v8/test/unittests/interpreter/bytecode-array-builder-unittest.cc
Marja Hölttä b1553b9188 [interpreter] Omit calling default ctors
If we see a default ctor, walk up the constructors until we find a non-
default one.

Default ctors can only be skipped if there are no class fields / private
brands.

This CL implements the Ignition parts; Sparkplug, Maglev and TF will
be implemented as follow ups. (This is fine, since this feature is
behind a flag.)

Bug: v8:13091
Change-Id: Ie8ca8aedb01bd4b13adf1063332a5cdf41ab358a
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3804601
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
Commit-Queue: Marja Hölttä <marja@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82872}
2022-08-31 15:45:26 +00:00

871 lines
31 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/interpreter/bytecode-array-builder.h"
#include <limits>
#include "src/ast/scopes.h"
#include "src/init/v8.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/interpreter/bytecode-jump-table.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-register-allocator.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "test/unittests/interpreter/bytecode-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
class BytecodeArrayBuilderTest : public TestWithIsolateAndZone {
public:
BytecodeArrayBuilderTest() = default;
~BytecodeArrayBuilderTest() override = default;
};
using ToBooleanMode = BytecodeArrayBuilder::ToBooleanMode;
TEST_F(BytecodeArrayBuilderTest, AllBytecodesGenerated) {
FeedbackVectorSpec feedback_spec(zone());
BytecodeArrayBuilder builder(zone(), 1, 131, &feedback_spec);
Factory* factory = isolate()->factory();
AstValueFactory ast_factory(zone(), isolate()->ast_string_constants(),
HashSeed(isolate()));
DeclarationScope scope(zone(), &ast_factory);
CHECK_EQ(builder.locals_count(), 131);
CHECK_EQ(builder.fixed_register_count(), 131);
Register reg(0);
Register other(reg.index() + 1);
Register wide(128);
RegisterList empty;
RegisterList single = BytecodeUtils::NewRegisterList(0, 1);
RegisterList pair = BytecodeUtils::NewRegisterList(0, 2);
RegisterList triple = BytecodeUtils::NewRegisterList(0, 3);
RegisterList reg_list = BytecodeUtils::NewRegisterList(0, 10);
// Emit argument creation operations.
builder.CreateArguments(CreateArgumentsType::kMappedArguments)
.CreateArguments(CreateArgumentsType::kUnmappedArguments)
.CreateArguments(CreateArgumentsType::kRestParameter);
// Emit constant loads.
builder.LoadLiteral(Smi::zero())
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(8))
.CompareOperation(Token::Value::EQ, reg,
1) // Prevent peephole optimization
// LdaSmi, Star -> LdrSmi.
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(10000000))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(ast_factory.GetOneByteString("A constant"))
.StoreAccumulatorInRegister(reg)
.LoadUndefined()
.StoreAccumulatorInRegister(reg)
.LoadNull()
.StoreAccumulatorInRegister(reg)
.LoadTheHole()
.StoreAccumulatorInRegister(reg)
.LoadTrue()
.StoreAccumulatorInRegister(reg)
.LoadFalse()
.StoreAccumulatorInRegister(wide);
// Emit Ldar and Star taking care to foil the register optimizer.
builder.LoadAccumulatorWithRegister(other)
.BinaryOperation(Token::ADD, reg, 1)
.StoreAccumulatorInRegister(reg)
.LoadNull();
// The above had a lot of Star0, but we must also emit the rest of
// the short-star codes.
for (int i = 1; i < 16; ++i) {
builder.StoreAccumulatorInRegister(Register(i));
}
// Emit register-register transfer.
