlot;
|
|
class CompressedMaybeObjectSlot;
|
|
class CompressedMapWordSlot;
|
|
class CompressedHeapObjectSlot;
|
|
class FullObjectSlot;
|
|
class FullMaybeObjectSlot;
|
|
class FullHeapObjectSlot;
|
|
class OldSpace;
|
|
class ParameterCount;
|
|
class ReadOnlySpace;
|
|
class RelocInfo;
|
|
class Scope;
|
|
class ScopeInfo;
|
|
class Script;
|
|
class SimpleNumberDictionary;
|
|
class Smi;
|
|
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
|
|
class SplayTree;
|
|
class String;
|
|
class StringStream;
|
|
class Struct;
|
|
class Symbol;
|
|
class Variable;
|
|
|
|
enum class SlotLocation { kOnHeap, kOffHeap };
|
|
|
|
template <SlotLocation slot_location>
|
|
struct SlotTraits;
|
|
|
|
// Off-heap slots are always full-pointer slots.
|
|
template <>
|
|
struct SlotTraits<SlotLocation::kOffHeap> {
|
|
using TObjectSlot = FullObjectSlot;
|
|
using TMapWordSlot = FullObjectSlot;
|
|
using TMaybeObjectSlot = FullMaybeObjectSlot;
|
|
using THeapObjectSlot = FullHeapObjectSlot;
|
|
};
|
|
|
|
// On-heap slots are either full-pointer slots or compressed slots depending
|
|
// on whether the pointer compression is enabled or not.
|
|
template <>
|
|
struct SlotTraits<SlotLocation::kOnHeap> {
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
using TObjectSlot = CompressedObjectSlot;
|
|
using TMapWordSlot = CompressedMapWordSlot;
|
|
using TMaybeObjectSlot = CompressedMaybeObjectSlot;
|
|
using THeapObjectSlot = CompressedHeapObjectSlot;
|
|
#else
|
|
using TObjectSlot = FullObjectSlot;
|
|
using TMapWordSlot = FullObjectSlot;
|
|
using TMaybeObjectSlot = FullMaybeObjectSlot;
|
|
using THeapObjectSlot = FullHeapObjectSlot;
|
|
#endif
|
|
};
|
|
|
|
// An ObjectSlot instance describes a kTaggedSize-sized on-heap field ("slot")
|
|
// holding Object value (smi or strong heap object).
|
|
using ObjectSlot = SlotTraits<SlotLocation::kOnHeap>::TObjectSlot;
|
|
|
|
// An MapWordSlot instance describes a kTaggedSize-sized on-heap field ("slot")
|
|
// holding HeapObject (strong heap object) value or a forwarding pointer.
|
|
using MapWordSlot = SlotTraits<SlotLocation::kOnHeap>::TMapWordSlot;
|
|
|
|
// A MaybeObjectSlot instance describes a kTaggedSize-sized on-heap field
|
|
// ("slot") holding MaybeObject (smi or weak heap object or strong heap object).
|
|
using MaybeObjectSlot = SlotTraits<SlotLocation::kOnHeap>::TMaybeObjectSlot;
|
|
|
|
// A HeapObjectSlot instance describes a kTaggedSize-sized field ("slot")
|
|
// holding a weak or strong pointer to a heap object (think:
|
|
// HeapObjectReference).
|
|
using HeapObjectSlot = SlotTraits<SlotLocation::kOnHeap>::THeapObjectSlot;
|
|
|
|
typedef bool (*WeakSlotCallback)(FullObjectSlot pointer);
|
|
|
|
typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, FullObjectSlot pointer);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
|
|
// consecutive.
|
|
enum AllocationSpace {
|
|
RO_SPACE, // Immortal, immovable and immutable objects,
|
|
NEW_SPACE, // Young generation semispaces for regular objects collected with
|
|
// Scavenger.
|
|
OLD_SPACE, // Old generation regular object space.
|
|
CODE_SPACE, // Old generation code object space, marked executable.
|
|
MAP_SPACE, // Old generation map object space, non-movable.
|
|
LO_SPACE, // Old generation large object space.
|
|
CODE_LO_SPACE, // Old generation large code object space.
|
|
NEW_LO_SPACE, // Young generation large object space.
