v8/src/transitions.cc
Toon Verwaest 8381ea7b29 Reland "[json] Speed up json parsing"
This is a reland of b0c4a8764b

Original change's description:
> [json] Speed up json parsing
>
> - scan using raw data pointers + GC callback
> - scan using scanner tables
> - cap internalizing large string values
> - inline fast transitioning logic
>
> Fixes previous CL by moving AllowHeapAllocation to callers of
> ReportUnexpectedCharacter where needed to make it clear we need to exit.
>
> Tbr: ulan@chromium.org
> Change-Id: Icfbb7cd536e0fbe153f34acca5d0fab6b5453d71
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1591778
> Reviewed-by: Igor Sheludko <ishell@chromium.org>
> Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
> Commit-Queue: Toon Verwaest <verwaest@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#61159}

Change-Id: I0d713e02d243723df2d2a7c252eae44a6648b6b7
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1596444
Reviewed-by: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Commit-Queue: Toon Verwaest <verwaest@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61247}
2019-05-06 15:27:57 +00:00

661 lines
24 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/transitions.h"
#include "src/objects-inl.h"
#include "src/transitions-inl.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
Map TransitionsAccessor::GetSimpleTransition() {
switch (encoding()) {
case kWeakRef:
return Map::cast(raw_transitions_->GetHeapObjectAssumeWeak());
default:
return Map();
}
}
bool TransitionsAccessor::HasSimpleTransitionTo(Map map) {
switch (encoding()) {
case kWeakRef:
return raw_transitions_->GetHeapObjectAssumeWeak() == map;
case kPrototypeInfo:
case kUninitialized:
case kMigrationTarget:
case kFullTransitionArray:
return false;
}
UNREACHABLE();
}
void TransitionsAccessor::Insert(Handle<Name> name, Handle<Map> target,
SimpleTransitionFlag flag) {
DCHECK(!map_handle_.is_null());
target->SetBackPointer(map_);
// If the map doesn't have any transitions at all yet, install the new one.
if (encoding() == kUninitialized || encoding() == kMigrationTarget) {
if (flag == SIMPLE_PROPERTY_TRANSITION) {
ReplaceTransitions(HeapObjectReference::Weak(*target));
return;
}
// If the flag requires a full TransitionArray, allocate one.
Handle<TransitionArray> result =
isolate_->factory()->NewTransitionArray(0, 1);
ReplaceTransitions(MaybeObject::FromObject(*result));
Reload();
}
bool is_special_transition = flag == SPECIAL_TRANSITION;
// If the map has a simple transition, check if it should be overwritten.
Map simple_transition = GetSimpleTransition();
if (!simple_transition.is_null()) {
Name key = GetSimpleTransitionKey(simple_transition);
PropertyDetails old_details = GetSimpleTargetDetails(simple_transition);
PropertyDetails new_details = is_special_transition
? PropertyDetails::Empty()
: GetTargetDetails(*name, *target);
if (flag == SIMPLE_PROPERTY_TRANSITION && key->Equals(*name) &&
old_details.kind() == new_details.kind() &&
old_details.attributes() == new_details.attributes()) {
ReplaceTransitions(HeapObjectReference::Weak(*target));
return;
}
// Otherwise allocate a full TransitionArray with slack for a new entry.
Handle<Map> map(simple_transition, isolate_);
Handle<TransitionArray> result =
isolate_->factory()->NewTransitionArray(1, 1);
// Reload state; allocations might have caused it to be cleared.
Reload();
simple_transition = GetSimpleTransition();
if (!simple_transition.is_null()) {
DCHECK_EQ(*map, simple_transition);
if (encoding_ == kWeakRef) {
result->Set(0, GetSimpleTransitionKey(simple_transition),
HeapObjectReference::Weak(simple_transition));
} else {
UNREACHABLE();
}
} else {
result->SetNumberOfTransitions(0);
}
ReplaceTransitions(MaybeObject::FromObject(*result));
Reload();
}
// At this point, we know that the map has a full TransitionArray.