builder.MoveRegister(reg, other);
builder.MoveRegister(reg, wide);
FeedbackSlot load_global_slot =
feedback_spec.AddLoadGlobalICSlot(TypeofMode::kNotInside);
FeedbackSlot load_global_typeof_slot =
feedback_spec.AddLoadGlobalICSlot(TypeofMode::kInside);
FeedbackSlot sloppy_store_global_slot =
feedback_spec.AddStoreGlobalICSlot(LanguageMode::kSloppy);
FeedbackSlot load_slot = feedback_spec.AddLoadICSlot();
FeedbackSlot call_slot = feedback_spec.AddCallICSlot();
FeedbackSlot keyed_load_slot = feedback_spec.AddKeyedLoadICSlot();
FeedbackSlot sloppy_store_slot =
feedback_spec.AddStoreICSlot(LanguageMode::kSloppy);
FeedbackSlot strict_store_slot =
feedback_spec.AddStoreICSlot(LanguageMode::kStrict);
FeedbackSlot sloppy_keyed_store_slot =
feedback_spec.AddKeyedStoreICSlot(LanguageMode::kSloppy);
FeedbackSlot strict_keyed_store_slot =
feedback_spec.AddKeyedStoreICSlot(LanguageMode::kStrict);
FeedbackSlot define_named_own_slot = feedback_spec.AddDefineNamedOwnICSlot();
FeedbackSlot store_array_element_slot =
feedback_spec.AddStoreInArrayLiteralICSlot();
// Emit global load / store operations.
const AstRawString* name = ast_factory.GetOneByteString("var_name");
builder.LoadGlobal(name, load_global_slot.ToInt(), TypeofMode::kNotInside)
.LoadGlobal(name, load_global_typeof_slot.ToInt(), TypeofMode::kInside)
.StoreGlobal(name, sloppy_store_global_slot.ToInt());
// Emit context operations.
builder.PushContext(reg)
.PopContext(reg)
.LoadContextSlot(reg, 1, 0, BytecodeArrayBuilder::kMutableSlot)
.StoreContextSlot(reg, 1, 0)
.LoadContextSlot(reg, 2, 0, BytecodeArrayBuilder::kImmutableSlot)
.StoreContextSlot(reg, 3, 0);
// Emit context operations which operate on the local context.
builder
.LoadContextSlot(Register::current_context(), 1, 0,
BytecodeArrayBuilder::kMutableSlot)
.StoreContextSlot(Register::current_context(), 1, 0)
.LoadContextSlot(Register::current_context(), 2, 0,
BytecodeArrayBuilder::kImmutableSlot)
.StoreContextSlot(Register::current_context(), 3, 0);
// Emit load / store property operations.
builder.LoadNamedProperty(reg, name, load_slot.ToInt())
.LoadNamedPropertyFromSuper(reg, name, load_slot.ToInt())
.LoadKeyedProperty(reg, keyed_load_slot.ToInt())
.SetNamedProperty(reg, name, sloppy_store_slot.ToInt(),
LanguageMode::kSloppy)
.SetKeyedProperty(reg, reg, sloppy_keyed_store_slot.ToInt(),
LanguageMode::kSloppy)
.SetNamedProperty(reg, name, strict_store_slot.ToInt(),
LanguageMode::kStrict)
.SetKeyedProperty(reg, reg, strict_keyed_store_slot.ToInt(),
LanguageMode::kStrict)
.DefineNamedOwnProperty(reg, name, define_named_own_slot.ToInt())
.DefineKeyedOwnProperty(reg, reg, define_named_own_slot.ToInt())
.StoreInArrayLiteral(reg, reg, store_array_element_slot.ToInt());
// Emit Iterator-protocol operations
builder.GetIterator(reg, load_slot.ToInt(), call_slot.ToInt());
// Emit load / store lookup slots.
builder.LoadLookupSlot(name, TypeofMode::kNotInside)
.LoadLookupSlot(name, TypeofMode::kInside)
.StoreLookupSlot(name, LanguageMode::kSloppy, LookupHoistingMode::kNormal)
.StoreLookupSlot(name, LanguageMode::kSloppy,
LookupHoistingMode::kLegacySloppy)
.StoreLookupSlot(name, LanguageMode::kStrict,
LookupHoistingMode::kNormal);
// Emit load / store lookup slots with context fast paths.
builder.LoadLookupContextSlot(name, TypeofMode::kNotInside, 1, 0)
.LoadLookupContextSlot(name, TypeofMode::kInside, 1, 0);
// Emit load / store lookup slots with global fast paths.