|
|
|
|
FIRST_SPACE = RO_SPACE,
|
|
LAST_SPACE = NEW_LO_SPACE,
|
|
FIRST_MUTABLE_SPACE = NEW_SPACE,
|
|
LAST_MUTABLE_SPACE = NEW_LO_SPACE,
|
|
FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
|
|
LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
|
|
};
|
|
constexpr int kSpaceTagSize = 4;
|
|
STATIC_ASSERT(FIRST_SPACE == 0);
|
|
|
|
enum class AllocationType : uint8_t {
|
|
kYoung, // Regular object allocated in NEW_SPACE or NEW_LO_SPACE
|
|
kOld, // Regular object allocated in OLD_SPACE or LO_SPACE
|
|
kCode, // Code object allocated in CODE_SPACE or CODE_LO_SPACE
|
|
kMap, // Map object allocated in MAP_SPACE
|
|
kReadOnly // Object allocated in RO_SPACE
|
|
};
|
|
|
|
inline size_t hash_value(AllocationType kind) {
|
|
return static_cast<uint8_t>(kind);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, AllocationType kind) {
|
|
switch (kind) {
|
|
case AllocationType::kYoung:
|
|
return os << "Young";
|
|
case AllocationType::kOld:
|
|
return os << "Old";
|
|
case AllocationType::kCode:
|
|
return os << "Code";
|
|
case AllocationType::kMap:
|
|
return os << "Map";
|
|
case AllocationType::kReadOnly:
|
|
return os << "ReadOnly";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// TODO(ishell): review and rename kWordAligned to kTaggedAligned.
|
|
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
|
|
|
|
enum class AccessMode { ATOMIC, NON_ATOMIC };
|
|
|
|
enum class AllowLargeObjects { kFalse, kTrue };
|
|
|
|
enum MinimumCapacity {
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
USE_CUSTOM_MINIMUM_CAPACITY
|
|
};
|
|
|
|
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
|
|
|
|
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
|
|
|
|
enum VisitMode {
|
|
VISIT_ALL,
|
|
VISIT_ALL_IN_MINOR_MC_MARK,
|
|
VISIT_ALL_IN_MINOR_MC_UPDATE,
|
|
VISIT_ALL_IN_SCAVENGE,
|
|
VISIT_ALL_IN_SWEEP_NEWSPACE,
|
|
VISIT_ONLY_STRONG,
|
|
VISIT_FOR_SERIALIZATION,
|
|
};
|
|
|
|
enum class BytecodeFlushMode {
|
|
kDoNotFlushBytecode,
|
|
kFlushBytecode,
|
|
kStressFlushBytecode,
|
|
};
|
|
|
|
// Flag indicating whether code is built into the VM (one of the natives files).
|
|
enum NativesFlag {
|
|
NOT_NATIVES_CODE,
|
|
EXTENSION_CODE,
|
|
INSPECTOR_CODE
|
|
};
|
|
|
|
// ParseRestriction is used to restrict the set of valid statements in a
|
|
// unit of compilation. Restriction violations cause a syntax error.
|
|
enum ParseRestriction {
|
|
NO_PARSE_RESTRICTION, // All expressions are allowed.
|
|
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
|
|
};
|
|
|
|
// State for inline cache call sites. Aliased as IC::State.
|
|
enum InlineCacheState {
|
|
// No feedback will be collected.
|
|
NO_FEEDBACK,
|
|
// Has never been executed.
|
|
UNINITIALIZED,
|
|
// Has been executed but monomorphic state has been delayed.
|
|
PREMONOMORPHIC,
|
|
// Has been executed and only one receiver type has been seen.
|
|
MONOMORPHIC,
|
|
// Check failed due to prototype (or map deprecation).
|
|
RECOMPUTE_HANDLER,
|
|
// Multiple receiver types have been seen.
|
|
POLYMORPHIC,
|
|
// Many receiver types have been seen.
|
|
MEGAMORPHIC,
|
|
// A generic handler is installed and no extra typefeedback is recorded.
|
|
GENERIC,
|
|
};
|
|
|
|
// Printing support.
|
|
inline const char* InlineCacheState2String(InlineCacheState state) {
|
|
switch (state) {
|
|
case NO_FEEDBACK:
|
|
return "NOFEEDBACK";
|
|
case UNINITIALIZED:
|
|
return "UNINITIALIZED";
|
|
case PREMONOMORPHIC:
|
|
return "PREMONOMORPHIC";
|
|
case MONOMORPHIC:
|
|
return "MONOMORPHIC";
|
|
case RECOMPUTE_HANDLER:
|
|
return "RECOMPUTE_HANDLER";
|
|
case POLYMORPHIC:
|
|
return "POLYMORPHIC";
|
|
case MEGAMORPHIC:
|
|
return "MEGAMORPHIC";
|
|
case GENERIC:
|
|
return "GENERIC";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
|
|
|
|
enum ResultSentinel { kNotFound = -1, kUnsupported = -2 };
|
|
|
|
enum ShouldThrow {
|
|
kThrowOnError = Internals::kThrowOnError,
|
|
kDontThrow = Internals::kDontThrow
|
|
};
|
|
|
|
// The Store Buffer (GC).
