v8/test/cctest/heap/test-compaction.cc
marja 8e7241fdde Include only stuff you need, part 6: Fix cctest.h.
Rebuilding (after touching certain files) is crazy slow because
includes are out of control. Many of these files we need to rebuild are
cctests which pull in more includes than they need.

BUG=v8:5294

Review-Url: https://codereview.chromium.org/2304553002
Cr-Commit-Position: refs/heads/master@{#39080}
2016-09-01 12:02:16 +00:00

363 lines
14 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/factory.h"
#include "src/heap/mark-compact.h"
#include "src/isolate.h"
// FIXME(mstarzinger, marja): This is weird, but required because of the missing
// (disallowed) include: src/factory.h -> src/objects-inl.h
#include "src/objects-inl.h"
// FIXME(mstarzinger, marja): This is weird, but required because of the missing
// (disallowed) include: src/type-feedback-vector.h ->
// src/type-feedback-vector-inl.h
#include "src/type-feedback-vector-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace {
void CheckInvariantsOfAbortedPage(Page* page) {
// Check invariants:
// 1) Markbits are cleared
// 2) The page is not marked as evacuation candidate anymore
// 3) The page is not marked as aborted compaction anymore.
CHECK(page->markbits()->IsClean());
CHECK(!page->IsEvacuationCandidate());
CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
}
void CheckAllObjectsOnPage(std::vector<Handle<FixedArray>>& handles,
Page* page) {
for (auto& fixed_array : handles) {
CHECK(Page::FromAddress(fixed_array->address()) == page);
}
}
} // namespace
HEAP_TEST(CompactionFullAbortedPage) {
// Test the scenario where we reach OOM during compaction and the whole page
// is aborted.
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
// we can reach the state of a half aborted page.
FLAG_concurrent_sweeping = false;
FLAG_manual_evacuation_candidates_selection = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
{
HandleScope scope1(isolate);
heap::SealCurrentObjects(heap);
{
HandleScope scope2(isolate);
CHECK(heap->old_space()->Expand());
auto compaction_page_handles =
heap::CreatePadding(heap, Page::kAllocatableMemory, TENURED);
Page* to_be_aborted_page =
Page::FromAddress(compaction_page_handles.front()->address());
to_be_aborted_page->SetFlag(
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
heap->set_force_oom(true);
heap->CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted();
// Check that all handles still point to the same page, i.e., compaction
// has been aborted on the page.
for (Handle<FixedArray> object : compaction_page_handles) {
CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address()));
}
CheckInvariantsOfAbortedPage(to_be_aborted_page);
}
}
}
HEAP_TEST(CompactionPartiallyAbortedPage) {
// Test the scenario where we reach OOM during compaction and parts of the
// page have already been migrated to a new one.
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
// we can reach the state of a half aborted page.
FLAG_concurrent_sweeping = false;
FLAG_manual_evacuation_candidates_selection = true;
const int objects_per_page = 10;
const int object_size = Page::kAllocatableMemory / objects_per_page;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
{
HandleScope scope1(isolate);
heap::SealCurrentObjects(heap);
{
HandleScope scope2(isolate);
// Fill another page with objects of size {object_size} (last one is
// properly adjusted).
CHECK(heap->old_space()->Expand());
auto compaction_page_handles = heap::CreatePadding(
heap, Page::kAllocatableMemory, TENURED, object_size);
Page* to_be_aborted_page =
Page::FromAddress(compaction_page_handles.front()->address());
to_be_aborted_page->SetFlag(
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
{
// Add another page that is filled with {num_objects} objects of size
// {object_size}.
HandleScope scope3(isolate);
CHECK(heap->old_space()->Expand());
const int num_objects = 3;
std::vector<Handle<FixedArray>> page_to_fill_handles =
heap::CreatePadding(heap, object_size * num_objects, TENURED,
object_size);
Page* page_to_fill =
Page::FromAddress(page_to_fill_handles.front()->address());
heap->set_force_oom(true);
heap->CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted();
bool migration_aborted = false;
for (Handle<FixedArray> object : compaction_page_handles) {
// Once compaction has been aborted, all following objects still have
// to be on the initial page.
CHECK(!migration_aborted ||
(Page::FromAddress(object->address()) == to_be_aborted_page));
if (Page::FromAddress(object->address()) == to_be_aborted_page) {
// This object has not been migrated.
migration_aborted = true;
} else {
CHECK_EQ(Page::FromAddress(object->address()), page_to_fill);
}
}
// Check that we actually created a scenario with a partially aborted
// page.
CHECK(migration_aborted);
CheckInvariantsOfAbortedPage(to_be_aborted_page);
}
}
}
}
HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
// Test the scenario where we reach OOM during compaction and parts of the
// page have already been migrated to a new one. Objects on the aborted page
// are linked together. This test makes sure that intra-aborted page pointers
// get properly updated.
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
// we can reach the state of a half aborted page.
FLAG_concurrent_sweeping = false;
FLAG_manual_evacuation_candidates_selection = true;
const int objects_per_page = 10;
const int object_size = Page::kAllocatableMemory / objects_per_page;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
{
HandleScope scope1(isolate);
Handle<FixedArray> root_array =
isolate->factory()->NewFixedArray(10, TENURED);
heap::SealCurrentObjects(heap);
Page* to_be_aborted_page = nullptr;
{
HandleScope temporary_scope(isolate);
// Fill a fresh page with objects of size {object_size} (last one is
// properly adjusted).
CHECK(heap->old_space()->Expand());
std::vector<Handle<FixedArray>> compaction_page_handles =
heap::CreatePadding(heap, Page::kAllocatableMemory, TENURED,
object_size);
to_be_aborted_page =
