v8/src/jump-target.cc
kmillikin@chromium.org ebbaeb3655 Initial bypass of JumpTarget::ComputeEntryFrame for deferred code
entry labels where it is statically safe.

Review URL: http://codereview.chromium.org/115296

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1943 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-05-14 07:38:44 +00:00

703 lines
21 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "register-allocator-inl.h"
namespace v8 { namespace internal {
// -------------------------------------------------------------------------
// JumpTarget implementation.
bool JumpTarget::compiling_deferred_code_ = false;
JumpTarget::JumpTarget(CodeGenerator* cgen, Directionality direction)
: cgen_(cgen),
direction_(direction),
reaching_frames_(0),
merge_labels_(0),
entry_frame_(NULL),
is_bound_(false),
is_linked_(false) {
ASSERT(cgen != NULL);
masm_ = cgen->masm();
}
JumpTarget::JumpTarget()
: cgen_(NULL),
masm_(NULL),
direction_(FORWARD_ONLY),
reaching_frames_(0),
merge_labels_(0),
entry_frame_(NULL),
is_bound_(false),
is_linked_(false) {
}
void JumpTarget::Initialize(CodeGenerator* cgen, Directionality direction) {
ASSERT(cgen != NULL);
ASSERT(cgen_ == NULL);
cgen_ = cgen;
masm_ = cgen->masm();
direction_ = direction;
}
void JumpTarget::Unuse() {
// We should not deallocate jump targets that have unresolved jumps
// to them. In the event of a compile-time stack overflow or an
// uninitialized jump target, we don't care.
ASSERT(!is_linked() || cgen_ == NULL || cgen_->HasStackOverflow());
for (int i = 0; i < reaching_frames_.length(); i++) {
delete reaching_frames_[i];
}
delete entry_frame_;
Reset();
}
void JumpTarget::Reset() {
reaching_frames_.Clear();
merge_labels_.Clear();
entry_frame_ = NULL;
entry_label_.Unuse();
is_bound_ = false;
is_linked_ = false;
}
void JumpTarget::ComputeEntryFrame(int mergable_elements) {
// Given: a collection of frames reaching by forward CFG edges and
// the directionality of the block. Compute: an entry frame for the
// block.
Counters::compute_entry_frame.Increment();
#ifdef DEBUG
if (compiling_deferred_code_) {
ASSERT(reaching_frames_.length() > 1);
VirtualFrame* frame = reaching_frames_[0];
bool all_identical = true;
for (int i = 1; i < reaching_frames_.length(); i++) {
if (!frame->Equals(reaching_frames_[i])) {
all_identical = false;
break;
}
}
ASSERT(!all_identical || all_identical);
}
#endif
// Choose an initial frame.
VirtualFrame* initial_frame = reaching_frames_[0];
// A list of pointers to frame elements in the entry frame. NULL
// indicates that the element has not yet been determined.
int length = initial_frame->elements_.length();
List<FrameElement*> elements(length);
// Convert the number of mergable elements (counted from the top
// down) to a frame high-water mark (counted from the bottom up).
// Elements strictly above the high-water index will be mergable in
// entry frames for bidirectional jump targets.
int high_water_mark = (mergable_elements == kAllElements)
? VirtualFrame::kIllegalIndex // All frame indices are above this.
: length - mergable_elements - 1; // Top index if m_e == 0.
// Initially populate the list of elements based on the initial
// frame.
for (int i = 0; i < length; i++) {
FrameElement element = initial_frame->elements_[i];
// We do not allow copies or constants in bidirectional frames. All
// elements above the water mark on bidirectional frames have
// unknown static types.
if (direction_ == BIDIRECTIONAL && i > high_water_mark) {
if (element.is_constant() || element.is_copy()) {
elements.Add(NULL);
continue;
}
// It's safe to change the static type on the initial frame
// element, see comment in JumpTarget::Combine.
initial_frame->elements_[i].set_static_type(StaticType::unknown());
}
elements.Add(&initial_frame->elements_[i]);
}
// Compute elements based on the other reaching frames.
if (reaching_frames_.length() > 1) {
for (int i = 0; i < length; i++) {
FrameElement* element = elements[i];
for (int j = 1; j < reaching_frames_.length(); j++) {
// Element computation is monotonic: new information will not
// change our decision about undetermined or invalid elements.
if (element == NULL || !element->is_valid()) break;
element = element->Combine(&reaching_frames_[j]->elements_[i]);
}
elements[i] = element;
}
}
// Build the new frame. A freshly allocated frame has memory elements
// for the parameters and some platform-dependent elements (e.g.,
// return address). Replace those first.
entry_frame_ = new VirtualFrame(cgen_);
int index = 0;
for (; index < entry_frame_->elements_.length(); index++) {
FrameElement* target = elements[index];
// If the element is determined, set it now. Count registers. Mark
// elements as copied exactly when they have a copy. Undetermined
// elements are initially recorded as if in memory.
