483828660d
bug just before committing which broke snapshot builds. The code is nearly identical to the previous submit. TBR=erik.corry@gmail.com Review URL: http://codereview.chromium.org/491004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3449 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
760 lines
22 KiB
C++
760 lines
22 KiB
C++
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
// All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
// be used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The original source code covered by the above license above has been
|
|
// modified significantly by Google Inc.
|
|
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "arguments.h"
|
|
#include "execution.h"
|
|
#include "ic-inl.h"
|
|
#include "factory.h"
|
|
#include "runtime.h"
|
|
#include "serialize.h"
|
|
#include "stub-cache.h"
|
|
#include "regexp-stack.h"
|
|
#include "ast.h"
|
|
#include "regexp-macro-assembler.h"
|
|
// Include native regexp-macro-assembler.
|
|
#ifdef V8_NATIVE_REGEXP
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "ia32/regexp-macro-assembler-ia32.h"
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "x64/regexp-macro-assembler-x64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/regexp-macro-assembler-arm.h"
|
|
#else // Unknown architecture.
|
|
#error "Unknown architecture."
|
|
#endif // Target architecture.
|
|
#endif // V8_NATIVE_REGEXP
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Label
|
|
|
|
int Label::pos() const {
|
|
if (pos_ < 0) return -pos_ - 1;
|
|
if (pos_ > 0) return pos_ - 1;
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfoWriter and RelocIterator
|
|
//
|
|
// Encoding
|
|
//
|
|
// The most common modes are given single-byte encodings. Also, it is
|
|
// easy to identify the type of reloc info and skip unwanted modes in
|
|
// an iteration.
|
|
//
|
|
// The encoding relies on the fact that there are less than 14
|
|
// different relocation modes.
|
|
//
|
|
// embedded_object: [6 bits pc delta] 00
|
|
//
|
|
// code_taget: [6 bits pc delta] 01
|
|
//
|
|
// position: [6 bits pc delta] 10,
|
|
// [7 bits signed data delta] 0
|
|
//
|
|
// statement_position: [6 bits pc delta] 10,
|
|
// [7 bits signed data delta] 1
|
|
//
|
|
// any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
|
|
// 00 [6 bits pc delta]
|
|
//
|
|
// pc-jump: 00 1111 11,
|
|
// 00 [6 bits pc delta]
|
|
//
|
|
// pc-jump: 01 1111 11,
|
|
// (variable length) 7 - 26 bit pc delta, written in chunks of 7
|
|
// bits, the lowest 7 bits written first.
|
|
//
|
|
// data-jump + pos: 00 1110 11,
|
|
// signed intptr_t, lowest byte written first
|
|
//
|
|
// data-jump + st.pos: 01 1110 11,
|
|
// signed intptr_t, lowest byte written first
|
|
//
|
|
// data-jump + comm.: 10 1110 11,
|
|
// signed intptr_t, lowest byte written first
|
|
//
|
|
const int kMaxRelocModes = 14;
|
|
|
|
const int kTagBits = 2;
|
|
const int kTagMask = (1 << kTagBits) - 1;
|
|
const int kExtraTagBits = 4;
|
|
const int kPositionTypeTagBits = 1;
|
|
const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
|
|
|
|
const int kEmbeddedObjectTag = 0;
|
|
const int kCodeTargetTag = 1;
|
|
const int kPositionTag = 2;
|
|
const int kDefaultTag = 3;
|
|
|
|
const int kPCJumpTag = (1 << kExtraTagBits) - 1;
|
|
|
|
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
|
|
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
|
|
|
|
const int kVariableLengthPCJumpTopTag = 1;
|
|
const int kChunkBits = 7;
|
|
const int kChunkMask = (1 << kChunkBits) - 1;
|
|
const int kLastChunkTagBits = 1;
|
|
const int kLastChunkTagMask = 1;
|
|
const int kLastChunkTag = 1;
|
|
|
|
|
|
const int kDataJumpTag = kPCJumpTag - 1;
|
|
|
|
const int kNonstatementPositionTag = 0;
|
|
const int kStatementPositionTag = 1;
|
|
const int kCommentTag = 2;
|
|
|
|
|
|
uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
|
|
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
|
|
// Otherwise write a variable length PC jump for the bits that do
|
|
// not fit in the kSmallPCDeltaBits bits.
