3ea4ca9dbf
BUG=v8:3629 LOG=N Review URL: https://codereview.chromium.org/877243004 Cr-Commit-Position: refs/heads/master@{#26358}
1554 lines
61 KiB
C++
1554 lines
61 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
|
|
#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
|
|
|
|
#include "src/assembler.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/frames.h"
|
|
#include "src/globals.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Static helper functions
|
|
|
|
// Generate a MemOperand for loading a field from an object.
|
|
inline MemOperand FieldMemOperand(Register object, int offset) {
|
|
return MemOperand(object, offset - kHeapObjectTag);
|
|
}
|
|
|
|
|
|
// Give alias names to registers
|
|
const Register cp = { kRegister_r7_Code }; // JavaScript context pointer.
|
|
const Register pp = { kRegister_r8_Code }; // Constant pool pointer.
|
|
const Register kRootRegister = { kRegister_r10_Code }; // Roots array pointer.
|
|
|
|
// Flags used for AllocateHeapNumber
|
|
enum TaggingMode {
|
|
// Tag the result.
|
|
TAG_RESULT,
|
|
// Don't tag
|
|
DONT_TAG_RESULT
|
|
};
|
|
|
|
|
|
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
|
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
|
enum PointersToHereCheck {
|
|
kPointersToHereMaybeInteresting,
|
|
kPointersToHereAreAlwaysInteresting
|
|
};
|
|
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
|
|
|
|
|
|
Register GetRegisterThatIsNotOneOf(Register reg1,
|
|
Register reg2 = no_reg,
|
|
Register reg3 = no_reg,
|
|
Register reg4 = no_reg,
|
|
Register reg5 = no_reg,
|
|
Register reg6 = no_reg);
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool AreAliased(Register reg1,
|
|
Register reg2,
|
|
Register reg3 = no_reg,
|
|
Register reg4 = no_reg,
|
|
Register reg5 = no_reg,
|
|
Register reg6 = no_reg,
|
|
Register reg7 = no_reg,
|
|
Register reg8 = no_reg);
|
|
#endif
|
|
|
|
|
|
enum TargetAddressStorageMode {
|
|
CAN_INLINE_TARGET_ADDRESS,
|
|
NEVER_INLINE_TARGET_ADDRESS
|
|
};
|
|
|
|
// MacroAssembler implements a collection of frequently used macros.
|
|
class MacroAssembler: public Assembler {
|
|
public:
|
|
// The isolate parameter can be NULL if the macro assembler should
|
|
// not use isolate-dependent functionality. In this case, it's the
|
|
// responsibility of the caller to never invoke such function on the
|
|
// macro assembler.
|
|
MacroAssembler(Isolate* isolate, void* buffer, int size);
|
|
|
|
|
|
// Returns the size of a call in instructions. Note, the value returned is
|
|
// only valid as long as no entries are added to the constant pool between
|
|
// checking the call size and emitting the actual call.
|
|
static int CallSize(Register target, Condition cond = al);
|
|
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
|
|
int CallStubSize(CodeStub* stub,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
static int CallSizeNotPredictableCodeSize(Isolate* isolate,
|
|
Address target,
|
|
RelocInfo::Mode rmode,
|
|
Condition cond = al);
|
|
|
|
// Jump, Call, and Ret pseudo instructions implementing inter-working.
|
|
void Jump(Register target, Condition cond = al);
|
|
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
|
|
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
|
|
void Call(Register target, Condition cond = al);
|
|
void Call(Address target, RelocInfo::Mode rmode,
|
|
Condition cond = al,
|
|
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
|
|
int CallSize(Handle<Code> code,
|
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
void Call(Handle<Code> code,
|
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al,
|
|
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
|
|
void Ret(Condition cond = al);
|
|
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
|
// from the stack, clobbering only the sp register.
|
|
void Drop(int count, Condition cond = al);
|
|
|
|
void Ret(int drop, Condition cond = al);
|
|
|
|
// Swap two registers. If the scratch register is omitted then a slightly
|
|
// less efficient form using xor instead of mov is emitted.
|
|
void Swap(Register reg1,
|
|
Register reg2,
|
|
Register scratch = no_reg,
|
|
Condition cond = al);
|
|
|
|
void Mls(Register dst, Register src1, Register src2, Register srcA,
|
|
Condition cond = al);
|
|
void And(Register dst, Register src1, const Operand& src2,
|
|
Condition cond = al);
|
|
void Ubfx(Register dst, Register src, int lsb, int width,
|
|
Condition cond = al);
|
|
void Sbfx(Register dst, Register src, int lsb, int width,
|
|
Condition cond = al);
|
|
// The scratch register is not used for ARMv7.
|
|
// scratch can be the same register as src (in which case it is trashed), but
|
|
// not the same as dst.
|
|
void Bfi(Register dst,
|
|
Register src,
|
|
Register scratch,
|
|
int lsb,
|
|
int width,
|
|
Condition cond = al);
|
|
void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
|
|
void Usat(Register dst, int satpos, const Operand& src,
|
|
Condition cond = al);
|
|
|
|
void Call(Label* target);
|
|
void Push(Register src) { push(src); }
|
|
void Pop(Register dst) { pop(dst); }
|
|
|
|
// Register move. May do nothing if the registers are identical.