builder.LoadLookupGlobalSlot(name, TypeofMode::kNotInside, 1, 0)
.LoadLookupGlobalSlot(name, TypeofMode::kInside, 1, 0);
// Emit closure operations.
builder.CreateClosure(0, 1, static_cast<int>(AllocationType::kYoung));
// Emit create context operation.
builder.CreateBlockContext(&scope);
builder.CreateCatchContext(reg, &scope);
builder.CreateFunctionContext(&scope, 1);
builder.CreateEvalContext(&scope, 1);
builder.CreateWithContext(reg, &scope);
// Emit literal creation operations.
builder.CreateRegExpLiteral(ast_factory.GetOneByteString("a"), 0, 0);
builder.CreateArrayLiteral(0, 0, 0);
builder.CreateObjectLiteral(0, 0, 0);
// Emit tagged template operations.
builder.GetTemplateObject(0, 0);
// Call operations.
builder.CallAnyReceiver(reg, reg_list, 1)
.CallProperty(reg, reg_list, 1)
.CallProperty(reg, single, 1)
.CallProperty(reg, pair, 1)
.CallProperty(reg, triple, 1)
.CallUndefinedReceiver(reg, reg_list, 1)
.CallUndefinedReceiver(reg, empty, 1)
.CallUndefinedReceiver(reg, single, 1)
.CallUndefinedReceiver(reg, pair, 1)
.CallRuntime(Runtime::kIsArray, reg)
.CallRuntimeForPair(Runtime::kLoadLookupSlotForCall, reg_list, pair)
.CallJSRuntime(Context::PROMISE_THEN_INDEX, reg_list)
.CallWithSpread(reg, reg_list, 1);
// Emit binary operator invocations.
builder.BinaryOperation(Token::Value::ADD, reg, 1)
.BinaryOperation(Token::Value::SUB, reg, 2)
.BinaryOperation(Token::Value::MUL, reg, 3)
.BinaryOperation(Token::Value::DIV, reg, 4)
.BinaryOperation(Token::Value::MOD, reg, 5)
.BinaryOperation(Token::Value::EXP, reg, 6);
// Emit bitwise operator invocations
builder.BinaryOperation(Token::Value::BIT_OR, reg, 6)
.BinaryOperation(Token::Value::BIT_XOR, reg, 7)
.BinaryOperation(Token::Value::BIT_AND, reg, 8);
// Emit shift operator invocations
builder.BinaryOperation(Token::Value::SHL, reg, 9)
.BinaryOperation(Token::Value::SAR, reg, 10)
.BinaryOperation(Token::Value::SHR, reg, 11);
// Emit Smi binary operations.
builder.BinaryOperationSmiLiteral(Token::Value::ADD, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::SUB, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::MUL, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::DIV, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::MOD, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::EXP, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::BIT_OR, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::BIT_XOR, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::BIT_AND, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::SHL, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::SAR, Smi::FromInt(42), 2)
.BinaryOperationSmiLiteral(Token::Value::SHR, Smi::FromInt(42), 2);
// Emit unary and count operator invocations.
builder.UnaryOperation(Token::Value::INC, 1)
.UnaryOperation(Token::Value::DEC, 1)
.UnaryOperation(Token::Value::ADD, 1)
.UnaryOperation(Token::Value::SUB, 1)
.UnaryOperation(Token::Value::BIT_NOT, 1);
// Emit unary operator invocations.
builder.LogicalNot(ToBooleanMode::kConvertToBoolean)
.LogicalNot(ToBooleanMode::kAlreadyBoolean)
.TypeOf();
// Emit delete
builder.Delete(reg, LanguageMode::kSloppy).Delete(reg, LanguageMode::kStrict);
// Emit construct.
builder.Construct(reg, reg_list, 1).ConstructWithSpread(reg, reg_list, 1);
// Emit test operator invocations.