|
|
typedef enum {
|
|
kStoreBufferFullEvent,
|
|
kStoreBufferStartScanningPagesEvent,
|
|
kStoreBufferScanningPageEvent
|
|
} StoreBufferEvent;
|
|
|
|
|
|
typedef void (*StoreBufferCallback)(Heap* heap,
|
|
MemoryChunk* page,
|
|
StoreBufferEvent event);
|
|
|
|
// Union used for customized checking of the IEEE double types
|
|
// inlined within v8 runtime, rather than going to the underlying
|
|
// platform headers and libraries
|
|
union IeeeDoubleLittleEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int man_low :32;
|
|
unsigned int man_high :20;
|
|
unsigned int exp :11;
|
|
unsigned int sign :1;
|
|
} bits;
|
|
};
|
|
|
|
|
|
union IeeeDoubleBigEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int sign :1;
|
|
unsigned int exp :11;
|
|
unsigned int man_high :20;
|
|
unsigned int man_low :32;
|
|
} bits;
|
|
};
|
|
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 0;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 4;
|
|
#else
|
|
typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 4;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 0;
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Macros
|
|
|
|
// Testers for test.
|
|
|
|
#define HAS_SMI_TAG(value) \
|
|
((static_cast<intptr_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag)
|
|
|
|
#define HAS_STRONG_HEAP_OBJECT_TAG(value) \
|
|
(((static_cast<intptr_t>(value) & ::i::kHeapObjectTagMask) == \
|
|
::i::kHeapObjectTag))
|
|
|
|
#define HAS_WEAK_HEAP_OBJECT_TAG(value) \
|
|
(((static_cast<intptr_t>(value) & ::i::kHeapObjectTagMask) == \
|
|
::i::kWeakHeapObjectTag))
|
|
|
|
// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
|
|
#define OBJECT_POINTER_ALIGN(value) \
|
|
(((value) + ::i::kObjectAlignmentMask) & ~::i::kObjectAlignmentMask)
|
|
|
|
// OBJECT_POINTER_PADDING returns the padding size required to align value
|
|
// as a HeapObject pointer
|
|
#define OBJECT_POINTER_PADDING(value) (OBJECT_POINTER_ALIGN(value) - (value))
|
|
|
|
// POINTER_SIZE_ALIGN returns the value aligned as a system pointer.
|
|
#define POINTER_SIZE_ALIGN(value) \
|
|
(((value) + ::i::kPointerAlignmentMask) & ~::i::kPointerAlignmentMask)
|
|
|
|
// POINTER_SIZE_PADDING returns the padding size required to align value
|
|
// as a system pointer.
|
|
#define POINTER_SIZE_PADDING(value) (POINTER_SIZE_ALIGN(value) - (value))
|
|
|
|
// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
|
|
#define CODE_POINTER_ALIGN(value) \
|
|
(((value) + ::i::kCodeAlignmentMask) & ~::i::kCodeAlignmentMask)
|
|
|
|
// CODE_POINTER_PADDING returns the padding size required to align value
|
|
// as a generated code segment.
|
|
#define CODE_POINTER_PADDING(value) (CODE_POINTER_ALIGN(value) - (value))
|
|
|
|
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
|
|
#define DOUBLE_POINTER_ALIGN(value) \
|
|
(((value) + ::i::kDoubleAlignmentMask) & ~::i::kDoubleAlignmentMask)
|
|
|
|
// Defines hints about receiver values based on structural knowledge.
|
|
enum class ConvertReceiverMode : unsigned {
|
|
kNullOrUndefined, // Guaranteed to be null or undefined.
|
|
kNotNullOrUndefined, // Guaranteed to never be null or undefined.
|
|
kAny // No specific knowledge about receiver.