|
|
void Move(Register dst, Handle<Object> value);
|
|
void Move(Register dst, Register src, Condition cond = al);
|
|
void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
|
|
Condition cond = al) {
|
|
if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
|
|
mov(dst, src, sbit, cond);
|
|
}
|
|
}
|
|
void Move(DwVfpRegister dst, DwVfpRegister src);
|
|
|
|
void Load(Register dst, const MemOperand& src, Representation r);
|
|
void Store(Register src, const MemOperand& dst, Representation r);
|
|
|
|
// Load an object from the root table.
|
|
void LoadRoot(Register destination,
|
|
Heap::RootListIndex index,
|
|
Condition cond = al);
|
|
// Store an object to the root table.
|
|
void StoreRoot(Register source,
|
|
Heap::RootListIndex index,
|
|
Condition cond = al);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// GC Support
|
|
|
|
void IncrementalMarkingRecordWriteHelper(Register object,
|
|
Register value,
|
|
Register address);
|
|
|
|
enum RememberedSetFinalAction {
|
|
kReturnAtEnd,
|
|
kFallThroughAtEnd
|
|
};
|
|
|
|
// Record in the remembered set the fact that we have a pointer to new space
|
|
// at the address pointed to by the addr register. Only works if addr is not
|
|
// in new space.
|
|
void RememberedSetHelper(Register object, // Used for debug code.
|
|
Register addr,
|
|
Register scratch,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetFinalAction and_then);
|
|
|
|
void CheckPageFlag(Register object,
|
|
Register scratch,
|
|
int mask,
|
|
Condition cc,
|
|
Label* condition_met);
|
|
|
|
// Check if object is in new space. Jumps if the object is not in new space.
|
|
// The register scratch can be object itself, but scratch will be clobbered.
|
|
void JumpIfNotInNewSpace(Register object,
|
|
Register scratch,
|
|
Label* branch) {
|
|
InNewSpace(object, scratch, ne, branch);
|
|
}
|
|
|
|
// Check if object is in new space. Jumps if the object is in new space.
|
|
// The register scratch can be object itself, but it will be clobbered.
|
|
void JumpIfInNewSpace(Register object,
|
|
Register scratch,
|
|
Label* branch) {
|
|
InNewSpace(object, scratch, eq, branch);
|
|
}
|
|
|
|
// Check if an object has a given incremental marking color.
|
|
void HasColor(Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* has_color,
|
|
int first_bit,
|
|
int second_bit);
|
|
|
|
void JumpIfBlack(Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* on_black);
|
|
|
|
// Checks the color of an object. If the object is already grey or black
|
|
// then we just fall through, since it is already live. If it is white and
|
|
// we can determine that it doesn't need to be scanned, then we just mark it
|
|
// black and fall through. For the rest we jump to the label so the
|
|
// incremental marker can fix its assumptions.
|
|
void EnsureNotWhite(Register object,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* object_is_white_and_not_data);
|
|
|
|
// Detects conservatively whether an object is data-only, i.e. it does need to
|
|
// be scanned by the garbage collector.
|
|
void JumpIfDataObject(Register value,
|
|
Register scratch,
|
|
Label* not_data_object);
|
|
|
|
// Notify the garbage collector that we wrote a pointer into an object.
|
|
// |object| is the object being stored into, |value| is the object being
|
|
// stored. value and scratch registers are clobbered by the operation.
|
|
// The offset is the offset from the start of the object, not the offset from
|
|
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
|
|
void RecordWriteField(
|
|
Register object,
|
|
int offset,
|
|
Register value,
|
|
Register scratch,
|
|
LinkRegisterStatus lr_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting);
|
|
|
|
// As above, but the offset has the tag presubtracted. For use with
|
|
// MemOperand(reg, off).
|
|
inline void RecordWriteContextSlot(
|
|
Register context,
|
|
int offset,
|
|
Register value,
|
|
Register scratch,
|
|
LinkRegisterStatus lr_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting) {
|
|
RecordWriteField(context,
|
|
offset + kHeapObjectTag,
|
|
value,
|
|
scratch,
|
|
lr_status,
|
|
save_fp,
|
|
remembered_set_action,
|
|
smi_check,
|
|
pointers_to_here_check_for_value);
|
|
}
|
|
|
|
void RecordWriteForMap(
|
|
Register object,
|
|
Register map,
|
|
Register dst,
|
|
LinkRegisterStatus lr_status,
|
|
SaveFPRegsMode save_fp);
|
|
|
|
// For a given |object| notify the garbage collector that the slot |address|
|
|
// has been written. |value| is the object being stored. The value and
|
|
// address registers are clobbered by the operation.
|
|
void RecordWrite(
|
|
Register object,
|
|
Register address,
|
|
Register value,
|
|
LinkRegisterStatus lr_status,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting);
|
|
|
|
// Push a handle.