DCHECK_EQ(kFullTransitionArray, encoding());
int number_of_transitions = 0;
int new_nof = 0;
int insertion_index = kNotFound;
DCHECK_EQ(is_special_transition,
IsSpecialTransition(ReadOnlyRoots(isolate_), *name));
PropertyDetails details = is_special_transition
? PropertyDetails::Empty()
: GetTargetDetails(*name, *target);
{
DisallowHeapAllocation no_gc;
TransitionArray array = transitions();
number_of_transitions = array->number_of_transitions();
new_nof = number_of_transitions;
int index =
is_special_transition
? array->SearchSpecial(Symbol::cast(*name), &insertion_index)
: array->Search(details.kind(), *name, details.attributes(),
&insertion_index);
// If an existing entry was found, overwrite it and return.
if (index != kNotFound) {
array->SetRawTarget(index, HeapObjectReference::Weak(*target));
return;
}
++new_nof;
CHECK_LE(new_nof, kMaxNumberOfTransitions);
DCHECK(insertion_index >= 0 && insertion_index <= number_of_transitions);
// If there is enough capacity, insert new entry into the existing array.
if (new_nof <= array->Capacity()) {
array->SetNumberOfTransitions(new_nof);
for (index = number_of_transitions; index > insertion_index; --index) {
array->SetKey(index, array->GetKey(index - 1));
array->SetRawTarget(index, array->GetRawTarget(index - 1));
}
array->SetKey(index, *name);
array->SetRawTarget(index, HeapObjectReference::Weak(*target));
SLOW_DCHECK(array->IsSortedNoDuplicates());
return;
}
}
// We're gonna need a bigger TransitionArray.
Handle<TransitionArray> result = isolate_->factory()->NewTransitionArray(
new_nof,
Map::SlackForArraySize(number_of_transitions, kMaxNumberOfTransitions));
// The map's transition array may have shrunk during the allocation above as
// it was weakly traversed, though it is guaranteed not to disappear. Trim the
// result copy if needed, and recompute variables.
Reload();
DisallowHeapAllocation no_gc;
TransitionArray array = transitions();
if (array->number_of_transitions() != number_of_transitions) {
DCHECK(array->number_of_transitions() < number_of_transitions);
number_of_transitions = array->number_of_transitions();
new_nof = number_of_transitions;
insertion_index = kNotFound;
int index =
is_special_transition
? array->SearchSpecial(Symbol::cast(*name), &insertion_index)
: array->Search(details.kind(), *name, details.attributes(),
&insertion_index);
if (index == kNotFound) {
++new_nof;
} else {
insertion_index = index;
}
DCHECK(insertion_index >= 0 && insertion_index <= number_of_transitions);
result->SetNumberOfTransitions(new_nof);
}
if (array->HasPrototypeTransitions()) {
result->SetPrototypeTransitions(array->GetPrototypeTransitions());
}
DCHECK_NE(kNotFound, insertion_index);
for (int i = 0; i < insertion_index; ++i) {
result->Set(i, array->GetKey(i), array->GetRawTarget(i));
}
result->Set(insertion_index, *name, HeapObjectReference::Weak(*target));
for (int i = insertion_index; i < number_of_transitions; ++i) {
result->Set(i + 1, array->GetKey(i), array->GetRawTarget(i));
}
SLOW_DCHECK(result->IsSortedNoDuplicates());
ReplaceTransitions(MaybeObject::FromObject(*result));
}
Map TransitionsAccessor::SearchTransition(Name name, PropertyKind kind,
PropertyAttributes attributes) {
DCHECK(name->IsUniqueName());
switch (encoding()) {
case kPrototypeInfo:
case kUninitialized:
case kMigrationTarget:
return Map();
case kWeakRef: {
Map map = Map::cast(raw_transitions_->GetHeapObjectAssumeWeak());
if (!IsMatchingMap(map, name, kind, attributes)) return Map();
return map;
}
case kFullTransitionArray: {
return transitions()->SearchAndGetTarget(kind, name, attributes);
}
}
UNREACHABLE();
}