if (target != NULL) {
entry_frame_->elements_[index] = *target;
entry_frame_->InitializeEntryElement(index, target);
}
}
// Then fill in the rest of the frame with new elements.
for (; index < length; index++) {
FrameElement* target = elements[index];
if (target == NULL) {
entry_frame_->elements_.Add(FrameElement::MemoryElement());
} else {
entry_frame_->elements_.Add(*target);
entry_frame_->InitializeEntryElement(index, target);
}
}
// Allocate any still-undetermined frame elements to registers or
// memory, from the top down.
for (int i = length - 1; i >= 0; i--) {
if (elements[i] == NULL) {
// Loop over all the reaching frames to check whether the element
// is synced on all frames, to count the registers it occupies,
// and to compute a merged static type.
bool is_synced = true;
RegisterFile candidate_registers;
int best_count = kMinInt;
int best_reg_code = no_reg.code_;
StaticType type; // Initially invalid.
if (direction_ != BIDIRECTIONAL || i < high_water_mark) {
type = reaching_frames_[0]->elements_[i].static_type();
}
for (int j = 0; j < reaching_frames_.length(); j++) {
FrameElement element = reaching_frames_[j]->elements_[i];
is_synced = is_synced && element.is_synced();
if (element.is_register() && !entry_frame_->is_used(element.reg())) {
// Count the register occurrence and remember it if better
// than the previous best.
candidate_registers.Use(element.reg());
if (candidate_registers.count(element.reg()) > best_count) {
best_count = candidate_registers.count(element.reg());
best_reg_code = element.reg().code();
}
}
type = type.merge(element.static_type());
}
// If the value is synced on all frames, put it in memory. This
// costs nothing at the merge code but will incur a
// memory-to-register move when the value is needed later.
if (is_synced) {
// Already recorded as a memory element.
entry_frame_->elements_[i].set_static_type(type);
continue;
}
// Try to put it in a register. If there was no best choice
// consider any free register.
if (best_reg_code == no_reg.code_) {
for (int j = 0; j < kNumRegisters; j++) {
if (!entry_frame_->is_used(j) && !RegisterAllocator::IsReserved(j)) {
best_reg_code = j;
break;
}
}
}
if (best_reg_code == no_reg.code_) {
// If there was no register found, the element is already
// recorded as in memory.
entry_frame_->elements_[i].set_static_type(type);
} else {
// If there was a register choice, use it. Preserve the copied
// flag on the element. Set the static type as computed.
bool is_copied = entry_frame_->elements_[i].is_copied();
Register reg = { best_reg_code };
entry_frame_->elements_[i] =
FrameElement::RegisterElement(reg,
FrameElement::NOT_SYNCED);
if (is_copied) entry_frame_->elements_[i].set_copied();
entry_frame_->elements_[i].set_static_type(type);
entry_frame_->register_locations_[best_reg_code] = i;
}
}
}
// Fill in the other fields of the entry frame.
entry_frame_->local_count_ = initial_frame->local_count_;
entry_frame_->frame_pointer_ = initial_frame->frame_pointer_;
// The stack pointer is at the highest synced element or the base of
// the expression stack.
int stack_pointer = length - 1;
while (stack_pointer >= entry_frame_->expression_base_index() &&
!entry_frame_->elements_[stack_pointer].is_synced()) {
stack_pointer--;
}
entry_frame_->stack_pointer_ = stack_pointer;
}
void JumpTarget::Jump() {
DoJump();
}
void JumpTarget::Jump(Result* arg) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
cgen_->frame()->Push(arg);
DoJump();
}
void JumpTarget::Jump(Result* arg0, Result* arg1) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
DoJump();
}
void JumpTarget::Jump(Result* arg0, Result* arg1, Result* arg2) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
cgen_->frame()->Push(arg2);
DoJump();
}
void JumpTarget::Branch(Condition cc, Hint hint) {
DoBranch(cc, hint);
}
#ifdef DEBUG
#define DECLARE_ARGCHECK_VARS(name) \
Result::Type name##_type = name->type(); \
Register name##_reg = name->is_register() ? name->reg() : no_reg
#define ASSERT_ARGCHECK(name) \
ASSERT(name->type() == name##_type); \
ASSERT(!name->is_register() || name->reg().is(name##_reg))
#else
#define DECLARE_ARGCHECK_VARS(name) do {} while (false)
#define ASSERT_ARGCHECK(name) do {} while (false)
#endif
void JumpTarget::Branch(Condition cc, Result* arg, Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
DECLARE_ARGCHECK_VARS(arg);
cgen_->frame()->Push(arg);
DoBranch(cc, hint);
*arg = cgen_->frame()->Pop();
ASSERT_ARGCHECK(arg);
}
void JumpTarget::Branch(Condition cc, Result* arg0, Result* arg1, Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->frame() != NULL);
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
DECLARE_ARGCHECK_VARS(arg0);
DECLARE_ARGCHECK_VARS(arg1);
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
DoBranch(cc, hint);
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
ASSERT_ARGCHECK(arg0);
ASSERT_ARGCHECK(arg1);
}
void JumpTarget::Branch(Condition cc,
Result* arg0,
Result* arg1,
Result* arg2,
Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->frame() != NULL);
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
DECLARE_ARGCHECK_VARS(arg0);
DECLARE_ARGCHECK_VARS(arg1);
DECLARE_ARGCHECK_VARS(arg2);
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
cgen_->frame()->Push(arg2);
DoBranch(cc, hint);
*arg2 = cgen_->frame()->Pop();
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
ASSERT_ARGCHECK(arg0);
ASSERT_ARGCHECK(arg1);
ASSERT_ARGCHECK(arg2);
}
void JumpTarget::Branch(Condition cc,
Result* arg0,
Result* arg1,
Result* arg2,
Result* arg3,
Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->frame() != NULL);
// We want to check that non-frame registers at the call site stay in
// the same registers on the fall-through branch.
