a5cbde0330
This test allocates a large mapping and splits into kThunkBufferSize areas that it needs to be able to change permissions on. So kThunkBufferSize needs to be set to the largest page size possible, which is 64k at the moment. It doesn't matter if kThunkBufferSize is larger than the actual page size. Bug: v8:10808 Change-Id: I3a8947f04a7ec25be49a54015cd128e901065ea6 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2463404 Reviewed-by: Clemens Backes <clemensb@chromium.org> Commit-Queue: Pierre Langlois <pierre.langlois@arm.com> Cr-Commit-Position: refs/heads/master@{#70449}
297 lines
11 KiB
C++
297 lines
11 KiB
C++
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <bitset>
|
|
|
|
#include "src/codegen/assembler-inl.h"
|
|
#include "src/codegen/macro-assembler-inl.h"
|
|
#include "src/execution/simulator.h"
|
|
#include "src/utils/utils.h"
|
|
#include "src/wasm/code-space-access.h"
|
|
#include "src/wasm/jump-table-assembler.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/common/assembler-tester.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace wasm {
|
|
|
|
#if 0
|
|
#define TRACE(...) PrintF(__VA_ARGS__)
|
|
#else
|
|
#define TRACE(...)
|
|
#endif
|
|
|
|
#define __ masm.
|
|
|
|
namespace {
|
|
|
|
static volatile int global_stop_bit = 0;
|
|
|
|
constexpr int kJumpTableSlotCount = 128;
|
|
constexpr uint32_t kJumpTableSize =
|
|
JumpTableAssembler::SizeForNumberOfSlots(kJumpTableSlotCount);
|
|
|
|
// This must be a safe commit page size so we pick the largest OS page size that
|
|
// V8 is known to support. Arm64 linux can support up to 64k at runtime.
|
|
constexpr size_t kThunkBufferSize = 64 * KB;
|
|
|
|
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
|
|
// We need the branches (from CompileJumpTableThunk) to be within near-call
|
|
// range of the jump table slots. The address hint to AllocateAssemblerBuffer
|
|
// is not reliable enough to guarantee that we can always achieve this with
|
|
// separate allocations, so we generate all code in a single
|
|
// kMaxCodeMemory-sized chunk.
|
|
constexpr size_t kAssemblerBufferSize = WasmCodeAllocator::kMaxCodeSpaceSize;
|
|
constexpr uint32_t kAvailableBufferSlots =
|
|
(WasmCodeAllocator::kMaxCodeSpaceSize - kJumpTableSize) / kThunkBufferSize;
|
|
constexpr uint32_t kBufferSlotStartOffset =
|
|
RoundUp<kThunkBufferSize>(kJumpTableSize);
|
|
#else
|
|
constexpr size_t kAssemblerBufferSize = kJumpTableSize;
|
|
constexpr uint32_t kAvailableBufferSlots = 0;
|
|
constexpr uint32_t kBufferSlotStartOffset = 0;
|
|
#endif
|
|
|
|
Address AllocateJumpTableThunk(
|
|
Address jump_target, byte* thunk_slot_buffer,
|
|
std::bitset<kAvailableBufferSlots>* used_slots,
|
|
std::vector<std::unique_ptr<TestingAssemblerBuffer>>* thunk_buffers) {
|
|
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
|
|
// To guarantee that the branch range lies within the near-call range,
|
|
// generate the thunk in the same (kMaxWasmCodeSpaceSize-sized) buffer as the
|
|
// jump_target itself.
|
|
//
|
|
// Allocate a slot that we haven't already used. This is necessary because
|
|
// each test iteration expects to generate two unique addresses and we leave
|
|
// each slot executable (and not writable).
|
|
base::RandomNumberGenerator* rng =
|
|
CcTest::i_isolate()->random_number_generator();
|
|
// Ensure a chance of completion without too much thrashing.