Map TransitionsAccessor::SearchSpecial(Symbol name) {
if (encoding() != kFullTransitionArray) return Map();
int transition = transitions()->SearchSpecial(name);
if (transition == kNotFound) return Map();
return transitions()->GetTarget(transition);
}
// static
bool TransitionsAccessor::IsSpecialTransition(ReadOnlyRoots roots, Name name) {
if (!name->IsSymbol()) return false;
return name == roots.nonextensible_symbol() ||
name == roots.sealed_symbol() || name == roots.frozen_symbol() ||
name == roots.elements_transition_symbol() ||
name == roots.strict_function_transition_symbol();
}
MaybeHandle<Map> TransitionsAccessor::FindTransitionToDataProperty(
Handle<Name> name, RequestedLocation requested_location) {
DCHECK(name->IsUniqueName());
DisallowHeapAllocation no_gc;
PropertyAttributes attributes = name->IsPrivate() ? DONT_ENUM : NONE;
Map target = SearchTransition(*name, kData, attributes);
if (target.is_null()) return MaybeHandle<Map>();
PropertyDetails details = target->GetLastDescriptorDetails();
DCHECK_EQ(attributes, details.attributes());
DCHECK_EQ(kData, details.kind());
if (requested_location == kFieldOnly && details.location() != kField) {
return MaybeHandle<Map>();
}
return Handle<Map>(target, isolate_);
}
bool TransitionsAccessor::CanHaveMoreTransitions() {
if (map_->is_dictionary_map()) return false;
if (encoding() == kFullTransitionArray) {
return transitions()->number_of_transitions() < kMaxNumberOfTransitions;
}
return true;
}
// static
bool TransitionsAccessor::IsMatchingMap(Map target, Name name,
PropertyKind kind,
PropertyAttributes attributes) {
int descriptor = target->LastAdded();
DescriptorArray descriptors = target->instance_descriptors();
Name key = descriptors->GetKey(descriptor);
if (key != name) return false;
return descriptors->GetDetails(descriptor)
.HasKindAndAttributes(kind, attributes);
}
// static
bool TransitionArray::CompactPrototypeTransitionArray(Isolate* isolate,
WeakFixedArray array) {
const int header = kProtoTransitionHeaderSize;
int number_of_transitions = NumberOfPrototypeTransitions(array);
if (number_of_transitions == 0) {
// Empty array cannot be compacted.
return false;
}
int new_number_of_transitions = 0;
for (int i = 0; i < number_of_transitions; i++) {
MaybeObject target = array->Get(header + i);
DCHECK(target->IsCleared() ||
(target->IsWeak() && target->GetHeapObject()->IsMap()));
if (!target->IsCleared()) {
if (new_number_of_transitions != i) {
array->Set(header + new_number_of_transitions, target);
}
new_number_of_transitions++;
}
}
// Fill slots that became free with undefined value.
MaybeObject undefined =
MaybeObject::FromObject(*isolate->factory()->undefined_value());
for (int i = new_number_of_transitions; i < number_of_transitions; i++) {
array->Set(header + i, undefined);
}
if (number_of_transitions != new_number_of_transitions) {
SetNumberOfPrototypeTransitions(array, new_number_of_transitions);
}
return new_number_of_transitions < number_of_transitions;
}
// static
Handle<WeakFixedArray> TransitionArray::GrowPrototypeTransitionArray(
Handle<WeakFixedArray> array, int new_capacity, Isolate* isolate) {
// Grow array by factor 2 up to MaxCachedPrototypeTransitions.
int capacity = array->length() - kProtoTransitionHeaderSize;
new_capacity = Min(kMaxCachedPrototypeTransitions, new_capacity);
DCHECK_GT(new_capacity, capacity);
int grow_by = new_capacity - capacity;
array = isolate->factory()->CopyWeakFixedArrayAndGrow(array, grow_by,
AllocationType::kOld);
if (capacity < 0) {
// There was no prototype transitions array before, so the size
// couldn't be copied. Initialize it explicitly.