DECLARE_ARGCHECK_VARS(arg0);
DECLARE_ARGCHECK_VARS(arg1);
DECLARE_ARGCHECK_VARS(arg2);
DECLARE_ARGCHECK_VARS(arg3);
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
cgen_->frame()->Push(arg2);
cgen_->frame()->Push(arg3);
DoBranch(cc, hint);
*arg3 = cgen_->frame()->Pop();
*arg2 = cgen_->frame()->Pop();
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
ASSERT_ARGCHECK(arg0);
ASSERT_ARGCHECK(arg1);
ASSERT_ARGCHECK(arg2);
ASSERT_ARGCHECK(arg3);
}
void BreakTarget::Branch(Condition cc, Result* arg, Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
int count = cgen_->frame()->height() - expected_height_;
if (count > 0) {
// We negate and branch here rather than using DoBranch's negate
// and branch. This gives us a hook to remove statement state
// from the frame.
JumpTarget fall_through(cgen_);
// Branch to fall through will not negate, because it is a
// forward-only target.
fall_through.Branch(NegateCondition(cc), NegateHint(hint));
Jump(arg); // May emit merge code here.
fall_through.Bind();
} else {
DECLARE_ARGCHECK_VARS(arg);
cgen_->frame()->Push(arg);
DoBranch(cc, hint);
*arg = cgen_->frame()->Pop();
ASSERT_ARGCHECK(arg);
}
}
#undef DECLARE_ARGCHECK_VARS
#undef ASSERT_ARGCHECK
void JumpTarget::Bind(int mergable_elements) {
DoBind(mergable_elements);
}
void JumpTarget::Bind(Result* arg, int mergable_elements) {
ASSERT(cgen_ != NULL);
if (cgen_->has_valid_frame()) {
cgen_->frame()->Push(arg);
}
DoBind(mergable_elements);
*arg = cgen_->frame()->Pop();
}
void JumpTarget::Bind(Result* arg0, Result* arg1, int mergable_elements) {
ASSERT(cgen_ != NULL);
if (cgen_->has_valid_frame()) {
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
}
DoBind(mergable_elements);
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
}
void JumpTarget::Bind(Result* arg0,
Result* arg1,
Result* arg2,
int mergable_elements) {
ASSERT(cgen_ != NULL);
if (cgen_->has_valid_frame()) {
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
cgen_->frame()->Push(arg2);
}
DoBind(mergable_elements);
*arg2 = cgen_->frame()->Pop();
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
}
void JumpTarget::Bind(Result* arg0,
Result* arg1,
Result* arg2,
Result* arg3,
int mergable_elements) {
ASSERT(cgen_ != NULL);
if (cgen_->has_valid_frame()) {
cgen_->frame()->Push(arg0);
cgen_->frame()->Push(arg1);
cgen_->frame()->Push(arg2);
cgen_->frame()->Push(arg3);
}
DoBind(mergable_elements);
*arg3 = cgen_->frame()->Pop();
*arg2 = cgen_->frame()->Pop();
*arg1 = cgen_->frame()->Pop();
*arg0 = cgen_->frame()->Pop();
}
void JumpTarget::AddReachingFrame(VirtualFrame* frame) {
ASSERT(reaching_frames_.length() == merge_labels_.length());
ASSERT(entry_frame_ == NULL);
Label fresh;
merge_labels_.Add(fresh);
reaching_frames_.Add(frame);
}
// -------------------------------------------------------------------------
// BreakTarget implementation.