|
|
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
|
|
WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
|
|
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
|
|
ASSERT(pc_jump > 0);
|
|
// Write kChunkBits size chunks of the pc_jump.
|
|
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
|
|
byte b = pc_jump & kChunkMask;
|
|
*--pos_ = b << kLastChunkTagBits;
|
|
}
|
|
// Tag the last chunk so it can be identified.
|
|
*pos_ = *pos_ | kLastChunkTag;
|
|
// Return the remaining kSmallPCDeltaBits of the pc_delta.
|
|
return pc_delta & kSmallPCDeltaMask;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
|
|
// Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
|
|
pc_delta = WriteVariableLengthPCJump(pc_delta);
|
|
*--pos_ = pc_delta << kTagBits | tag;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
|
|
*--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
|
|
*--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
|
|
extra_tag << kTagBits |
|
|
kDefaultTag);
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
|
|
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
|
|
pc_delta = WriteVariableLengthPCJump(pc_delta);
|
|
WriteExtraTag(extra_tag, 0);
|
|
*--pos_ = pc_delta;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
|
|
WriteExtraTag(kDataJumpTag, top_tag);
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
*--pos_ = static_cast<byte>(data_delta);
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
data_delta = data_delta >> kBitsPerByte;
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
|
|
#ifdef DEBUG
|
|
byte* begin_pos = pos_;
|
|
#endif
|
|
Counters::reloc_info_count.Increment();
|
|
ASSERT(rinfo->pc() - last_pc_ >= 0);
|
|
ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
|
|
// Use unsigned delta-encoding for pc.
|
|
uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
|
|
RelocInfo::Mode rmode = rinfo->rmode();
|
|
|
|
// The two most common modes are given small tags, and usually fit in a byte.
|
|
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
|
|
WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
|
|
} else if (rmode == RelocInfo::CODE_TARGET) {
|
|
WriteTaggedPC(pc_delta, kCodeTargetTag);
|
|
} else if (RelocInfo::IsPosition(rmode)) {
|
|
// Use signed delta-encoding for data.
|
|
intptr_t data_delta = rinfo->data() - last_data_;
|
|
int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
|
|
: kStatementPositionTag;
|
|
// Check if data is small enough to fit in a tagged byte.
|
|
// We cannot use is_intn because data_delta is not an int32_t.
|
|
if (data_delta >= -(1 << (kSmallDataBits-1)) &&
|
|
data_delta < 1 << (kSmallDataBits-1)) {
|
|
WriteTaggedPC(pc_delta, kPositionTag);
|
|
WriteTaggedData(data_delta, pos_type_tag);
|
|
last_data_ = rinfo->data();
|
|
} else {
|
|
// Otherwise, use costly encoding.
|
|
WriteExtraTaggedPC(pc_delta, kPCJumpTag);
|
|
WriteExtraTaggedData(data_delta, pos_type_tag);
|
|
last_data_ = rinfo->data();
|
|
}
|
|
} else if (RelocInfo::IsComment(rmode)) {
|
|
// Comments are normally not generated, so we use the costly encoding.
|
|
WriteExtraTaggedPC(pc_delta, kPCJumpTag);
|
|
WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
|
|
last_data_ = rinfo->data();
|
|
} else {
|
|
// For all other modes we simply use the mode as the extra tag.
|
|
// None of these modes need a data component.
|
|
ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
|
|
WriteExtraTaggedPC(pc_delta, rmode);
|
|
}
|
|
last_pc_ = rinfo->pc();
|
|
#ifdef DEBUG
|
|
ASSERT(begin_pos - pos_ <= kMaxSize);
|
|
#endif
|
|
}
|
|
|
|
|
|
inline int RelocIterator::AdvanceGetTag() {
|
|
return *--pos_ & kTagMask;
|
|
}
|
|
|
|
|
|
inline int RelocIterator::GetExtraTag() {
|
|
return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
|
|
}
|
|
|
|
|
|
inline int RelocIterator::GetTopTag() {
|
|
return *pos_ >> (kTagBits + kExtraTagBits);
|
|
}
|
|
|
|
|
|
inline void RelocIterator::ReadTaggedPC() {
|
|
rinfo_.pc_ += *pos_ >> kTagBits;
|
|
}
|
|
|
|
|
|
inline void RelocIterator::AdvanceReadPC() {
|
|
rinfo_.pc_ += *--pos_;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadData() {
|
|
intptr_t x = 0;
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
|
|
}
|
|
rinfo_.data_ += x;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadVariableLengthPCJump() {
|
|
// Read the 32-kSmallPCDeltaBits most significant bits of the
|
|
// pc jump in kChunkBits bit chunks and shift them into place.