|
|
void Push(Handle<Object> handle);
|
|
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
|
|
|
|
// Push two registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
if (src1.code() > src2.code()) {
|
|
stm(db_w, sp, src1.bit() | src2.bit(), cond);
|
|
} else {
|
|
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
|
|
str(src2, MemOperand(sp, 4, NegPreIndex), cond);
|
|
}
|
|
}
|
|
|
|
// Push three registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3, Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
DCHECK(!src2.is(src3));
|
|
DCHECK(!src1.is(src3));
|
|
if (src1.code() > src2.code()) {
|
|
if (src2.code() > src3.code()) {
|
|
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
|
|
} else {
|
|
stm(db_w, sp, src1.bit() | src2.bit(), cond);
|
|
str(src3, MemOperand(sp, 4, NegPreIndex), cond);
|
|
}
|
|
} else {
|
|
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
|
|
Push(src2, src3, cond);
|
|
}
|
|
}
|
|
|
|
// Push four registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1,
|
|
Register src2,
|
|
Register src3,
|
|
Register src4,
|
|
Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
DCHECK(!src2.is(src3));
|
|
DCHECK(!src1.is(src3));
|
|
DCHECK(!src1.is(src4));
|
|
DCHECK(!src2.is(src4));
|
|
DCHECK(!src3.is(src4));
|
|
if (src1.code() > src2.code()) {
|
|
if (src2.code() > src3.code()) {
|
|
if (src3.code() > src4.code()) {
|
|
stm(db_w,
|
|
sp,
|
|
src1.bit() | src2.bit() | src3.bit() | src4.bit(),
|
|
cond);
|
|
} else {
|
|
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
|
|
str(src4, MemOperand(sp, 4, NegPreIndex), cond);
|
|
}
|
|
} else {
|
|
stm(db_w, sp, src1.bit() | src2.bit(), cond);
|
|
Push(src3, src4, cond);
|
|
}
|
|
} else {
|
|
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
|
|
Push(src2, src3, src4, cond);
|
|
}
|
|
}
|
|
|
|
// Pop two registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
if (src1.code() > src2.code()) {
|
|
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
|
|
} else {
|
|
ldr(src2, MemOperand(sp, 4, PostIndex), cond);
|
|
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
|
|
}
|
|
}
|
|
|
|
// Pop three registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
DCHECK(!src2.is(src3));
|
|
DCHECK(!src1.is(src3));
|
|
if (src1.code() > src2.code()) {
|
|
if (src2.code() > src3.code()) {
|
|
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
|
|
} else {
|
|
ldr(src3, MemOperand(sp, 4, PostIndex), cond);
|
|
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
|
|
}
|
|
} else {
|
|
Pop(src2, src3, cond);
|
|
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
|
|
}
|
|
}
|
|
|
|
// Pop four registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1,
|
|
Register src2,
|
|
Register src3,
|
|
Register src4,
|
|
Condition cond = al) {
|
|
DCHECK(!src1.is(src2));
|
|
DCHECK(!src2.is(src3));
|
|
DCHECK(!src1.is(src3));
|
|
DCHECK(!src1.is(src4));
|
|
DCHECK(!src2.is(src4));
|
|
DCHECK(!src3.is(src4));
|
|
if (src1.code() > src2.code()) {
|
|
if (src2.code() > src3.code()) {
|
|
if (src3.code() > src4.code()) {
|
|
ldm(ia_w,
|
|
sp,
|
|
src1.bit() | src2.bit() | src3.bit() | src4.bit(),
|
|
cond);
|
|
} else {
|
|
ldr(src4, MemOperand(sp, 4, PostIndex), cond);
|
|
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
|
|
}
|
|
} else {
|
|
Pop(src3, src4, cond);
|
|
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
|
|
}
|
|
} else {
|
|
Pop(src2, src3, src4, cond);
|
|
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
|
|
}
|
|
}
|
|
|
|
// Push a fixed frame, consisting of lr, fp, constant pool (if
|
|
// FLAG_enable_ool_constant_pool), context and JS function / marker id if
|
|
// marker_reg is a valid register.
|
|
void PushFixedFrame(Register marker_reg = no_reg);
|
|
void PopFixedFrame(Register marker_reg = no_reg);
|
|
|
|
// Push and pop the registers that can hold pointers, as defined by the
|
|
// RegList constant kSafepointSavedRegisters.
|
|
void PushSafepointRegisters();
|
|
void PopSafepointRegisters();
|
|
// Store value in register src in the safepoint stack slot for
|
|
// register dst.
|
|
void StoreToSafepointRegisterSlot(Register src, Register dst);
|
|
// Load the value of the src register from its safepoint stack slot
|
|
// into register dst.
|
|
void LoadFromSafepointRegisterSlot(Register dst, Register src);
|
|
|
|
// Load two consecutive registers with two consecutive memory locations.
|
|
void Ldrd(Register dst1,
|
|
Register dst2,
|
|
const MemOperand& src,
|
|
Condition cond = al);
|
|
|
|
// Store two consecutive registers to two consecutive memory locations.
|
|
void Strd(Register src1,
|
|
Register src2,
|
|
const MemOperand& dst,
|
|
Condition cond = al);
|
|
|
|
// Ensure that FPSCR contains values needed by JavaScript.
|
|
// We need the NaNModeControlBit to be sure that operations like
|
|
// vadd and vsub generate the Canonical NaN (if a NaN must be generated).
|
|
// In VFP3 it will be always the Canonical NaN.