SetNumberOfPrototypeTransitions(*array, 0);
}
return array;
}
void TransitionsAccessor::PutPrototypeTransition(Handle<Object> prototype,
Handle<Map> target_map) {
DCHECK(HeapObject::cast(*prototype)->map()->IsMap());
// Don't cache prototype transition if this map is either shared, or a map of
// a prototype.
if (map_->is_prototype_map()) return;
if (map_->is_dictionary_map() || !FLAG_cache_prototype_transitions) return;
const int header = TransitionArray::kProtoTransitionHeaderSize;
Handle<WeakFixedArray> cache(GetPrototypeTransitions(), isolate_);
int capacity = cache->length() - header;
int transitions = TransitionArray::NumberOfPrototypeTransitions(*cache) + 1;
if (transitions > capacity) {
// Grow the array if compacting it doesn't free space.
if (!TransitionArray::CompactPrototypeTransitionArray(isolate_, *cache)) {
if (capacity == TransitionArray::kMaxCachedPrototypeTransitions) return;
cache = TransitionArray::GrowPrototypeTransitionArray(
cache, 2 * transitions, isolate_);
Reload();
SetPrototypeTransitions(cache);
}
}
// Reload number of transitions as they might have been compacted.
int last = TransitionArray::NumberOfPrototypeTransitions(*cache);
int entry = header + last;
cache->Set(entry, HeapObjectReference::Weak(*target_map));
TransitionArray::SetNumberOfPrototypeTransitions(*cache, last + 1);
}
Handle<Map> TransitionsAccessor::GetPrototypeTransition(
Handle<Object> prototype) {
DisallowHeapAllocation no_gc;
WeakFixedArray cache = GetPrototypeTransitions();
int length = TransitionArray::NumberOfPrototypeTransitions(cache);
for (int i = 0; i < length; i++) {
MaybeObject target =
cache->Get(TransitionArray::kProtoTransitionHeaderSize + i);
DCHECK(target->IsWeakOrCleared());
HeapObject heap_object;
if (target->GetHeapObjectIfWeak(&heap_object)) {
Map map = Map::cast(heap_object);
if (map->prototype() == *prototype) {
return handle(map, isolate_);
}
}
}
return Handle<Map>();
}
WeakFixedArray TransitionsAccessor::GetPrototypeTransitions() {
if (encoding() != kFullTransitionArray ||
!transitions()->HasPrototypeTransitions()) {
return ReadOnlyRoots(isolate_).empty_weak_fixed_array();
}
return transitions()->GetPrototypeTransitions();
}
// static
void TransitionArray::SetNumberOfPrototypeTransitions(
WeakFixedArray proto_transitions, int value) {
DCHECK_NE(proto_transitions->length(), 0);
proto_transitions->Set(kProtoTransitionNumberOfEntriesOffset,
MaybeObject::FromSmi(Smi::FromInt(value)));
}
int TransitionsAccessor::NumberOfTransitions() {
switch (encoding()) {
case kPrototypeInfo:
case kUninitialized:
case kMigrationTarget:
return 0;
case kWeakRef:
return 1;
case kFullTransitionArray:
return transitions()->number_of_transitions();
}
UNREACHABLE();
return 0; // Make GCC happy.
}
void TransitionsAccessor::SetMigrationTarget(Map migration_target) {
// We only cache the migration target for maps with empty transitions for GC's
// sake.
if (encoding() != kUninitialized) return;
DCHECK(map_->is_deprecated());
map_->set_raw_transitions(MaybeObject::FromObject(migration_target));
MarkNeedsReload();
}
Map TransitionsAccessor::GetMigrationTarget() {
if (encoding() == kMigrationTarget) {
return map_->raw_transitions()->cast<Map>();
}
return Map();
}
void TransitionArray::Zap(Isolate* isolate) {
MemsetTagged(ObjectSlot(RawFieldOfElementAt(kPrototypeTransitionsIndex)),
ReadOnlyRoots(isolate).the_hole_value(),
length() - kPrototypeTransitionsIndex);
SetNumberOfTransitions(0);
}
void TransitionsAccessor::ReplaceTransitions(MaybeObject new_transitions) {
if (encoding() == kFullTransitionArray) {
TransitionArray old_transitions = transitions();
#if DEBUG
CheckNewTransitionsAreConsistent(
old_transitions, new_transitions->GetHeapObjectAssumeStrong());
DCHECK(old_transitions != new_transitions->GetHeapObjectAssumeStrong());
#endif
// Transition arrays are not shared. When one is replaced, it should not
// keep referenced objects alive, so we zap it.