builder.CompareOperation(Token::Value::EQ, reg, 1)
.CompareOperation(Token::Value::EQ_STRICT, reg, 2)
.CompareOperation(Token::Value::LT, reg, 3)
.CompareOperation(Token::Value::GT, reg, 4)
.CompareOperation(Token::Value::LTE, reg, 5)
.CompareOperation(Token::Value::GTE, reg, 6)
.CompareTypeOf(TestTypeOfFlags::LiteralFlag::kNumber)
.CompareOperation(Token::Value::INSTANCEOF, reg, 7)
.CompareOperation(Token::Value::IN, reg, 8)
.CompareReference(reg)
.CompareUndetectable()
.CompareUndefined()
.CompareNull();
// Emit conversion operator invocations.
builder.ToNumber(1).ToNumeric(1).ToObject(reg).ToName(reg).ToString();
// Emit GetSuperConstructor.
builder.GetSuperConstructor(reg);
// Constructor check for GetSuperConstructor.
builder.ThrowIfNotSuperConstructor(reg);
// Hole checks.
builder.ThrowReferenceErrorIfHole(name)
.ThrowSuperAlreadyCalledIfNotHole()
.ThrowSuperNotCalledIfHole();
// Short jumps with Imm8 operands
{
BytecodeLoopHeader loop_header;
BytecodeLabel after_jump1, after_jump2, after_jump3, after_jump4,
after_jump5, after_jump6, after_jump7, after_jump8, after_jump9,
after_jump10, after_jump11, after_loop;
builder.JumpIfNull(&after_loop)
.Bind(&loop_header)
.Jump(&after_jump1)
.Bind(&after_jump1)
.JumpIfNull(&after_jump2)
.Bind(&after_jump2)
.JumpIfNotNull(&after_jump3)
.Bind(&after_jump3)
.JumpIfUndefined(&after_jump4)
.Bind(&after_jump4)
.JumpIfNotUndefined(&after_jump5)
.Bind(&after_jump5)
.JumpIfUndefinedOrNull(&after_jump6)
.Bind(&after_jump6)
.JumpIfJSReceiver(&after_jump7)
.Bind(&after_jump7)
.JumpIfTrue(ToBooleanMode::kConvertToBoolean, &after_jump8)
.Bind(&after_jump8)
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &after_jump9)
.Bind(&after_jump9)
.JumpIfFalse(ToBooleanMode::kConvertToBoolean, &after_jump10)
.Bind(&after_jump10)
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &after_jump11)
.Bind(&after_jump11)
.JumpLoop(&loop_header, 0, 0, 0)
.Bind(&after_loop);
}
BytecodeLabel end[11];
{
// Longer jumps with constant operands
BytecodeLabel after_jump;
builder.JumpIfNull(&after_jump)
.Jump(&end[0])
.Bind(&after_jump)
.JumpIfTrue(ToBooleanMode::kConvertToBoolean, &end[1])
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &end[2])
.JumpIfFalse(ToBooleanMode::kConvertToBoolean, &end[3])
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &end[4])
.JumpIfNull(&end[5])
.JumpIfNotNull(&end[6])
.JumpIfUndefined(&end[7])
.JumpIfNotUndefined(&end[8])
.JumpIfUndefinedOrNull(&end[9])
.LoadLiteral(ast_factory.prototype_string())
.JumpIfJSReceiver(&end[10]);
}
// Emit Smi table switch bytecode.
BytecodeJumpTable* jump_table = builder.AllocateJumpTable(1, 0);
builder.SwitchOnSmiNoFeedback(jump_table).Bind(jump_table, 0);
// Emit set pending message bytecode.
builder.SetPendingMessage();
// Emit throw and re-throw in it's own basic block so that the rest of the
// code isn't omitted due to being dead.