|
|
// In VFP2 it will be either the Canonical NaN or the negative version
|
|
// of the Canonical NaN. It doesn't matter if we have two values. The aim
|
|
// is to be sure to never generate the hole NaN.
|
|
void VFPEnsureFPSCRState(Register scratch);
|
|
|
|
// If the value is a NaN, canonicalize the value else, do nothing.
|
|
void VFPCanonicalizeNaN(const DwVfpRegister dst,
|
|
const DwVfpRegister src,
|
|
const Condition cond = al);
|
|
void VFPCanonicalizeNaN(const DwVfpRegister value,
|
|
const Condition cond = al) {
|
|
VFPCanonicalizeNaN(value, value, cond);
|
|
}
|
|
|
|
// Compare double values and move the result to the normal condition flags.
|
|
void VFPCompareAndSetFlags(const DwVfpRegister src1,
|
|
const DwVfpRegister src2,
|
|
const Condition cond = al);
|
|
void VFPCompareAndSetFlags(const DwVfpRegister src1,
|
|
const double src2,
|
|
const Condition cond = al);
|
|
|
|
// Compare double values and then load the fpscr flags to a register.
|
|
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
|
|
const DwVfpRegister src2,
|
|
const Register fpscr_flags,
|
|
const Condition cond = al);
|
|
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
|
|
const double src2,
|
|
const Register fpscr_flags,
|
|
const Condition cond = al);
|
|
|
|
void Vmov(const DwVfpRegister dst,
|
|
const double imm,
|
|
const Register scratch = no_reg);
|
|
|
|
void VmovHigh(Register dst, DwVfpRegister src);
|
|
void VmovHigh(DwVfpRegister dst, Register src);
|
|
void VmovLow(Register dst, DwVfpRegister src);
|
|
void VmovLow(DwVfpRegister dst, Register src);
|
|
|
|
// Loads the number from object into dst register.
|
|
// If |object| is neither smi nor heap number, |not_number| is jumped to
|
|
// with |object| still intact.
|
|
void LoadNumber(Register object,
|
|
LowDwVfpRegister dst,
|
|
Register heap_number_map,
|
|
Register scratch,
|
|
Label* not_number);
|
|
|
|
// Loads the number from object into double_dst in the double format.
|
|
// Control will jump to not_int32 if the value cannot be exactly represented
|
|
// by a 32-bit integer.
|
|
// Floating point value in the 32-bit integer range that are not exact integer
|
|
// won't be loaded.
|
|
void LoadNumberAsInt32Double(Register object,
|
|
DwVfpRegister double_dst,
|
|
Register heap_number_map,
|
|
Register scratch,
|
|
LowDwVfpRegister double_scratch,
|
|
Label* not_int32);
|
|
|
|
// Loads the number from object into dst as a 32-bit integer.
|
|
// Control will jump to not_int32 if the object cannot be exactly represented
|
|
// by a 32-bit integer.
|
|
// Floating point value in the 32-bit integer range that are not exact integer
|
|
// won't be converted.
|
|
void LoadNumberAsInt32(Register object,
|
|
Register dst,
|
|
Register heap_number_map,
|
|
Register scratch,
|
|
DwVfpRegister double_scratch0,
|
|
LowDwVfpRegister double_scratch1,
|
|
Label* not_int32);
|
|
|
|
// Generates function and stub prologue code.
|
|
void StubPrologue();
|
|
void Prologue(bool code_pre_aging);
|
|
|
|
// Enter exit frame.
|
|
// stack_space - extra stack space, used for alignment before call to C.
|
|
void EnterExitFrame(bool save_doubles, int stack_space = 0);
|
|
|
|
// Leave the current exit frame. Expects the return value in r0.
|
|
// Expect the number of values, pushed prior to the exit frame, to
|
|
// remove in a register (or no_reg, if there is nothing to remove).
|
|
void LeaveExitFrame(bool save_doubles, Register argument_count,
|
|
bool restore_context,
|
|
bool argument_count_is_length = false);
|
|
|
|
// Get the actual activation frame alignment for target environment.
|
|
static int ActivationFrameAlignment();
|
|
|
|
void LoadContext(Register dst, int context_chain_length);
|
|
|
|
// Conditionally load the cached Array transitioned map of type
|
|
// transitioned_kind from the native context if the map in register
|
|
// map_in_out is the cached Array map in the native context of
|
|
// expected_kind.
|
|
void LoadTransitionedArrayMapConditional(
|
|
ElementsKind expected_kind,
|
|
ElementsKind transitioned_kind,
|
|
Register map_in_out,
|
|
Register scratch,
|
|
Label* no_map_match);
|
|
|
|
void LoadGlobalFunction(int index, Register function);
|
|
|
|
// Load the initial map from the global function. The registers
|
|
// function and map can be the same, function is then overwritten.
|
|
void LoadGlobalFunctionInitialMap(Register function,
|
|
Register map,
|
|
Register scratch);
|
|
|
|
void InitializeRootRegister() {
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(kRootRegister, Operand(roots_array_start));
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// JavaScript invokes
|
|
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
|
void InvokeCode(Register code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
// Invoke the JavaScript function in the given register. Changes the
|
|
// current context to the context in the function before invoking.