|
|
// Stop when the last chunk is encountered.
|
|
uint32_t pc_jump = 0;
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
byte pc_jump_part = *--pos_;
|
|
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
|
|
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
|
|
}
|
|
// The least significant kSmallPCDeltaBits bits will be added
|
|
// later.
|
|
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
|
|
}
|
|
|
|
|
|
inline int RelocIterator::GetPositionTypeTag() {
|
|
return *pos_ & ((1 << kPositionTypeTagBits) - 1);
|
|
}
|
|
|
|
|
|
inline void RelocIterator::ReadTaggedData() {
|
|
int8_t signed_b = *pos_;
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
rinfo_.data_ += signed_b >> kPositionTypeTagBits;
|
|
}
|
|
|
|
|
|
inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
|
|
if (tag == kStatementPositionTag) {
|
|
return RelocInfo::STATEMENT_POSITION;
|
|
} else if (tag == kNonstatementPositionTag) {
|
|
return RelocInfo::POSITION;
|
|
} else {
|
|
ASSERT(tag == kCommentTag);
|
|
return RelocInfo::COMMENT;
|
|
}
|
|
}
|
|
|
|
|
|
void RelocIterator::next() {
|
|
ASSERT(!done());
|
|
// Basically, do the opposite of RelocInfoWriter::Write.
|
|
// Reading of data is as far as possible avoided for unwanted modes,
|
|
// but we must always update the pc.
|
|
//
|
|
// We exit this loop by returning when we find a mode we want.
|
|
while (pos_ > end_) {
|
|
int tag = AdvanceGetTag();
|
|
if (tag == kEmbeddedObjectTag) {
|
|
ReadTaggedPC();
|
|
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
|
|
} else if (tag == kCodeTargetTag) {
|
|
ReadTaggedPC();
|
|
if (SetMode(RelocInfo::CODE_TARGET)) return;
|
|
} else if (tag == kPositionTag) {
|
|
ReadTaggedPC();
|
|
Advance();
|
|
// Check if we want source positions.
|
|
if (mode_mask_ & RelocInfo::kPositionMask) {
|
|
// Check if we want this type of source position.
|
|
if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
|
|
// Finally read the data before returning.
|
|
ReadTaggedData();
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(tag == kDefaultTag);
|
|
int extra_tag = GetExtraTag();
|
|
if (extra_tag == kPCJumpTag) {
|
|
int top_tag = GetTopTag();
|
|
if (top_tag == kVariableLengthPCJumpTopTag) {
|
|
AdvanceReadVariableLengthPCJump();
|
|
} else {
|
|
AdvanceReadPC();
|
|
}
|
|
} else if (extra_tag == kDataJumpTag) {
|
|
// Check if we want debug modes (the only ones with data).
|
|
if (mode_mask_ & RelocInfo::kDebugMask) {
|
|
int top_tag = GetTopTag();
|
|
AdvanceReadData();
|
|
if (SetMode(DebugInfoModeFromTag(top_tag))) return;
|
|
} else {
|
|
// Otherwise, just skip over the data.