BytecodeLabel after_throw, after_rethrow;
builder.JumpIfNull(&after_throw).Throw().Bind(&after_throw);
builder.JumpIfNull(&after_rethrow).ReThrow().Bind(&after_rethrow);
builder.ForInEnumerate(reg)
.ForInPrepare(triple, 1)
.ForInContinue(reg, reg)
.ForInNext(reg, reg, pair, 1)
.ForInStep(reg);
// Wide constant pool loads
for (int i = 0; i < 256; i++) {
// Emit junk in constant pool to force wide constant pool index.
builder.LoadLiteral(2.5321 + i);
}
builder.LoadLiteral(Smi::FromInt(20000000));
const AstRawString* wide_name = ast_factory.GetOneByteString("var_wide_name");
builder.DefineKeyedOwnPropertyInLiteral(
reg, reg, DefineKeyedOwnPropertyInLiteralFlag::kNoFlags, 0);
// Emit wide context operations.
builder.LoadContextSlot(reg, 1024, 0, BytecodeArrayBuilder::kMutableSlot)
.StoreContextSlot(reg, 1024, 0);
// Emit wide load / store lookup slots.
builder.LoadLookupSlot(wide_name, TypeofMode::kNotInside)
.LoadLookupSlot(wide_name, TypeofMode::kInside)
.StoreLookupSlot(wide_name, LanguageMode::kSloppy,
LookupHoistingMode::kNormal)
.StoreLookupSlot(wide_name, LanguageMode::kSloppy,
LookupHoistingMode::kLegacySloppy)
.StoreLookupSlot(wide_name, LanguageMode::kStrict,
LookupHoistingMode::kNormal);
// CreateClosureWide
builder.CreateClosure(1000, 321, static_cast<int>(AllocationType::kYoung));
// Emit wide variant of literal creation operations.
builder
.CreateRegExpLiteral(ast_factory.GetOneByteString("wide_literal"), 0, 0)
.CreateArrayLiteral(0, 0, 0)
.CreateEmptyArrayLiteral(0)
.CreateArrayFromIterable()
.CreateObjectLiteral(0, 0, 0)
.CreateEmptyObjectLiteral()
.CloneObject(reg, 0, 0);
// Emit load and store operations for module variables.
builder.LoadModuleVariable(-1, 42)
.LoadModuleVariable(0, 42)
.LoadModuleVariable(1, 42)
.StoreModuleVariable(-1, 42)
.StoreModuleVariable(0, 42)
.StoreModuleVariable(1, 42);
// Emit generator operations.
{
// We have to skip over suspend because it returns and marks the remaining
// bytecode dead.
BytecodeLabel after_suspend;
builder.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &after_suspend)
.SuspendGenerator(reg, reg_list, 0)
.Bind(&after_suspend)
.ResumeGenerator(reg, reg_list);
}
BytecodeJumpTable* gen_jump_table = builder.AllocateJumpTable(1, 0);
builder.SwitchOnGeneratorState(reg, gen_jump_table).Bind(gen_jump_table, 0);
// Intrinsics handled by the interpreter.
builder.CallRuntime(Runtime::kInlineAsyncFunctionReject, reg_list);
// Emit debugger bytecode.
builder.Debugger();
// Emit abort bytecode.
BytecodeLabel after_abort;
builder.JumpIfNull(&after_abort)
.Abort(AbortReason::kOperandIsASmi)
.Bind(&after_abort);
// Insert dummy ops to force longer jumps.
for (int i = 0; i < 256; i++) {
builder.Debugger();
}
// Emit block counter increments.
builder.IncBlockCounter(0);
// Bind labels for long jumps at the very end.
for (size_t i = 0; i < arraysize(end); i++) {
builder.Bind(&end[i]);
}
// Return must be the last instruction.
builder.Return();
// Generate BytecodeArray.
Handle<ScopeInfo> scope_info =
factory->NewScopeInfo(ScopeInfo::kVariablePartIndex);
int flags = ScopeInfo::IsEmptyBit::encode(true);
scope_info->set_flags(flags);
scope_info->set_context_local_count(0);
scope_info->set_parameter_count(0);
scope.SetScriptScopeInfo(scope_info);
ast_factory.Internalize(isolate());
Handle<BytecodeArray> the_array = builder.ToBytecodeArray(isolate());
CHECK_EQ(the_array->frame_size(),
builder.total_register_count() * kSystemPointerSize);
// Build scorecard of bytecodes encountered in the BytecodeArray.