|
|
};
|
|
|
|
inline size_t hash_value(ConvertReceiverMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
|
|
switch (mode) {
|
|
case ConvertReceiverMode::kNullOrUndefined:
|
|
return os << "NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kNotNullOrUndefined:
|
|
return os << "NOT_NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kAny:
|
|
return os << "ANY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Valid hints for the abstract operation OrdinaryToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class OrdinaryToPrimitiveHint { kNumber, kString };
|
|
|
|
// Valid hints for the abstract operation ToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class ToPrimitiveHint { kDefault, kNumber, kString };
|
|
|
|
// Defines specifics about arguments object or rest parameter creation.
|
|
enum class CreateArgumentsType : uint8_t {
|
|
kMappedArguments,
|
|
kUnmappedArguments,
|
|
kRestParameter
|
|
};
|
|
|
|
inline size_t hash_value(CreateArgumentsType type) {
|
|
return bit_cast<uint8_t>(type);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
|
|
switch (type) {
|
|
case CreateArgumentsType::kMappedArguments:
|
|
return os << "MAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kUnmappedArguments:
|
|
return os << "UNMAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kRestParameter:
|
|
return os << "REST_PARAMETER";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum ScopeType : uint8_t {
|
|
CLASS_SCOPE, // The scope introduced by a class.
|
|
EVAL_SCOPE, // The top-level scope for an eval source.
|
|
FUNCTION_SCOPE, // The top-level scope for a function.
|
|
MODULE_SCOPE, // The scope introduced by a module literal
|
|
SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
|
|
CATCH_SCOPE, // The scope introduced by catch.
|
|
BLOCK_SCOPE, // The scope introduced by a new block.
|
|
WITH_SCOPE // The scope introduced by with.
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ScopeType type) {
|
|
switch (type) {
|
|
case ScopeType::EVAL_SCOPE:
|
|
return os << "EVAL_SCOPE";
|
|
case ScopeType::FUNCTION_SCOPE:
|
|
return os << "FUNCTION_SCOPE";
|
|
case ScopeType::MODULE_SCOPE:
|
|
return os << "MODULE_SCOPE";
|
|
case ScopeType::SCRIPT_SCOPE:
|
|
return os << "SCRIPT_SCOPE";
|
|
case ScopeType::CATCH_SCOPE:
|
|
return os << "CATCH_SCOPE";
|
|
case ScopeType::BLOCK_SCOPE:
|
|
return os << "BLOCK_SCOPE";
|
|
case ScopeType::CLASS_SCOPE:
|
|
return os << "CLASS_SCOPE";
|
|
case ScopeType::WITH_SCOPE:
|
|
return os << "WITH_SCOPE";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// AllocationSiteMode controls whether allocations are tracked by an allocation
|
|
// site.
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
enum class AllocationSiteUpdateMode { kUpdate, kCheckOnly };
|
|
|
|
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
|
|
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
|
|
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF;
|
|
#else
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF;
|
|
#endif
|
|
|
|
constexpr uint64_t kHoleNanInt64 =
|
|
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
|
|
|
|
// ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
|
|
constexpr double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
|
|
|
|
// The order of this enum has to be kept in sync with the predicates below.
|
|
enum class VariableMode : uint8_t {
|
|
// User declared variables:
|
|
kLet, // declared via 'let' declarations (first lexical)
|
|
|
|
kConst, // declared via 'const' declarations (last lexical)
|
|
|
|
kVar, // declared via 'var', and 'function' declarations
|
|
|
|
// Variables introduced by the compiler:
|
|
kTemporary, // temporary variables (not user-visible), stack-allocated
|
|
// unless the scope as a whole has forced context allocation
|
|
|
|
kDynamic, // always require dynamic lookup (we don't know
|
|
// the declaration)
|
|
|
|
kDynamicGlobal, // requires dynamic lookup, but we know that the
|
|
// variable is global unless it has been shadowed
|
|
// by an eval-introduced variable
|
|
|
|
kDynamicLocal, // requires dynamic lookup, but we know that the
|
|
// variable is local and where it is unless it
|
|
// has been shadowed by an eval-introduced
|
|
// variable
|
|
|
|
kLastLexicalVariableMode = kConst,
|
|
};
|
|
|
|
// Printing support
|
|
#ifdef DEBUG
|
|
inline const char* VariableMode2String(VariableMode mode) {
|
|
switch (mode) {
|
|
case VariableMode::kVar:
|
|
return "VAR";
|
|
case VariableMode::kLet:
|
|
return "LET";
|
|
case VariableMode::kConst:
|
|
return "CONST";
|
|
case VariableMode::kDynamic:
|
|
return "DYNAMIC";
|
|
case VariableMode::kDynamicGlobal:
|
|
return "DYNAMIC_GLOBAL";
|
|
case VariableMode::kDynamicLocal:
|
|
return "DYNAMIC_LOCAL";
|
|
case VariableMode::kTemporary:
|
|
return "TEMPORARY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
#endif
|
|
|
|
enum VariableKind : uint8_t {
|
|
NORMAL_VARIABLE,
|
|
PARAMETER_VARIABLE,
|
|
THIS_VARIABLE,
|
|
SLOPPY_BLOCK_FUNCTION_VARIABLE,
|
|
SLOPPY_FUNCTION_NAME_VARIABLE
|
|
};
|
|
|
|
inline bool IsDynamicVariableMode(VariableMode mode) {
|
|
return mode >= VariableMode::kDynamic && mode <= VariableMode::kDynamicLocal;
|
|
}
|
|
|
|
inline bool IsDeclaredVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) ==
|
|
0); // Implies that mode >= VariableMode::kLet.