|
|
void InvokeFunction(Register function,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InvokeFunction(Register function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InvokeFunction(Handle<JSFunction> function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void IsObjectJSObjectType(Register heap_object,
|
|
Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsInstanceJSObjectType(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsObjectJSStringType(Register object,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
void IsObjectNameType(Register object,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Debugger Support
|
|
|
|
void DebugBreak();
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Exception handling
|
|
|
|
// Push a new try handler and link into try handler chain.
|
|
void PushTryHandler(StackHandler::Kind kind, int handler_index);
|
|
|
|
// Unlink the stack handler on top of the stack from the try handler chain.
|
|
// Must preserve the result register.
|
|
void PopTryHandler();
|
|
|
|
// Passes thrown value to the handler of top of the try handler chain.
|
|
void Throw(Register value);
|
|
|
|
// Propagates an uncatchable exception to the top of the current JS stack's
|
|
// handler chain.
|
|
void ThrowUncatchable(Register value);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Inline caching support
|
|
|
|
// Generate code for checking access rights - used for security checks
|
|
// on access to global objects across environments. The holder register
|
|
// is left untouched, whereas both scratch registers are clobbered.
|
|
void CheckAccessGlobalProxy(Register holder_reg,
|
|
Register scratch,
|
|
Label* miss);
|
|
|
|
void GetNumberHash(Register t0, Register scratch);
|
|
|
|
void LoadFromNumberDictionary(Label* miss,
|
|
Register elements,
|
|
Register key,
|
|
Register result,
|
|
Register t0,
|
|
Register t1,
|
|
Register t2);
|
|
|
|
|
|
inline void MarkCode(NopMarkerTypes type) {
|
|
nop(type);
|
|
}
|
|
|
|
// Check if the given instruction is a 'type' marker.
|
|
// i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
|
|
// These instructions are generated to mark special location in the code,
|
|
// like some special IC code.
|
|
static inline bool IsMarkedCode(Instr instr, int type) {
|
|
DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
|
|
return IsNop(instr, type);
|
|
}
|
|
|
|
|
|
static inline int GetCodeMarker(Instr instr) {
|
|
int dst_reg_offset = 12;
|
|
int dst_mask = 0xf << dst_reg_offset;
|
|
int src_mask = 0xf;
|
|
int dst_reg = (instr & dst_mask) >> dst_reg_offset;
|
|
int src_reg = instr & src_mask;
|
|
uint32_t non_register_mask = ~(dst_mask | src_mask);
|
|
uint32_t mov_mask = al | 13 << 21;
|
|
|
|
// Return <n> if we have a mov rn rn, else return -1.
|
|
int type = ((instr & non_register_mask) == mov_mask) &&
|
|
(dst_reg == src_reg) &&
|
|
(FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
|
|
? src_reg
|
|
: -1;
|
|
DCHECK((type == -1) ||
|
|
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
|
|
return type;
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Allocation support
|
|
|
|
// Allocate an object in new space or old pointer space. The object_size is
|
|
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
|
|
// is passed. If the space is exhausted control continues at the gc_required
|
|
// label. The allocated object is returned in result. If the flag
|
|
// tag_allocated_object is true the result is tagged as as a heap object.
|
|
// All registers are clobbered also when control continues at the gc_required
|
|
// label.
|
|
void Allocate(int object_size,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required,
|
|
AllocationFlags flags);
|
|
|
|
void Allocate(Register object_size,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required,
|
|
AllocationFlags flags);
|
|
|
|
// Undo allocation in new space. The object passed and objects allocated after
|
|
// it will no longer be allocated. The caller must make sure that no pointers
|
|
// are left to the object(s) no longer allocated as they would be invalid when
|
|
// allocation is undone.
|
|
void UndoAllocationInNewSpace(Register object, Register scratch);
|
|
|
|
|
|
void AllocateTwoByteString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required);
|
|
void AllocateOneByteString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Register scratch3, Label* gc_required);
|
|
void AllocateTwoByteConsString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateOneByteConsString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateTwoByteSlicedString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateOneByteSlicedString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
|
|
// Allocates a heap number or jumps to the gc_required label if the young
|
|
// space is full and a scavenge is needed. All registers are clobbered also
|
|
// when control continues at the gc_required label.
|
|
void AllocateHeapNumber(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register heap_number_map,
|
|
Label* gc_required,
|
|
TaggingMode tagging_mode = TAG_RESULT,
|
|
MutableMode mode = IMMUTABLE);
|
|
void AllocateHeapNumberWithValue(Register result,
|
|
DwVfpRegister value,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register heap_number_map,
|
|
Label* gc_required);
|
|
|
|
// Copies a fixed number of fields of heap objects from src to dst.
|
|
void CopyFields(Register dst,
|
|
Register src,
|
|
LowDwVfpRegister double_scratch,
|
|
int field_count);
|
|
|
|
// Copies a number of bytes from src to dst. All registers are clobbered. On
|
|
// exit src and dst will point to the place just after where the last byte was
|
|
// read or written and length will be zero.
|
|
void CopyBytes(Register src,
|
|
Register dst,
|
|
Register length,
|
|
Register scratch);
|
|
|
|
// Initialize fields with filler values. Fields starting at |start_offset|
|
|
// not including end_offset are overwritten with the value in |filler|. At
|
|
// the end the loop, |start_offset| takes the value of |end_offset|.