std::vector<int> scorecard(Bytecodes::ToByte(Bytecode::kLast) + 1);
Bytecode final_bytecode = Bytecode::kLdaZero;
int i = 0;
while (i < the_array->length()) {
uint8_t code = the_array->get(i);
scorecard[code] += 1;
final_bytecode = Bytecodes::FromByte(code);
OperandScale operand_scale = OperandScale::kSingle;
int prefix_offset = 0;
if (Bytecodes::IsPrefixScalingBytecode(final_bytecode)) {
operand_scale = Bytecodes::PrefixBytecodeToOperandScale(final_bytecode);
prefix_offset = 1;
code = the_array->get(i + 1);
scorecard[code] += 1;
final_bytecode = Bytecodes::FromByte(code);
}
i += prefix_offset + Bytecodes::Size(final_bytecode, operand_scale);
}
// Insert entry for illegal bytecode as this is never willingly emitted.
scorecard[Bytecodes::ToByte(Bytecode::kIllegal)] = 1;
// Bytecode for CollectTypeProfile is only emitted when
// Type Information for DevTools is turned on.
scorecard[Bytecodes::ToByte(Bytecode::kCollectTypeProfile)] = 1;
// This bytecode is too inconvenient to test manually.
scorecard[Bytecodes::ToByte(Bytecode::kFindNonDefaultConstructor)] = 1;
// Check return occurs at the end and only once in the BytecodeArray.
CHECK_EQ(final_bytecode, Bytecode::kReturn);
CHECK_EQ(scorecard[Bytecodes::ToByte(final_bytecode)], 1);
#define CHECK_BYTECODE_PRESENT(Name, ...) \
/* Check Bytecode is marked in scorecard, unless it's a debug break */ \
if (!Bytecodes::IsDebugBreak(Bytecode::k##Name)) { \
EXPECT_GE(scorecard[Bytecodes::ToByte(Bytecode::k##Name)], 1); \
}
BYTECODE_LIST(CHECK_BYTECODE_PRESENT)
#undef CHECK_BYTECODE_PRESENT
}
TEST_F(BytecodeArrayBuilderTest, FrameSizesLookGood) {
for (int locals = 0; locals < 5; locals++) {
for (int temps = 0; temps < 3; temps++) {
BytecodeArrayBuilder builder(zone(), 1, locals);
BytecodeRegisterAllocator* allocator(builder.register_allocator());
for (int i = 0; i < locals; i++) {
builder.LoadLiteral(Smi::zero());
builder.StoreAccumulatorInRegister(Register(i));
}
for (int i = 0; i < temps; i++) {
Register temp = allocator->NewRegister();
builder.LoadLiteral(Smi::zero());
builder.StoreAccumulatorInRegister(temp);
// Ensure temporaries are used so not optimized away by the
// register optimizer.
builder.ToName(temp);
}
builder.Return();
Handle<BytecodeArray> the_array = builder.ToBytecodeArray(isolate());
int total_registers = locals + temps;
CHECK_EQ(the_array->frame_size(), total_registers * kSystemPointerSize);
}
}
}
TEST_F(BytecodeArrayBuilderTest, RegisterValues) {
int index = 1;
Register the_register(index);
CHECK_EQ(the_register.index(), index);
int actual_operand = the_register.ToOperand();
int actual_index = Register::FromOperand(actual_operand).index();
CHECK_EQ(actual_index, index);
}
TEST_F(BytecodeArrayBuilderTest, Parameters) {
BytecodeArrayBuilder builder(zone(), 10, 0);
Register receiver(builder.Receiver());
Register param8(builder.Parameter(8));
CHECK_EQ(receiver.index() - param8.index(), 9);
}
TEST_F(BytecodeArrayBuilderTest, Constants) {
BytecodeArrayBuilder builder(zone(), 1, 0);
AstValueFactory ast_factory(zone(), isolate()->ast_string_constants(),
HashSeed(isolate()));
double heap_num_1 = 3.14;
double heap_num_2 = 5.2;
double nan = std::numeric_limits<double>::quiet_NaN();
const AstRawString* string = ast_factory.GetOneByteString("foo");
const AstRawString* string_copy = ast_factory.GetOneByteString("foo");
builder.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_2)
.LoadLiteral(string)
.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_1)
.LoadLiteral(nan)
.LoadLiteral(string_copy)
.LoadLiteral(heap_num_2)
.LoadLiteral(nan)
.Return();
ast_factory.Internalize(isolate());
Handle<BytecodeArray> array = builder.ToBytecodeArray(isolate());
// Should only have one entry for each identical constant.