|
|
return mode <= VariableMode::kVar;
|
|
}
|
|
|
|
inline bool IsLexicalVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) ==
|
|
0); // Implies that mode >= VariableMode::kLet.
|
|
return mode <= VariableMode::kLastLexicalVariableMode;
|
|
}
|
|
|
|
enum VariableLocation : uint8_t {
|
|
// Before and during variable allocation, a variable whose location is
|
|
// not yet determined. After allocation, a variable looked up as a
|
|
// property on the global object (and possibly absent). name() is the
|
|
// variable name, index() is invalid.
|
|
UNALLOCATED,
|
|
|
|
// A slot in the parameter section on the stack. index() is the
|
|
// parameter index, counting left-to-right. The receiver is index -1;
|
|
// the first parameter is index 0.
|
|
PARAMETER,
|
|
|
|
// A slot in the local section on the stack. index() is the variable
|
|
// index in the stack frame, starting at 0.
|
|
LOCAL,
|
|
|
|
// An indexed slot in a heap context. index() is the variable index in
|
|
// the context object on the heap, starting at 0. scope() is the
|
|
// corresponding scope.
|
|
CONTEXT,
|
|
|
|
// A named slot in a heap context. name() is the variable name in the
|
|
// context object on the heap, with lookup starting at the current
|
|
// context. index() is invalid.
|
|
LOOKUP,
|
|
|
|
// A named slot in a module's export table.
|
|
MODULE,
|
|
|
|
kLastVariableLocation = MODULE
|
|
};
|
|
|
|
// ES6 specifies declarative environment records with mutable and immutable
|
|
// bindings that can be in two states: initialized and uninitialized.
|
|
// When accessing a binding, it needs to be checked for initialization.
|
|
// However in the following cases the binding is initialized immediately
|
|
// after creation so the initialization check can always be skipped:
|
|
//
|
|
// 1. Var declared local variables.
|
|
// var foo;
|
|
// 2. A local variable introduced by a function declaration.
|
|
// function foo() {}
|
|
// 3. Parameters
|
|
// function x(foo) {}
|
|
// 4. Catch bound variables.
|
|
// try {} catch (foo) {}
|
|
// 6. Function name variables of named function expressions.
|
|
// var x = function foo() {}
|
|
// 7. Implicit binding of 'this'.
|
|
// 8. Implicit binding of 'arguments' in functions.
|
|
//
|
|
// The following enum specifies a flag that indicates if the binding needs a
|
|
// distinct initialization step (kNeedsInitialization) or if the binding is
|
|
// immediately initialized upon creation (kCreatedInitialized).
|
|
enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
|
|
|
|
enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
|
|
|
|
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
|
|
|
|
|
|
enum class InterpreterPushArgsMode : unsigned {
|
|
kArrayFunction,
|
|
kWithFinalSpread,
|
|
kOther
|
|
};
|
|
|
|
inline size_t hash_value(InterpreterPushArgsMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
InterpreterPushArgsMode mode) {
|
|
switch (mode) {
|
|
case InterpreterPushArgsMode::kArrayFunction:
|
|
return os << "ArrayFunction";
|
|
case InterpreterPushArgsMode::kWithFinalSpread:
|
|
return os << "WithFinalSpread";
|
|
case InterpreterPushArgsMode::kOther:
|
|
return os << "Other";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline uint32_t ObjectHash(Address address) {
|
|
// All objects are at least pointer aligned, so we can remove the trailing
|
|
// zeros.