|
|
void InitializeFieldsWithFiller(Register start_offset,
|
|
Register end_offset,
|
|
Register filler);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Support functions.
|
|
|
|
// Try to get function prototype of a function and puts the value in
|
|
// the result register. Checks that the function really is a
|
|
// function and jumps to the miss label if the fast checks fail. The
|
|
// function register will be untouched; the other registers may be
|
|
// clobbered.
|
|
void TryGetFunctionPrototype(Register function,
|
|
Register result,
|
|
Register scratch,
|
|
Label* miss,
|
|
bool miss_on_bound_function = false);
|
|
|
|
// Compare object type for heap object. heap_object contains a non-Smi
|
|
// whose object type should be compared with the given type. This both
|
|
// sets the flags and leaves the object type in the type_reg register.
|
|
// It leaves the map in the map register (unless the type_reg and map register
|
|
// are the same register). It leaves the heap object in the heap_object
|
|
// register unless the heap_object register is the same register as one of the
|
|
// other registers.
|
|
// Type_reg can be no_reg. In that case ip is used.
|
|
void CompareObjectType(Register heap_object,
|
|
Register map,
|
|
Register type_reg,
|
|
InstanceType type);
|
|
|
|
// Compare object type for heap object. Branch to false_label if type
|
|
// is lower than min_type or greater than max_type.
|
|
// Load map into the register map.
|
|
void CheckObjectTypeRange(Register heap_object,
|
|
Register map,
|
|
InstanceType min_type,
|
|
InstanceType max_type,
|
|
Label* false_label);
|
|
|
|
// Compare instance type in a map. map contains a valid map object whose
|
|
// object type should be compared with the given type. This both
|
|
// sets the flags and leaves the object type in the type_reg register.
|
|
void CompareInstanceType(Register map,
|
|
Register type_reg,
|
|
InstanceType type);
|
|
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast elements.
|
|
// Jump to the specified label if it does not.
|
|
void CheckFastElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object can have both smi
|
|
// and HeapObject elements. Jump to the specified label if it does not.
|
|
void CheckFastObjectElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast smi only
|
|
// elements. Jump to the specified label if it does not.
|
|
void CheckFastSmiElements(Register map,
|
|
Register scratch,
|
|
Label* fail);
|
|
|
|
// Check to see if maybe_number can be stored as a double in
|
|
// FastDoubleElements. If it can, store it at the index specified by key in
|
|
// the FastDoubleElements array elements. Otherwise jump to fail.
|
|
void StoreNumberToDoubleElements(Register value_reg,
|
|
Register key_reg,
|
|
Register elements_reg,
|
|
Register scratch1,
|
|
LowDwVfpRegister double_scratch,
|
|
Label* fail,
|
|
int elements_offset = 0);
|
|
|
|
// Compare an object's map with the specified map and its transitioned
|
|
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
|
|
// set with result of map compare. If multiple map compares are required, the
|
|
// compare sequences branches to early_success.
|
|
void CompareMap(Register obj,
|
|
Register scratch,
|
|
Handle<Map> map,
|
|
Label* early_success);
|
|
|
|
// As above, but the map of the object is already loaded into the register
|
|
// which is preserved by the code generated.
|
|
void CompareMap(Register obj_map,
|
|
Handle<Map> map,
|
|
Label* early_success);
|
|
|
|
// Check if the map of an object is equal to a specified map and branch to
|
|
// label if not. Skip the smi check if not required (object is known to be a
|
|
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
|
|
// against maps that are ElementsKind transition maps of the specified map.
|
|
void CheckMap(Register obj,
|
|
Register scratch,
|
|
Handle<Map> map,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type);
|
|
|
|
|
|
void CheckMap(Register obj,
|
|
Register scratch,
|
|
Heap::RootListIndex index,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type);
|
|
|
|
|
|
// Check if the map of an object is equal to a specified weak map and branch
|
|
// to a specified target if equal. Skip the smi check if not required
|
|
// (object is known to be a heap object)
|
|
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
|
|
Handle<WeakCell> cell, Handle<Code> success,
|
|
SmiCheckType smi_check_type);
|
|
|
|
// Compare the given value and the value of weak cell.
|
|
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
|
|
|
|
void GetWeakValue(Register value, Handle<WeakCell> cell);
|
|
|
|
// Load the value of the weak cell in the value register. Branch to the given
|
|
// miss label if the weak cell was cleared.
|
|
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
|
|
|
|
// Compare the object in a register to a value from the root list.
|
|
// Uses the ip register as scratch.
|
|
void CompareRoot(Register obj, Heap::RootListIndex index);
|
|
|
|
|
|
// Load and check the instance type of an object for being a string.
|
|
// Loads the type into the second argument register.
|
|
// Returns a condition that will be enabled if the object was a string
|
|
// and the passed-in condition passed. If the passed-in condition failed
|
|
// then flags remain unchanged.