Page::FromAddress(compaction_page_handles.front()->address());
to_be_aborted_page->SetFlag(
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
}
root_array->set(0, *compaction_page_handles.back());
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
}
{
// Add another page that is filled with {num_objects} objects of size
// {object_size}.
HandleScope scope3(isolate);
CHECK(heap->old_space()->Expand());
const int num_objects = 2;
int used_memory = object_size * num_objects;
std::vector<Handle<FixedArray>> page_to_fill_handles =
heap::CreatePadding(heap, used_memory, TENURED, object_size);
Page* page_to_fill =
Page::FromAddress(page_to_fill_handles.front()->address());
heap->set_force_oom(true);
heap->CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted();
// The following check makes sure that we compacted "some" objects, while
// leaving others in place.
bool in_place = true;
Handle<FixedArray> current = root_array;
while (current->get(0) != heap->undefined_value()) {
current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
CHECK(current->IsFixedArray());
if (Page::FromAddress(current->address()) != to_be_aborted_page) {
in_place = false;
}
bool on_aborted_page =
Page::FromAddress(current->address()) == to_be_aborted_page;
bool on_fill_page =
Page::FromAddress(current->address()) == page_to_fill;
CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
}
// Check that we at least migrated one object, as otherwise the test would
// not trigger.
CHECK(!in_place);
CheckInvariantsOfAbortedPage(to_be_aborted_page);
}
}
}
HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) {
// Test the scenario where we reach OOM during compaction and parts of the
// page have already been migrated to a new one. Objects on the aborted page
// are linked together and the very first object on the aborted page points
// into new space. The test verifies that the store buffer entries are
// properly cleared and rebuilt after aborting a page. Failing to do so can
// result in other objects being allocated in the free space where their
// payload looks like a valid new space pointer.
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
// we can reach the state of a half aborted page.
FLAG_concurrent_sweeping = false;
FLAG_manual_evacuation_candidates_selection = true;
const int objects_per_page = 10;
const int object_size = Page::kAllocatableMemory / objects_per_page;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
{
HandleScope scope1(isolate);
Handle<FixedArray> root_array =
isolate->factory()->NewFixedArray(10, TENURED);
heap::SealCurrentObjects(heap);
Page* to_be_aborted_page = nullptr;
{
HandleScope temporary_scope(isolate);
// Fill another page with objects of size {object_size} (last one is
// properly adjusted).
CHECK(heap->old_space()->Expand());
auto compaction_page_handles = heap::CreatePadding(
heap, Page::kAllocatableMemory, TENURED, object_size);
// Sanity check that we have enough space for linking up arrays.
CHECK_GE(compaction_page_handles.front()->length(), 2);
to_be_aborted_page =
Page::FromAddress(compaction_page_handles.front()->address());
to_be_aborted_page->SetFlag(
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
}
root_array->set(0, *compaction_page_handles.back());
Handle<FixedArray> new_space_array =
isolate->factory()->NewFixedArray(1, NOT_TENURED);
CHECK(heap->InNewSpace(*new_space_array));
compaction_page_handles.front()->set(1, *new_space_array);
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
}
{
// Add another page that is filled with {num_objects} objects of size
// {object_size}.
HandleScope scope3(isolate);
CHECK(heap->old_space()->Expand());
const int num_objects = 2;
int used_memory = object_size * num_objects;
std::vector<Handle<FixedArray>> page_to_fill_handles =
heap::CreatePadding(heap, used_memory, TENURED, object_size);
Page* page_to_fill =
Page::FromAddress(page_to_fill_handles.front()->address());
heap->set_force_oom(true);
heap->CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted();
// The following check makes sure that we compacted "some" objects, while
// leaving others in place.
bool in_place = true;
Handle<FixedArray> current = root_array;
while (current->get(0) != heap->undefined_value()) {
current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
CHECK(!heap->InNewSpace(*current));
CHECK(current->IsFixedArray());
if (Page::FromAddress(current->address()) != to_be_aborted_page) {
in_place = false;
}
bool on_aborted_page =
Page::FromAddress(current->address()) == to_be_aborted_page;
bool on_fill_page =
Page::FromAddress(current->address()) == page_to_fill;
CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
}
// Check that we at least migrated one object, as otherwise the test would
// not trigger.
CHECK(!in_place);
CheckInvariantsOfAbortedPage(to_be_aborted_page);
// Allocate a new object in new space.
Handle<FixedArray> holder =
isolate->factory()->NewFixedArray(10, NOT_TENURED);
// Create a broken address that looks like a tagged pointer to a new space
// object.
Address broken_address = holder->address() + 2 * kPointerSize + 1;
// Convert it to a vector to create a string from it.
Vector<const uint8_t> string_to_broken_addresss(
reinterpret_cast<const uint8_t*>(&broken_address), 8);
Handle<String> string;
do {
// We know that the interesting slot will be on the aborted page and
// hence we allocate until we get our string on the aborted page.
// We used slot 1 in the fixed size array which corresponds to the
// the first word in the string. Since the first object definitely
// migrated we can just allocate until we hit the aborted page.
string = isolate->factory()
->NewStringFromOneByte(string_to_broken_addresss, TENURED)
.ToHandleChecked();
} while (Page::FromAddress(string->address()) != to_be_aborted_page);
// If store buffer entries are not properly filtered/reset for aborted
// pages we have now a broken address at an object slot in old space and
// the following scavenge will crash.
heap->CollectGarbage(NEW_SPACE);
}
}
}
} // namespace internal
} // namespace v8