|
|
return static_cast<uint32_t>(address >> kTaggedSizeLog2);
|
|
}
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny
|
|
// kString -> kAny
|
|
// kBigInt -> kAny
|
|
//
|
|
// Technically we wouldn't need the separation between the kNumber and the
|
|
// kNumberOrOddball values here, since for binary operations, we always
|
|
// truncate oddballs to numbers. In practice though it causes TurboFan to
|
|
// generate quite a lot of unused code though if we always handle numbers
|
|
// and oddballs everywhere, although in 99% of the use sites they are only
|
|
// used with numbers.
|
|
class BinaryOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kSignedSmall = 0x1,
|
|
kSignedSmallInputs = 0x3,
|
|
kNumber = 0x7,
|
|
kNumberOrOddball = 0xF,
|
|
kString = 0x10,
|
|
kBigInt = 0x20,
|
|
kAny = 0x7F
|
|
};
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kNumber -> kNumberOrOddball -> kAny
|
|
// kReceiver -> kReceiverOrNullOrUndefined -> kAny
|
|
// kInternalizedString -> kString -> kAny
|
|
// kSymbol -> kAny
|
|
// kBigInt -> kAny
|
|
//
|
|
// This is distinct from BinaryOperationFeedback on purpose, because the
|
|
// feedback that matters differs greatly as well as the way it is consumed.
|
|
class CompareOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x000,
|
|
kSignedSmall = 0x001,
|
|
kNumber = 0x003,
|
|
kNumberOrOddball = 0x007,
|
|
kInternalizedString = 0x008,
|
|
kString = 0x018,
|
|
kSymbol = 0x020,
|
|
kBigInt = 0x040,
|
|
kReceiver = 0x080,
|
|
kReceiverOrNullOrUndefined = 0x180,
|
|
kAny = 0x1ff
|
|
};
|
|
};
|
|
|
|
enum class Operation {
|
|
// Binary operations.
|
|
kAdd,
|
|
kSubtract,
|
|
kMultiply,
|
|
kDivide,
|
|
kModulus,
|
|
kExponentiate,
|
|
kBitwiseAnd,
|
|
kBitwiseOr,
|
|
kBitwiseXor,
|
|
kShiftLeft,
|
|
kShiftRight,
|
|
kShiftRightLogical,
|
|
// Unary operations.
|
|
kBitwiseNot,
|
|
kNegate,
|
|
kIncrement,
|
|
kDecrement,
|
|
// Compare operations.
|
|
kEqual,
|
|
kStrictEqual,
|
|
kLessThan,
|
|
kLessThanOrEqual,
|
|
kGreaterThan,
|
|
kGreaterThanOrEqual,
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
// kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny
|
|
class ForInFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kEnumCacheKeysAndIndices = 0x1,
|
|
kEnumCacheKeys = 0x3,
|
|
kAny = 0x7
|
|
};
|
|
};
|
|
STATIC_ASSERT((ForInFeedback::kNone |
|
|
ForInFeedback::kEnumCacheKeysAndIndices) ==
|
|
ForInFeedback::kEnumCacheKeysAndIndices);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices |
|
|
ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) ==
|
|
ForInFeedback::kAny);
|
|
|
|
enum class UnicodeEncoding : uint8_t {
|
|
// Different unicode encodings in a |word32|:
|
|
UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
|
|
UTF32, // full UTF32 code unit / Unicode codepoint
|
|
};
|
|
|
|
inline size_t hash_value(UnicodeEncoding encoding) {
|
|
return static_cast<uint8_t>(encoding);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
|
|
switch (encoding) {
|
|
case UnicodeEncoding::UTF16:
|
|
return os << "UTF16";
|
|
case UnicodeEncoding::UTF32:
|
|
return os << "UTF32";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class IterationKind { kKeys, kValues, kEntries };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
|
|
switch (kind) {
|
|
case IterationKind::kKeys:
|
|
return os << "IterationKind::kKeys";
|
|
case IterationKind::kValues:
|
|
return os << "IterationKind::kValues";
|
|
case IterationKind::kEntries:
|
|
return os << "IterationKind::kEntries";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class CollectionKind { kMap, kSet };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) {
|
|
switch (kind) {
|
|
case CollectionKind::kMap:
|
|
return os << "CollectionKind::kMap";
|
|
case CollectionKind::kSet:
|
|
return os << "CollectionKind::kSet";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Flags for the runtime function kDefineDataPropertyInLiteral. A property can
|
|
// be enumerable or not, and, in case of functions, the function name
|
|
// can be set or not.