|
|
Condition IsObjectStringType(Register obj,
|
|
Register type,
|
|
Condition cond = al) {
|
|
ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
|
|
ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
|
|
tst(type, Operand(kIsNotStringMask), cond);
|
|
DCHECK_EQ(0u, kStringTag);
|
|
return eq;
|
|
}
|
|
|
|
|
|
// Picks out an array index from the hash field.
|
|
// Register use:
|
|
// hash - holds the index's hash. Clobbered.
|
|
// index - holds the overwritten index on exit.
|
|
void IndexFromHash(Register hash, Register index);
|
|
|
|
// Get the number of least significant bits from a register
|
|
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
|
|
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
|
|
|
|
// Load the value of a smi object into a double register.
|
|
// The register value must be between d0 and d15.
|
|
void SmiToDouble(LowDwVfpRegister value, Register smi);
|
|
|
|
// Check if a double can be exactly represented as a signed 32-bit integer.
|
|
// Z flag set to one if true.
|
|
void TestDoubleIsInt32(DwVfpRegister double_input,
|
|
LowDwVfpRegister double_scratch);
|
|
|
|
// Try to convert a double to a signed 32-bit integer.
|
|
// Z flag set to one and result assigned if the conversion is exact.
|
|
void TryDoubleToInt32Exact(Register result,
|
|
DwVfpRegister double_input,
|
|
LowDwVfpRegister double_scratch);
|
|
|
|
// Floor a double and writes the value to the result register.
|
|
// Go to exact if the conversion is exact (to be able to test -0),
|
|
// fall through calling code if an overflow occurred, else go to done.
|
|
// In return, input_high is loaded with high bits of input.
|
|
void TryInt32Floor(Register result,
|
|
DwVfpRegister double_input,
|
|
Register input_high,
|
|
LowDwVfpRegister double_scratch,
|
|
Label* done,
|
|
Label* exact);
|
|
|
|
// Performs a truncating conversion of a floating point number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
|
|
// succeeds, otherwise falls through if result is saturated. On return
|
|
// 'result' either holds answer, or is clobbered on fall through.
|
|
//
|
|
// Only public for the test code in test-code-stubs-arm.cc.
|
|
void TryInlineTruncateDoubleToI(Register result,
|
|
DwVfpRegister input,
|
|
Label* done);
|
|
|
|
// Performs a truncating conversion of a floating point number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
|
// Exits with 'result' holding the answer.
|
|
void TruncateDoubleToI(Register result, DwVfpRegister double_input);
|
|
|
|
// Performs a truncating conversion of a heap number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
|
|
// must be different registers. Exits with 'result' holding the answer.
|
|
void TruncateHeapNumberToI(Register result, Register object);
|
|
|
|
// Converts the smi or heap number in object to an int32 using the rules
|
|
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
|
|
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
|
|
// different registers.
|
|
void TruncateNumberToI(Register object,
|
|
Register result,
|
|
Register heap_number_map,
|
|
Register scratch1,
|
|
Label* not_int32);
|
|
|
|
// Check whether d16-d31 are available on the CPU. The result is given by the
|
|
// Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
|
|
void CheckFor32DRegs(Register scratch);
|
|
|
|
// Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
|
|
// values to location, saving [d0..(d15|d31)].
|
|
void SaveFPRegs(Register location, Register scratch);
|
|
|
|
// Does a runtime check for 16/32 FP registers. Either way, pops 32 double
|
|
// values to location, restoring [d0..(d15|d31)].
|
|
void RestoreFPRegs(Register location, Register scratch);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Runtime calls
|
|
|
|
// Call a code stub.
|
|
void CallStub(CodeStub* stub,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
|
|
// Call a code stub.
|
|
void TailCallStub(CodeStub* stub, Condition cond = al);
|
|
|
|
// Call a runtime routine.
|
|
void CallRuntime(const Runtime::Function* f,
|
|
int num_arguments,
|
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
|
void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
|
|
const Runtime::Function* function = Runtime::FunctionForId(id);
|
|
CallRuntime(function, function->nargs, kSaveFPRegs);
|
|
}
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
void CallRuntime(Runtime::FunctionId id,
|
|
int num_arguments,
|
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
|
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
|
|
}
|
|
|
|
// Convenience function: call an external reference.
|
|
void CallExternalReference(const ExternalReference& ext,
|
|
int num_arguments);
|
|
|
|
// Tail call of a runtime routine (jump).
|
|
// Like JumpToExternalReference, but also takes care of passing the number
|
|
// of parameters.
|
|
void TailCallExternalReference(const ExternalReference& ext,
|
|
int num_arguments,
|
|
int result_size);
|
|
|
|
// Convenience function: tail call a runtime routine (jump).
|
|
void TailCallRuntime(Runtime::FunctionId fid,
|
|
int num_arguments,
|
|
int result_size);
|
|
|
|
int CalculateStackPassedWords(int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
// Before calling a C-function from generated code, align arguments on stack.
|
|
// After aligning the frame, non-register arguments must be stored in
|
|
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
|
|
// are word sized. If double arguments are used, this function assumes that
|
|
// all double arguments are stored before core registers; otherwise the
|
|
// correct alignment of the double values is not guaranteed.
|
|
// Some compilers/platforms require the stack to be aligned when calling
|
|
// C++ code.
|
|
// Needs a scratch register to do some arithmetic. This register will be
|
|
// trashed.