void BreakTarget::Initialize(CodeGenerator* cgen, Directionality direction) {
JumpTarget::Initialize(cgen, direction);
ASSERT(cgen_->has_valid_frame());
expected_height_ = cgen_->frame()->height();
}
void BreakTarget::CopyTo(BreakTarget* destination) {
ASSERT(destination != NULL);
destination->cgen_ = cgen_;
destination->masm_ = masm_;
destination->direction_ = direction_;
destination->reaching_frames_.Clear();
destination->merge_labels_.Clear();
ASSERT(reaching_frames_.length() == merge_labels_.length());
for (int i = 0; i < reaching_frames_.length(); i++) {
destination->reaching_frames_.Add(reaching_frames_[i]);
destination->merge_labels_.Add(merge_labels_[i]);
}
destination->entry_frame_ = entry_frame_;
destination->entry_label_ = entry_label_;
destination->is_bound_ = is_bound_;
destination->is_linked_ = is_linked_;
destination->expected_height_ = expected_height_;
}
void BreakTarget::Jump() {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
// Drop leftover statement state from the frame before merging.
cgen_->frame()->ForgetElements(cgen_->frame()->height() - expected_height_);
DoJump();
}
void BreakTarget::Jump(Result* arg) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
// Drop leftover statement state from the frame before merging.
cgen_->frame()->ForgetElements(cgen_->frame()->height() - expected_height_);
cgen_->frame()->Push(arg);
DoJump();
}
void BreakTarget::Branch(Condition cc, Hint hint) {
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
int count = cgen_->frame()->height() - expected_height_;
if (count > 0) {
// We negate and branch here rather than using DoBranch's negate
// and branch. This gives us a hook to remove statement state
// from the frame.
JumpTarget fall_through(cgen_);
// Branch to fall through will not negate, because it is a
// forward-only target.
fall_through.Branch(NegateCondition(cc), NegateHint(hint));
Jump(); // May emit merge code here.
fall_through.Bind();
} else {
DoBranch(cc, hint);
}
}
void BreakTarget::Bind(int mergable_elements) {
#ifdef DEBUG
ASSERT(cgen_ != NULL);
// All the forward-reaching frames should have been adjusted at the
// jumps to this target.
for (int i = 0; i < reaching_frames_.length(); i++) {
ASSERT(reaching_frames_[i] == NULL ||
reaching_frames_[i]->height() == expected_height_);
}
#endif
// Drop leftover statement state from the frame before merging, even
// on the fall through. This is so we can bind the return target
// with state on the frame.
if (cgen_->has_valid_frame()) {
cgen_->frame()->ForgetElements(cgen_->frame()->height() - expected_height_);
}
DoBind(mergable_elements);
}
void BreakTarget::Bind(Result* arg, int mergable_elements) {
#ifdef DEBUG
ASSERT(cgen_ != NULL);
// All the forward-reaching frames should have been adjusted at the
// jumps to this target.
for (int i = 0; i < reaching_frames_.length(); i++) {
ASSERT(reaching_frames_[i] == NULL ||
reaching_frames_[i]->height() == expected_height_ + 1);
}
#endif
// Drop leftover statement state from the frame before merging, even
// on the fall through. This is so we can bind the return target
// with state on the frame.
if (cgen_->has_valid_frame()) {
cgen_->frame()->ForgetElements(cgen_->frame()->height() - expected_height_);
cgen_->frame()->Push(arg);
}
DoBind(mergable_elements);
*arg = cgen_->frame()->Pop();
}
// -------------------------------------------------------------------------
// ShadowTarget implementation.
ShadowTarget::ShadowTarget(BreakTarget* shadowed) {
ASSERT(shadowed != NULL);
other_target_ = shadowed;
#ifdef DEBUG
is_shadowing_ = true;
#endif
// While shadowing this shadow target saves the state of the original.
shadowed->CopyTo(this);
// The original's state is reset. We do not Unuse it because that
// would delete the expected frame and assert that the target is not
// linked.
shadowed->Reset();
ASSERT(cgen_ != NULL);
ASSERT(cgen_->has_valid_frame());
shadowed->set_expected_height(cgen_->frame()->height());
// Setting the code generator to null prevents the shadow target from
// being used until shadowing stops.
cgen_ = NULL;
masm_ = NULL;
}
void ShadowTarget::StopShadowing() {
ASSERT(is_shadowing_);
// This target does not have a valid code generator yet.
cgen_ = other_target_->code_generator();
ASSERT(cgen_ != NULL);
masm_ = cgen_->masm();
// The states of this target, which was shadowed, and the original
// target, which was shadowing, are swapped.
BreakTarget temp;
other_target_->CopyTo(&temp);
CopyTo(other_target_);
temp.CopyTo(this);
temp.Reset(); // So the destructor does not deallocate virtual frames.
#ifdef DEBUG
is_shadowing_ = false;
#endif
}
} } // namespace v8::internal