|
|
enum class DataPropertyInLiteralFlag {
|
|
kNoFlags = 0,
|
|
kDontEnum = 1 << 0,
|
|
kSetFunctionName = 1 << 1
|
|
};
|
|
typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
|
|
DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
|
|
|
|
enum ExternalArrayType {
|
|
kExternalInt8Array = 1,
|
|
kExternalUint8Array,
|
|
kExternalInt16Array,
|
|
kExternalUint16Array,
|
|
kExternalInt32Array,
|
|
kExternalUint32Array,
|
|
kExternalFloat32Array,
|
|
kExternalFloat64Array,
|
|
kExternalUint8ClampedArray,
|
|
kExternalBigInt64Array,
|
|
kExternalBigUint64Array,
|
|
};
|
|
|
|
struct AssemblerDebugInfo {
|
|
AssemblerDebugInfo(const char* name, const char* file, int line)
|
|
: name(name), file(file), line(line) {}
|
|
const char* name;
|
|
const char* file;
|
|
int line;
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const AssemblerDebugInfo& info) {
|
|
os << "(" << info.name << ":" << info.file << ":" << info.line << ")";
|
|
return os;
|
|
}
|
|
|
|
enum class OptimizationMarker {
|
|
kLogFirstExecution,
|
|
kNone,
|
|
kCompileOptimized,
|
|
kCompileOptimizedConcurrent,
|
|
kInOptimizationQueue
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const OptimizationMarker& marker) {
|
|
switch (marker) {
|
|
case OptimizationMarker::kLogFirstExecution:
|
|
return os << "OptimizationMarker::kLogFirstExecution";
|
|
case OptimizationMarker::kNone:
|
|
return os << "OptimizationMarker::kNone";
|
|
case OptimizationMarker::kCompileOptimized:
|
|
return os << "OptimizationMarker::kCompileOptimized";
|
|
case OptimizationMarker::kCompileOptimizedConcurrent:
|
|
return os << "OptimizationMarker::kCompileOptimizedConcurrent";
|
|
case OptimizationMarker::kInOptimizationQueue:
|
|
return os << "OptimizationMarker::kInOptimizationQueue";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
SpeculationMode speculation_mode) {
|
|
switch (speculation_mode) {
|
|
case SpeculationMode::kAllowSpeculation:
|
|
return os << "SpeculationMode::kAllowSpeculation";
|
|
case SpeculationMode::kDisallowSpeculation:
|
|
return os << "SpeculationMode::kDisallowSpeculation";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class BlockingBehavior { kBlock, kDontBlock };
|
|
|
|
enum class ConcurrencyMode { kNotConcurrent, kConcurrent };
|
|
|
|
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \
|
|
C(Handler, handler) \
|
|
C(CEntryFP, c_entry_fp) \
|
|
C(CFunction, c_function) \
|
|
C(Context, context) \
|
|
C(PendingException, pending_exception) \
|
|
C(PendingHandlerContext, pending_handler_context) \
|
|
C(PendingHandlerEntrypoint, pending_handler_entrypoint) \
|
|
C(PendingHandlerConstantPool, pending_handler_constant_pool) \
|
|
C(PendingHandlerFP, pending_handler_fp) \
|
|
C(PendingHandlerSP, pending_handler_sp) \
|
|
C(ExternalCaughtException, external_caught_exception) \
|
|
C(JSEntrySP, js_entry_sp)
|
|
|
|
enum IsolateAddressId {
|
|
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
|
|
FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
|
|
#undef DECLARE_ENUM
|
|
kIsolateAddressCount
|
|
};
|
|
|
|
enum class PoisoningMitigationLevel {
|
|
kPoisonAll,
|
|
kDontPoison,
|
|
kPoisonCriticalOnly
|
|
};
|
|
|
|
enum class LoadSensitivity {
|
|
kCritical, // Critical loads are poisoned whenever we can run untrusted
|
|
// code (i.e., when --untrusted-code-mitigations is on).
|
|
kUnsafe, // Unsafe loads are poisoned when full poisoning is on
|
|
// (--branch-load-poisoning).
|
|
kSafe // Safe loads are never poisoned.
|
|
};
|
|
|
|
// The reason for a WebAssembly trap.