|
|
DCHECK(used_slots->count() < (used_slots->size() / 2));
|
|
int buffer_index;
|
|
do {
|
|
buffer_index = rng->NextInt(kAvailableBufferSlots);
|
|
} while (used_slots->test(buffer_index));
|
|
used_slots->set(buffer_index);
|
|
return reinterpret_cast<Address>(thunk_slot_buffer +
|
|
buffer_index * kThunkBufferSize);
|
|
|
|
#else
|
|
USE(thunk_slot_buffer);
|
|
USE(used_slots);
|
|
thunk_buffers->emplace_back(
|
|
AllocateAssemblerBuffer(kThunkBufferSize, GetRandomMmapAddr()));
|
|
return reinterpret_cast<Address>(thunk_buffers->back()->start());
|
|
#endif
|
|
}
|
|
|
|
void CompileJumpTableThunk(Address thunk, Address jump_target) {
|
|
MacroAssembler masm(nullptr, AssemblerOptions{}, CodeObjectRequired::kNo,
|
|
ExternalAssemblerBuffer(reinterpret_cast<void*>(thunk),
|
|
kThunkBufferSize));
|
|
|
|
Label exit;
|
|
Register scratch = kReturnRegister0;
|
|
Address stop_bit_address = reinterpret_cast<Address>(&global_stop_bit);
|
|
#if V8_TARGET_ARCH_X64
|
|
__ Move(scratch, stop_bit_address, RelocInfo::NONE);
|
|
__ testl(MemOperand(scratch, 0), Immediate(1));
|
|
__ j(not_zero, &exit);
|
|
__ Jump(jump_target, RelocInfo::NONE);
|
|
#elif V8_TARGET_ARCH_IA32
|
|
__ Move(scratch, Immediate(stop_bit_address, RelocInfo::NONE));
|
|
__ test(MemOperand(scratch, 0), Immediate(1));
|
|
__ j(not_zero, &exit);
|
|
__ jmp(jump_target, RelocInfo::NONE);
|
|
#elif V8_TARGET_ARCH_ARM
|
|
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ ldr(scratch, MemOperand(scratch, 0));
|
|
__ tst(scratch, Operand(1));
|
|
__ b(ne, &exit);
|
|
__ Jump(jump_target, RelocInfo::NONE);
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
UseScratchRegisterScope temps(&masm);
|
|
temps.Exclude(x16);
|
|
scratch = x16;
|
|
__ Mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ Ldr(scratch, MemOperand(scratch, 0));
|
|
__ Tbnz(scratch, 0, &exit);
|
|
__ Mov(scratch, Immediate(jump_target, RelocInfo::NONE));
|
|
__ Br(scratch);
|
|
#elif V8_TARGET_ARCH_PPC64
|
|
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ LoadP(scratch, MemOperand(scratch));
|
|
__ cmpi(scratch, Operand::Zero());
|
|
__ bne(&exit);
|
|
__ mov(scratch, Operand(jump_target, RelocInfo::NONE));
|
|
__ Jump(scratch);
|
|
#elif V8_TARGET_ARCH_S390X
|
|
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ LoadP(scratch, MemOperand(scratch));
|
|
__ CmpP(scratch, Operand(0));
|
|
__ bne(&exit);
|
|
__ mov(scratch, Operand(jump_target, RelocInfo::NONE));
|
|
__ Jump(scratch);
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
__ li(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ Lw(scratch, MemOperand(scratch, 0));
|
|
__ Branch(&exit, ne, scratch, Operand(zero_reg));
|
|
__ Jump(jump_target, RelocInfo::NONE);
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
__ li(scratch, Operand(stop_bit_address, RelocInfo::NONE));
|
|
__ lw(scratch, MemOperand(scratch, 0));
|
|
__ Branch(&exit, ne, scratch, Operand(zero_reg));
|
|
__ Jump(jump_target, RelocInfo::NONE);
|
|
#else
|
|
#error Unsupported architecture
|
|
#endif
|
|
__ bind(&exit);
|
|
__ Ret();
|
|
|
|
FlushInstructionCache(thunk, kThunkBufferSize);
|
|
CHECK(SetPermissions(GetPlatformPageAllocator(), thunk, kThunkBufferSize,
|
|
v8::PageAllocator::kReadExecute));
|
|
}
|
|
|
|
class JumpTableRunner : public v8::base::Thread {
|
|
public:
|
|
JumpTableRunner(Address slot_address, int runner_id)
|
|
: Thread(Options("JumpTableRunner")),
|
|
slot_address_(slot_address),
|
|
runner_id_(runner_id) {}
|
|
|
|
void Run() override {
|
|
TRACE("Runner #%d is starting ...\n", runner_id_);
|
|
SwitchMemoryPermissionsToExecutable();
|
|
GeneratedCode<void>::FromAddress(CcTest::i_isolate(), slot_address_).Call();
|
|
TRACE("Runner #%d is stopping ...\n", runner_id_);
|
|
USE(runner_id_);
|
|
}
|
|
|
|
private:
|
|
Address slot_address_;
|
|
int runner_id_;
|
|
};
|
|
|
|
class JumpTablePatcher : public v8::base::Thread {
|
|
public:
|
|
JumpTablePatcher(Address slot_start, uint32_t slot_index, Address thunk1,
|
|
Address thunk2, base::Mutex* jump_table_mutex)
|
|
: Thread(Options("JumpTablePatcher")),
|
|
slot_start_(slot_start),
|
|
slot_index_(slot_index),
|
|
thunks_{thunk1, thunk2},
|
|
jump_table_mutex_(jump_table_mutex) {}
|
|
|
|
void Run() override {
|
|
TRACE("Patcher %p is starting ...\n", this);
|
|
SwitchMemoryPermissionsToWritable();
|
|
Address slot_address =
|
|
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_);
|
|
// First, emit code to the two thunks.
|
|
for (Address thunk : thunks_) {
|
|
CompileJumpTableThunk(thunk, slot_address);
|
|
}
|
|
// Then, repeatedly patch the jump table to jump to one of the two thunks.