// When there is another reference to the array somewhere (e.g. a handle),
// not zapping turns from a waste of memory into a source of crashes.
old_transitions->Zap(isolate_);
}
map_->set_raw_transitions(new_transitions);
MarkNeedsReload();
}
void TransitionsAccessor::SetPrototypeTransitions(
Handle<WeakFixedArray> proto_transitions) {
EnsureHasFullTransitionArray();
transitions()->SetPrototypeTransitions(*proto_transitions);
}
void TransitionsAccessor::EnsureHasFullTransitionArray() {
if (encoding() == kFullTransitionArray) return;
int nof =
(encoding() == kUninitialized || encoding() == kMigrationTarget) ? 0 : 1;
Handle<TransitionArray> result = isolate_->factory()->NewTransitionArray(nof);
Reload(); // Reload after possible GC.
if (nof == 1) {
if (encoding() == kUninitialized) {
// If allocation caused GC and cleared the target, trim the new array.
result->SetNumberOfTransitions(0);
} else {
// Otherwise populate the new array.
Handle<Map> target(GetSimpleTransition(), isolate_);
Name key = GetSimpleTransitionKey(*target);
result->Set(0, key, HeapObjectReference::Weak(*target));
}
}
ReplaceTransitions(MaybeObject::FromObject(*result));
Reload(); // Reload after replacing transitions.
}
void TransitionsAccessor::TraverseTransitionTreeInternal(
TraverseCallback callback, void* data, DisallowHeapAllocation* no_gc) {
switch (encoding()) {
case kPrototypeInfo:
case kUninitialized:
case kMigrationTarget:
break;
case kWeakRef: {
Map simple_target =
Map::cast(raw_transitions_->GetHeapObjectAssumeWeak());
TransitionsAccessor(isolate_, simple_target, no_gc)
.TraverseTransitionTreeInternal(callback, data, no_gc);
break;
}
case kFullTransitionArray: {
if (transitions()->HasPrototypeTransitions()) {
WeakFixedArray proto_trans = transitions()->GetPrototypeTransitions();
int length = TransitionArray::NumberOfPrototypeTransitions(proto_trans);
for (int i = 0; i < length; ++i) {
int index = TransitionArray::kProtoTransitionHeaderSize + i;
MaybeObject target = proto_trans->Get(index);
HeapObject heap_object;
if (target->GetHeapObjectIfWeak(&heap_object)) {
TransitionsAccessor(isolate_, Map::cast(heap_object), no_gc)
.TraverseTransitionTreeInternal(callback, data, no_gc);
} else {
DCHECK(target->IsCleared());
}
}
}
for (int i = 0; i < transitions()->number_of_transitions(); ++i) {
TransitionsAccessor(isolate_, transitions()->GetTarget(i), no_gc)
.TraverseTransitionTreeInternal(callback, data, no_gc);
}
break;
}
}
callback(map_, data);
}
#ifdef DEBUG
void TransitionsAccessor::CheckNewTransitionsAreConsistent(
TransitionArray old_transitions, Object transitions) {
// This function only handles full transition arrays.
DCHECK_EQ(kFullTransitionArray, encoding());
TransitionArray new_transitions = TransitionArray::cast(transitions);
for (int i = 0; i < old_transitions->number_of_transitions(); i++) {
Map target = old_transitions->GetTarget(i);
if (target->instance_descriptors() == map_->instance_descriptors()) {
Name key = old_transitions->GetKey(i);
int new_target_index;
if (IsSpecialTransition(ReadOnlyRoots(isolate_), key)) {
new_target_index = new_transitions->SearchSpecial(Symbol::cast(key));
} else {
PropertyDetails details = GetTargetDetails(key, target);
new_target_index =
new_transitions->Search(details.kind(), key, details.attributes());
}
DCHECK_NE(TransitionArray::kNotFound, new_target_index);
DCHECK_EQ(target, new_transitions->GetTarget(new_target_index));
}
}
}
#endif
// Private non-static helper functions (operating on full transition arrays).