|
|
#define FOREACH_WASM_TRAPREASON(V) \
|
|
V(TrapUnreachable) \
|
|
V(TrapMemOutOfBounds) \
|
|
V(TrapUnalignedAccess) \
|
|
V(TrapDivByZero) \
|
|
V(TrapDivUnrepresentable) \
|
|
V(TrapRemByZero) \
|
|
V(TrapFloatUnrepresentable) \
|
|
V(TrapFuncInvalid) \
|
|
V(TrapFuncSigMismatch) \
|
|
V(TrapDataSegmentDropped) \
|
|
V(TrapElemSegmentDropped) \
|
|
V(TrapTableOutOfBounds)
|
|
|
|
enum KeyedAccessLoadMode {
|
|
STANDARD_LOAD,
|
|
LOAD_IGNORE_OUT_OF_BOUNDS,
|
|
};
|
|
|
|
enum KeyedAccessStoreMode {
|
|
STANDARD_STORE,
|
|
STORE_TRANSITION_TO_OBJECT,
|
|
STORE_TRANSITION_TO_DOUBLE,
|
|
STORE_AND_GROW_NO_TRANSITION_HANDLE_COW,
|
|
STORE_AND_GROW_TRANSITION_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_TO_DOUBLE,
|
|
STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
|
|
STORE_NO_TRANSITION_HANDLE_COW
|
|
};
|
|
|
|
enum MutableMode { MUTABLE, IMMUTABLE };
|
|
|
|
static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode == STORE_TRANSITION_TO_OBJECT ||
|
|
store_mode == STORE_TRANSITION_TO_DOUBLE ||
|
|
store_mode == STORE_AND_GROW_TRANSITION_TO_OBJECT ||
|
|
store_mode == STORE_AND_GROW_TRANSITION_TO_DOUBLE;
|
|
}
|
|
|
|
static inline bool IsCOWHandlingStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode == STORE_NO_TRANSITION_HANDLE_COW ||
|
|
store_mode == STORE_AND_GROW_NO_TRANSITION_HANDLE_COW;
|
|
}
|
|
|
|
static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
|
|
KeyedAccessStoreMode store_mode, bool receiver_was_cow) {
|
|
switch (store_mode) {
|
|
case STORE_AND_GROW_NO_TRANSITION_HANDLE_COW:
|
|
case STORE_AND_GROW_TRANSITION_TO_OBJECT:
|
|
case STORE_AND_GROW_TRANSITION_TO_DOUBLE:
|
|
store_mode = STORE_AND_GROW_NO_TRANSITION_HANDLE_COW;
|
|
break;
|
|
case STANDARD_STORE:
|
|
case STORE_TRANSITION_TO_OBJECT:
|
|
case STORE_TRANSITION_TO_DOUBLE:
|
|
store_mode =
|
|
receiver_was_cow ? STORE_NO_TRANSITION_HANDLE_COW : STANDARD_STORE;
|
|
break;
|
|
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
|
|
case STORE_NO_TRANSITION_HANDLE_COW:
|
|
break;
|
|
}
|
|
DCHECK(!IsTransitionStoreMode(store_mode));
|
|
DCHECK_IMPLIES(receiver_was_cow, IsCOWHandlingStoreMode(store_mode));
|
|
return store_mode;
|
|
}
|
|
|
|
static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode >= STORE_AND_GROW_NO_TRANSITION_HANDLE_COW &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_TO_DOUBLE;
|
|
}
|
|
|
|
enum IcCheckType { ELEMENT, PROPERTY };
|
|
|
|
// Helper stubs can be called in different ways depending on where the target
|
|
// code is located and how the call sequence is expected to look like:
|
|
// - CodeObject: Call on-heap {Code} object via {RelocInfo::CODE_TARGET}.
|
|
// - WasmRuntimeStub: Call native {WasmCode} stub via
|
|
// {RelocInfo::WASM_STUB_CALL}.
|
|
// - BuiltinPointer: Call a builtin based on a builtin pointer with dynamic
|
|
// contents. If builtins are embedded, we call directly into off-heap code
|
|
// without going through the on-heap Code trampoline.
|
|
enum class StubCallMode {
|
|
kCallCodeObject,
|
|
kCallWasmRuntimeStub,
|
|
kCallBuiltinPointer,
|
|
};
|
|
|
|
constexpr int kFunctionLiteralIdInvalid = -1;
|
|
constexpr int kFunctionLiteralIdTopLevel = 0;
|
|
|
|
constexpr int kSmallOrderedHashSetMinCapacity = 4;
|
|
constexpr int kSmallOrderedHashMapMinCapacity = 4;
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
namespace i = v8::internal;
|
|
|
|
#endif // V8_GLOBALS_H_
|