|
|
Advance(kIntptrSize);
|
|
}
|
|
} else {
|
|
AdvanceReadPC();
|
|
if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
|
|
}
|
|
}
|
|
}
|
|
done_ = true;
|
|
}
|
|
|
|
|
|
RelocIterator::RelocIterator(Code* code, int mode_mask) {
|
|
rinfo_.pc_ = code->instruction_start();
|
|
rinfo_.data_ = 0;
|
|
// relocation info is read backwards
|
|
pos_ = code->relocation_start() + code->relocation_size();
|
|
end_ = code->relocation_start();
|
|
done_ = false;
|
|
mode_mask_ = mode_mask;
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
next();
|
|
}
|
|
|
|
|
|
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
|
|
rinfo_.pc_ = desc.buffer;
|
|
rinfo_.data_ = 0;
|
|
// relocation info is read backwards
|
|
pos_ = desc.buffer + desc.buffer_size;
|
|
end_ = pos_ - desc.reloc_size;
|
|
done_ = false;
|
|
mode_mask_ = mode_mask;
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
next();
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfo
|
|
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
|
|
switch (rmode) {
|
|
case RelocInfo::NONE:
|
|
return "no reloc";
|
|
case RelocInfo::EMBEDDED_OBJECT:
|
|
return "embedded object";
|
|
case RelocInfo::EMBEDDED_STRING:
|
|
return "embedded string";
|
|
case RelocInfo::CONSTRUCT_CALL:
|
|
return "code target (js construct call)";
|
|
case RelocInfo::CODE_TARGET_CONTEXT:
|
|
return "code target (context)";
|
|
case RelocInfo::CODE_TARGET:
|
|
return "code target";
|
|
case RelocInfo::RUNTIME_ENTRY:
|
|
return "runtime entry";
|
|
case RelocInfo::JS_RETURN:
|
|
return "js return";
|
|
case RelocInfo::COMMENT:
|
|
return "comment";
|
|
case RelocInfo::POSITION:
|
|
return "position";
|
|
case RelocInfo::STATEMENT_POSITION:
|
|
return "statement position";
|
|
case RelocInfo::EXTERNAL_REFERENCE:
|
|
return "external reference";
|
|
case RelocInfo::INTERNAL_REFERENCE:
|
|
return "internal reference";
|
|
case RelocInfo::NUMBER_OF_MODES:
|
|
UNREACHABLE();
|
|
return "number_of_modes";
|
|
}
|
|
return "unknown relocation type";
|
|
}
|
|
|
|
|
|
void RelocInfo::Print() {
|
|
PrintF("%p %s", pc_, RelocModeName(rmode_));
|
|
if (IsComment(rmode_)) {
|
|
PrintF(" (%s)", data_);
|
|
} else if (rmode_ == EMBEDDED_OBJECT) {
|
|
PrintF(" (");
|
|
target_object()->ShortPrint();
|
|
PrintF(")");
|
|
} else if (rmode_ == EXTERNAL_REFERENCE) {
|
|
ExternalReferenceEncoder ref_encoder;
|
|
PrintF(" (%s) (%p)",
|
|
ref_encoder.NameOfAddress(*target_reference_address()),
|
|
*target_reference_address());
|
|
} else if (IsCodeTarget(rmode_)) {
|
|
Code* code = Code::GetCodeFromTargetAddress(target_address());
|
|
PrintF(" (%s) (%p)", Code::Kind2String(code->kind()), target_address());
|
|
} else if (IsPosition(rmode_)) {
|
|
PrintF(" (%d)", data());
|
|
}
|
|
|
|
PrintF("\n");
|
|
}
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
|
|
#ifdef DEBUG
|
|
void RelocInfo::Verify() {
|
|
switch (rmode_) {
|
|
case EMBEDDED_OBJECT:
|
|
Object::VerifyPointer(target_object());
|
|
break;
|
|
case CONSTRUCT_CALL:
|
|
case CODE_TARGET_CONTEXT:
|
|
case CODE_TARGET: {
|
|
// convert inline target address to code object
|
|
Address addr = target_address();
|
|
ASSERT(addr != NULL);
|
|
// Check that we can find the right code object.
|
|
Code* code = Code::GetCodeFromTargetAddress(addr);
|
|
Object* found = Heap::FindCodeObject(addr);
|
|
ASSERT(found->IsCode());
|
|
ASSERT(code->address() == HeapObject::cast(found)->address());
|
|
break;
|
|
}
|
|
case RelocInfo::EMBEDDED_STRING:
|
|
case RUNTIME_ENTRY:
|
|
case JS_RETURN:
|
|
case COMMENT:
|
|
case POSITION:
|
|
case STATEMENT_POSITION:
|
|
case EXTERNAL_REFERENCE:
|
|
case INTERNAL_REFERENCE:
|
|
case NONE:
|
|
break;
|
|
case NUMBER_OF_MODES:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of ExternalReference
|
|
|
|
ExternalReference::ExternalReference(Builtins::CFunctionId id)
|
|
: address_(Redirect(Builtins::c_function_address(id))) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(ApiFunction* fun)
|
|
: address_(Redirect(fun->address())) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Builtins::Name name)
|
|
: address_(Builtins::builtin_address(name)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Runtime::FunctionId id)
|
|
: address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Runtime::Function* f)
|
|
: address_(Redirect(f->entry)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(const IC_Utility& ic_utility)
|
|
: address_(Redirect(ic_utility.address())) {}
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ExternalReference::ExternalReference(const Debug_Address& debug_address)
|
|
: address_(debug_address.address()) {}
|
|
#endif
|
|
|
|
ExternalReference::ExternalReference(StatsCounter* counter)
|
|
: address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Top::AddressId id)
|
|