EXPECT_EQ(4, array->constant_pool().length());
}
TEST_F(BytecodeArrayBuilderTest, ForwardJumps) {
static const int kFarJumpDistance = 256 + 20;
BytecodeArrayBuilder builder(zone(), 1, 1);
Register reg(0);
BytecodeLabel far0, far1, far2, far3, far4;
BytecodeLabel near0, near1, near2, near3, near4;
BytecodeLabel after_jump_near0, after_jump_far0;
builder.JumpIfNull(&after_jump_near0)
.Jump(&near0)
.Bind(&after_jump_near0)
.CompareOperation(Token::Value::EQ, reg, 1)
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &near1)
.CompareOperation(Token::Value::EQ, reg, 2)
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &near2)
.BinaryOperation(Token::Value::ADD, reg, 1)
.JumpIfTrue(ToBooleanMode::kConvertToBoolean, &near3)
.BinaryOperation(Token::Value::ADD, reg, 2)
.JumpIfFalse(ToBooleanMode::kConvertToBoolean, &near4)
.Bind(&near0)
.Bind(&near1)
.Bind(&near2)
.Bind(&near3)
.Bind(&near4)
.JumpIfNull(&after_jump_far0)
.Jump(&far0)
.Bind(&after_jump_far0)
.CompareOperation(Token::Value::EQ, reg, 3)
.JumpIfTrue(ToBooleanMode::kAlreadyBoolean, &far1)
.CompareOperation(Token::Value::EQ, reg, 4)
.JumpIfFalse(ToBooleanMode::kAlreadyBoolean, &far2)
.BinaryOperation(Token::Value::ADD, reg, 3)
.JumpIfTrue(ToBooleanMode::kConvertToBoolean, &far3)
.BinaryOperation(Token::Value::ADD, reg, 4)
.JumpIfFalse(ToBooleanMode::kConvertToBoolean, &far4);
for (int i = 0; i < kFarJumpDistance - 22; i++) {
builder.Debugger();
}
builder.Bind(&far0).Bind(&far1).Bind(&far2).Bind(&far3).Bind(&far4);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray(isolate());
DCHECK_EQ(array->length(), 48 + kFarJumpDistance - 22 + 1);
BytecodeArrayIterator iterator(array);
// Ignore JumpIfNull operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 22);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrue);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 17);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalse);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 12);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 7);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 2);
iterator.Advance();
// Ignore JumpIfNull operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpConstant);
CHECK_EQ(*(iterator.GetConstantForIndexOperand(0, isolate())),
Smi::FromInt(kFarJumpDistance));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrueConstant);
CHECK_EQ(*(iterator.GetConstantForIndexOperand(0, isolate())),
Smi::FromInt(kFarJumpDistance - 5));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalseConstant);
CHECK_EQ(*(iterator.GetConstantForIndexOperand(0, isolate())),
Smi::FromInt(kFarJumpDistance - 10));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrueConstant);
CHECK_EQ(*(iterator.GetConstantForIndexOperand(0, isolate())),
Smi::FromInt(kFarJumpDistance - 15));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
Bytecode::kJumpIfToBooleanFalseConstant);
CHECK_EQ(*(iterator.GetConstantForIndexOperand(0, isolate())),
Smi::FromInt(kFarJumpDistance - 20));
iterator.Advance();
}
TEST_F(BytecodeArrayBuilderTest, BackwardJumps) {
BytecodeArrayBuilder builder(zone(), 1, 1);
BytecodeLabel end;
builder.JumpIfNull(&end);
BytecodeLabel after_loop;
// Conditional jump to force the code after the JumpLoop to be live.
// Technically this jump is illegal because it's jumping into the middle of
// the subsequent loops, but that's ok for this unit test.