int TransitionArray::SearchDetails(int transition, PropertyKind kind,
PropertyAttributes attributes,
int* out_insertion_index) {
int nof_transitions = number_of_transitions();
DCHECK(transition < nof_transitions);
Name key = GetKey(transition);
for (; transition < nof_transitions && GetKey(transition) == key;
transition++) {
Map target = GetTarget(transition);
PropertyDetails target_details =
TransitionsAccessor::GetTargetDetails(key, target);
int cmp = CompareDetails(kind, attributes, target_details.kind(),
target_details.attributes());
if (cmp == 0) {
return transition;
} else if (cmp < 0) {
break;
}
}
if (out_insertion_index != nullptr) *out_insertion_index = transition;
return kNotFound;
}
Map TransitionArray::SearchDetailsAndGetTarget(int transition,
PropertyKind kind,
PropertyAttributes attributes) {
int nof_transitions = number_of_transitions();
DCHECK(transition < nof_transitions);
Name key = GetKey(transition);
for (; transition < nof_transitions && GetKey(transition) == key;
transition++) {
Map target = GetTarget(transition);
PropertyDetails target_details =
TransitionsAccessor::GetTargetDetails(key, target);
int cmp = CompareDetails(kind, attributes, target_details.kind(),
target_details.attributes());
if (cmp == 0) {
return target;
} else if (cmp < 0) {
break;
}
}
return Map();
}
int TransitionArray::Search(PropertyKind kind, Name name,
PropertyAttributes attributes,
int* out_insertion_index) {
int transition = SearchName(name, out_insertion_index);
if (transition == kNotFound) return kNotFound;
return SearchDetails(transition, kind, attributes, out_insertion_index);
}
Map TransitionArray::SearchAndGetTarget(PropertyKind kind, Name name,
PropertyAttributes attributes) {
int transition = SearchName(name, nullptr);
if (transition == kNotFound) {
return Map();
}
return SearchDetailsAndGetTarget(transition, kind, attributes);
}
void TransitionArray::Sort() {
DisallowHeapAllocation no_gc;
// In-place insertion sort.
int length = number_of_transitions();
ReadOnlyRoots roots = GetReadOnlyRoots();
for (int i = 1; i < length; i++) {
Name key = GetKey(i);
MaybeObject target = GetRawTarget(i);
PropertyKind kind = kData;
PropertyAttributes attributes = NONE;
if (!TransitionsAccessor::IsSpecialTransition(roots, key)) {
Map target_map = TransitionsAccessor::GetTargetFromRaw(target);
PropertyDetails details =
TransitionsAccessor::GetTargetDetails(key, target_map);
kind = details.kind();
attributes = details.attributes();
}
int j;
for (j = i - 1; j >= 0; j--) {
Name temp_key = GetKey(j);
MaybeObject temp_target = GetRawTarget(j);
PropertyKind temp_kind = kData;
PropertyAttributes temp_attributes = NONE;
if (!TransitionsAccessor::IsSpecialTransition(roots, temp_key)) {
Map temp_target_map =
TransitionsAccessor::GetTargetFromRaw(temp_target);
PropertyDetails details =
TransitionsAccessor::GetTargetDetails(temp_key, temp_target_map);
temp_kind = details.kind();
temp_attributes = details.attributes();
}
int cmp =
CompareKeys(temp_key, temp_key->Hash(), temp_kind, temp_attributes,
key, key->Hash(), kind, attributes);
if (cmp > 0) {
SetKey(j + 1, temp_key);
SetRawTarget(j + 1, temp_target);
} else {
break;
}
}
SetKey(j + 1, key);
SetRawTarget(j + 1, target);
}
DCHECK(IsSortedNoDuplicates());
}
bool TransitionsAccessor::HasIntegrityLevelTransitionTo(
Map to, Symbol* out_symbol, PropertyAttributes* out_integrity_level) {
ReadOnlyRoots roots(isolate_);
if (SearchSpecial(roots.frozen_symbol()) == to) {
if (out_integrity_level) *out_integrity_level = FROZEN;
if (out_symbol) *out_symbol = roots.frozen_symbol();
} else if (SearchSpecial(roots.sealed_symbol()) == to) {
if (out_integrity_level) *out_integrity_level = SEALED;
if (out_symbol) *out_symbol = roots.sealed_symbol();
} else if (SearchSpecial(roots.nonextensible_symbol()) == to) {
if (out_integrity_level) *out_integrity_level = NONE;
if (out_symbol) *out_symbol = roots.nonextensible_symbol();
} else {
return false;
}
return true;
}
} // namespace internal
} // namespace v8