: address_(Top::get_address_from_id(id)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(const SCTableReference& table_ref)
|
|
: address_(table_ref.address()) {}
|
|
|
|
|
|
ExternalReference ExternalReference::perform_gc_function() {
|
|
return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::builtin_passed_function() {
|
|
return ExternalReference(&Builtins::builtin_passed_function);
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::random_positive_smi_function() {
|
|
return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::keyed_lookup_cache_keys() {
|
|
return ExternalReference(KeyedLookupCache::keys_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
|
|
return ExternalReference(KeyedLookupCache::field_offsets_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::the_hole_value_location() {
|
|
return ExternalReference(Factory::the_hole_value().location());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::roots_address() {
|
|
return ExternalReference(Heap::roots_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_stack_limit() {
|
|
return ExternalReference(StackGuard::address_of_jslimit());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_real_stack_limit() {
|
|
return ExternalReference(StackGuard::address_of_real_jslimit());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_limit() {
|
|
return ExternalReference(RegExpStack::limit_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_start() {
|
|
return ExternalReference(Heap::NewSpaceStart());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_top_address() {
|
|
return ExternalReference(Heap::NewSpaceAllocationTopAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
|
|
return ExternalReference(Heap::always_allocate_scope_depth_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_limit_address() {
|
|
return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_extensions_address() {
|
|
return ExternalReference(HandleScope::current_extensions_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_next_address() {
|
|
return ExternalReference(HandleScope::current_next_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_limit_address() {
|
|
return ExternalReference(HandleScope::current_limit_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::scheduled_exception_address() {
|
|
return ExternalReference(Top::scheduled_exception_address());
|
|
}
|
|
|
|
|
|
#ifdef V8_NATIVE_REGEXP
|
|
|
|
ExternalReference ExternalReference::re_check_stack_guard_state() {
|
|
Address function;
|
|
#ifdef V8_TARGET_ARCH_X64
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_IA32
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_ARM
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
|
|
#else
|
|
UNREACHABLE("Unexpected architecture");
|
|
#endif
|
|
return ExternalReference(Redirect(function));
|
|
}
|
|
|
|
ExternalReference ExternalReference::re_grow_stack() {
|
|
return ExternalReference(
|
|
Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
|
|
return ExternalReference(Redirect(
|
|
FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
static double add_two_doubles(double x, double y) {
|
|
return x + y;
|
|
}
|
|
|
|
|
|
static double sub_two_doubles(double x, double y) {
|
|
return x - y;
|
|
}
|
|
|
|
|
|
static double mul_two_doubles(double x, double y) {
|
|
return x * y;
|
|
}
|
|
|
|
|
|
static double div_two_doubles(double x, double y) {
|
|
return x / y;
|
|
}
|
|
|
|
|
|
static double mod_two_doubles(double x, double y) {
|
|
return fmod(x, y);
|
|
}
|
|
|
|
|
|
static int native_compare_doubles(double x, double y) {
|
|
if (x == y) return 0;
|
|
return x < y ? 1 : -1;
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::double_fp_operation(
|
|
Token::Value operation) {
|
|
typedef double BinaryFPOperation(double x, double y);
|
|
BinaryFPOperation* function = NULL;
|
|
switch (operation) {
|
|
case Token::ADD:
|
|
function = &add_two_doubles;
|
|
break;
|
|
case Token::SUB:
|
|
function = &sub_two_doubles;
|
|
break;
|
|
case Token::MUL:
|
|
function = &mul_two_doubles;
|
|
break;
|
|
case Token::DIV:
|
|
function = &div_two_doubles;
|
|
break;
|
|
case Token::MOD:
|
|
function = &mod_two_doubles;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
// Passing true as 2nd parameter indicates that they return an fp value.
|
|
return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::compare_doubles() {
|
|
return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
|
|
false));
|
|
}
|
|
|
|
|
|
ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ExternalReference ExternalReference::debug_break() {
|
|
return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::debug_step_in_fp_address() {
|
|
return ExternalReference(Debug::step_in_fp_addr());
|
|
}
|
|
#endif
|
|
|
|
} } // namespace v8::internal
|