BytecodeLoopHeader loop_header;
builder.JumpIfNull(&after_loop)
.Bind(&loop_header)
.JumpLoop(&loop_header, 0, 0, 0)
.Bind(&after_loop);
for (int i = 0; i < 42; i++) {
BytecodeLabel also_after_loop;
// Conditional jump to force the code after the JumpLoop to be live.
builder.JumpIfNull(&also_after_loop)
.JumpLoop(&loop_header, 0, 0, 0)
.Bind(&also_after_loop);
}
// Add padding to force wide backwards jumps.
for (int i = 0; i < 256; i++) {
builder.Debugger();
}
builder.JumpLoop(&loop_header, 0, 0, 0);
builder.Bind(&end);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray(isolate());
BytecodeArrayIterator iterator(array);
// Ignore the JumpIfNull to the end
iterator.Advance();
// Ignore the JumpIfNull to after the first JumpLoop
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpLoop);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 0);
iterator.Advance();
for (unsigned i = 0; i < 42; i++) {
// Ignore the JumpIfNull to after the JumpLoop
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpLoop);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
// offset of 6 (because kJumpLoop takes three immediate operands and
// JumpIfNull takes 1)
CHECK_EQ(Bytecodes::NumberOfOperands(Bytecode::kJumpLoop), 3);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), i * 6 + 6);
iterator.Advance();
}
// Check padding to force wide backwards jumps.
for (int i = 0; i < 256; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kDebugger);
iterator.Advance();
}
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpLoop);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetUnsignedImmediateOperand(0), 42 * 6 + 1 + 256 + 4);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, SmallSwitch) {
BytecodeArrayBuilder builder(zone(), 1, 1);
// Small jump table that fits into the single-size constant pool
int small_jump_table_size = 5;
int small_jump_table_base = -2;
BytecodeJumpTable* small_jump_table =
builder.AllocateJumpTable(small_jump_table_size, small_jump_table_base);
builder.LoadLiteral(Smi::FromInt(7)).SwitchOnSmiNoFeedback(small_jump_table);
for (int i = 0; i < small_jump_table_size; i++) {
builder.Bind(small_jump_table, small_jump_table_base + i).Debugger();
}
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray(isolate());
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kLdaSmi);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kSwitchOnSmiNoFeedback);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
{
int i = 0;
int switch_end =
iterator.current_offset() + iterator.current_bytecode_size();
for (JumpTableTargetOffset entry : iterator.GetJumpTableTargetOffsets()) {
CHECK_EQ(entry.case_value, small_jump_table_base + i);
CHECK_EQ(entry.target_offset, switch_end + i);
i++;
}
CHECK_EQ(i, small_jump_table_size);
}
iterator.Advance();
for (int i = 0; i < small_jump_table_size; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kDebugger);
iterator.Advance();
}
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, WideSwitch) {
BytecodeArrayBuilder builder(zone(), 1, 1);
// Large jump table that requires a wide Switch bytecode.
int large_jump_table_size = 256;
int large_jump_table_base = -10;
BytecodeJumpTable* large_jump_table =
builder.AllocateJumpTable(large_jump_table_size, large_jump_table_base);
builder.LoadLiteral(Smi::FromInt(7)).SwitchOnSmiNoFeedback(large_jump_table);
for (int i = 0; i < large_jump_table_size; i++) {
builder.Bind(large_jump_table, large_jump_table_base + i).Debugger();
}
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray(isolate());
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kLdaSmi);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kSwitchOnSmiNoFeedback);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
{
int i = 0;
int switch_end =
iterator.current_offset() + iterator.current_bytecode_size();
for (JumpTableTargetOffset entry : iterator.GetJumpTableTargetOffsets()) {
CHECK_EQ(entry.case_value, large_jump_table_base + i);
CHECK_EQ(entry.target_offset, switch_end + i);
i++;
}
CHECK_EQ(i, large_jump_table_size);
}
iterator.Advance();
for (int i = 0; i < large_jump_table_size; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kDebugger);
iterator.Advance();
}
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
} // namespace interpreter
} // namespace internal
} // namespace v8