|
|
constexpr int kNumberOfPatchIterations = 64;
|
|
for (int i = 0; i < kNumberOfPatchIterations; ++i) {
|
|
TRACE(" patcher %p patch slot " V8PRIxPTR_FMT
|
|
" to thunk #%d (" V8PRIxPTR_FMT ")\n",
|
|
this, slot_address, i % 2, thunks_[i % 2]);
|
|
base::MutexGuard jump_table_guard(jump_table_mutex_);
|
|
JumpTableAssembler::PatchJumpTableSlot(
|
|
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_),
|
|
kNullAddress, thunks_[i % 2]);
|
|
}
|
|
TRACE("Patcher %p is stopping ...\n", this);
|
|
}
|
|
|
|
private:
|
|
Address slot_start_;
|
|
uint32_t slot_index_;
|
|
Address thunks_[2];
|
|
base::Mutex* jump_table_mutex_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// This test is intended to stress concurrent patching of jump-table slots. It
|
|
// uses the following setup:
|
|
// 1) Picks a particular slot of the jump-table. Slots are iterated over to
|
|
// ensure multiple entries (at different offset alignments) are tested.
|
|
// 2) Starts multiple runners that spin through the above slot. The runners
|
|
// use thunk code that will jump to the same jump-table slot repeatedly
|
|
// until the {global_stop_bit} indicates a test-end condition.
|
|
// 3) Start a patcher that repeatedly patches the jump-table slot back and
|
|
// forth between two thunk. If there is a race then chances are high that
|
|
// one of the runners is currently executing the jump-table slot.
|
|
TEST(JumpTablePatchingStress) {
|
|
constexpr int kNumberOfRunnerThreads = 5;
|
|
constexpr int kNumberOfPatcherThreads = 3;
|
|
|
|
STATIC_ASSERT(kAssemblerBufferSize >= kJumpTableSize);
|
|
auto buffer = AllocateAssemblerBuffer(kAssemblerBufferSize);
|
|
byte* thunk_slot_buffer = buffer->start() + kBufferSlotStartOffset;
|
|
|
|
std::bitset<kAvailableBufferSlots> used_thunk_slots;
|
|
buffer->MakeWritableAndExecutable();
|
|
SwitchMemoryPermissionsToWritable();
|
|
|
|
// Iterate through jump-table slots to hammer at different alignments within
|
|
// the jump-table, thereby increasing stress for variable-length ISAs.
|
|
Address slot_start = reinterpret_cast<Address>(buffer->start());
|
|
for (int slot = 0; slot < kJumpTableSlotCount; ++slot) {
|
|
TRACE("Hammering on jump table slot #%d ...\n", slot);
|
|
uint32_t slot_offset = JumpTableAssembler::JumpSlotIndexToOffset(slot);
|
|
std::vector<std::unique_ptr<TestingAssemblerBuffer>> thunk_buffers;
|
|
// Patch the jump table slot to jump to itself. This will later be patched
|
|
// by the patchers.
|
|
Address slot_addr =
|
|
slot_start + JumpTableAssembler::JumpSlotIndexToOffset(slot);
|
|
JumpTableAssembler::PatchJumpTableSlot(slot_addr, kNullAddress, slot_addr);
|
|
// For each patcher, generate two thunks where this patcher can emit code
|
|
// which finally jumps back to {slot} in the jump table.
|
|
std::vector<Address> patcher_thunks;
|
|
for (int i = 0; i < 2 * kNumberOfPatcherThreads; ++i) {
|
|
Address thunk =
|
|
AllocateJumpTableThunk(slot_start + slot_offset, thunk_slot_buffer,
|
|
&used_thunk_slots, &thunk_buffers);
|
|
ZapCode(thunk, kThunkBufferSize);
|
|
patcher_thunks.push_back(thunk);
|
|
TRACE(" generated jump thunk: " V8PRIxPTR_FMT "\n",
|
|
patcher_thunks.back());
|
|
}
|
|
|
|
// Start multiple runner threads that execute the jump table slot
|
|
// concurrently.
|
|
std::list<JumpTableRunner> runners;
|
|
for (int runner = 0; runner < kNumberOfRunnerThreads; ++runner) {
|
|
runners.emplace_back(slot_start + slot_offset, runner);
|
|
}
|
|
// Start multiple patcher thread that concurrently generate code and insert
|
|
// jumps to that into the jump table slot.
|
|
std::list<JumpTablePatcher> patchers;
|
|
// Only one patcher should modify the jump table at a time.
|
|
base::Mutex jump_table_mutex;
|
|
for (int i = 0; i < kNumberOfPatcherThreads; ++i) {
|
|
patchers.emplace_back(slot_start, slot, patcher_thunks[2 * i],
|
|
patcher_thunks[2 * i + 1], &jump_table_mutex);
|
|
}
|
|
global_stop_bit = 0; // Signal runners to keep going.
|
|
for (auto& runner : runners) CHECK(runner.Start());
|
|
for (auto& patcher : patchers) CHECK(patcher.Start());
|
|
for (auto& patcher : patchers) patcher.Join();
|
|
global_stop_bit = -1; // Signal runners to stop.
|
|
for (auto& runner : runners) runner.Join();
|
|
}
|
|
}
|
|
|
|
#undef __
|
|
#undef TRACE
|
|
|
|
} // namespace wasm
|
|
} // namespace internal
|
|
} // namespace v8
|