|
|
void PrepareCallCFunction(int num_reg_arguments,
|
|
int num_double_registers,
|
|
Register scratch);
|
|
void PrepareCallCFunction(int num_reg_arguments,
|
|
Register scratch);
|
|
|
|
// There are two ways of passing double arguments on ARM, depending on
|
|
// whether soft or hard floating point ABI is used. These functions
|
|
// abstract parameter passing for the three different ways we call
|
|
// C functions from generated code.
|
|
void MovToFloatParameter(DwVfpRegister src);
|
|
void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
|
|
void MovToFloatResult(DwVfpRegister src);
|
|
|
|
// Calls a C function and cleans up the space for arguments allocated
|
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
|
// garbage collection, since that might move the code and invalidate the
|
|
// return address (unless this is somehow accounted for by the called
|
|
// function).
|
|
void CallCFunction(ExternalReference function, int num_arguments);
|
|
void CallCFunction(Register function, int num_arguments);
|
|
void CallCFunction(ExternalReference function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
void CallCFunction(Register function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
void MovFromFloatParameter(DwVfpRegister dst);
|
|
void MovFromFloatResult(DwVfpRegister dst);
|
|
|
|
// Jump to a runtime routine.
|
|
void JumpToExternalReference(const ExternalReference& builtin);
|
|
|
|
// Invoke specified builtin JavaScript function. Adds an entry to
|
|
// the unresolved list if the name does not resolve.
|
|
void InvokeBuiltin(Builtins::JavaScript id,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper = NullCallWrapper());
|
|
|
|
// Store the code object for the given builtin in the target register and
|
|
// setup the function in r1.
|
|
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
|
|
|
|
// Store the function for the given builtin in the target register.
|
|
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
|
|
|
Handle<Object> CodeObject() {
|
|
DCHECK(!code_object_.is_null());
|
|
return code_object_;
|
|
}
|
|
|
|
|
|
// Emit code for a truncating division by a constant. The dividend register is
|
|
// unchanged and ip gets clobbered. Dividend and result must be different.
|
|
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// StatsCounter support
|
|
|
|
void SetCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
void IncrementCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
void DecrementCounter(StatsCounter* counter, int value,
|
|
Register scratch1, Register scratch2);
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Debugging
|
|
|
|
// Calls Abort(msg) if the condition cond is not satisfied.
|
|
// Use --debug_code to enable.
|
|
void Assert(Condition cond, BailoutReason reason);
|
|
void AssertFastElements(Register elements);
|
|
|
|
// Like Assert(), but always enabled.
|
|
void Check(Condition cond, BailoutReason reason);
|
|
|
|
// Print a message to stdout and abort execution.
|
|
void Abort(BailoutReason msg);
|
|
|
|
// Verify restrictions about code generated in stubs.
|
|
void set_generating_stub(bool value) { generating_stub_ = value; }
|
|
bool generating_stub() { return generating_stub_; }
|
|
void set_has_frame(bool value) { has_frame_ = value; }
|
|
bool has_frame() { return has_frame_; }
|
|
inline bool AllowThisStubCall(CodeStub* stub);
|
|
|
|
// EABI variant for double arguments in use.
|
|
bool use_eabi_hardfloat() {
|
|
#ifdef __arm__
|
|
return base::OS::ArmUsingHardFloat();
|
|
#elif USE_EABI_HARDFLOAT
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Number utilities
|
|
|
|
// Check whether the value of reg is a power of two and not zero. If not
|
|
// control continues at the label not_power_of_two. If reg is a power of two
|
|
// the register scratch contains the value of (reg - 1) when control falls
|
|
// through.
|
|
void JumpIfNotPowerOfTwoOrZero(Register reg,
|
|
Register scratch,
|
|
Label* not_power_of_two_or_zero);
|
|
// Check whether the value of reg is a power of two and not zero.
|
|
// Control falls through if it is, with scratch containing the mask
|
|
// value (reg - 1).
|
|
// Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
|
|
// zero or negative, or jumps to the 'not_power_of_two' label if the value is
|
|
// strictly positive but not a power of two.
|
|
void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
|
|
Register scratch,
|
|
Label* zero_and_neg,
|
|
Label* not_power_of_two);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Smi utilities
|
|
|
|
void SmiTag(Register reg, SBit s = LeaveCC) {
|
|
add(reg, reg, Operand(reg), s);
|
|
}
|
|
void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
|
|
add(dst, src, Operand(src), s);
|
|
}
|
|
|
|
// Try to convert int32 to smi. If the value is to large, preserve
|
|
// the original value and jump to not_a_smi. Destroys scratch and
|
|
// sets flags.
|
|
void TrySmiTag(Register reg, Label* not_a_smi) {
|
|
TrySmiTag(reg, reg, not_a_smi);
|
|
}
|
|
void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
|
|
SmiTag(ip, src, SetCC);
|
|
b(vs, not_a_smi);
|
|
mov(reg, ip);
|
|
}
|
|
|
|
|
|
void SmiUntag(Register reg, SBit s = LeaveCC) {
|
|
mov(reg, Operand::SmiUntag(reg), s);
|
|
}
|
|
void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
|
|
mov(dst, Operand::SmiUntag(src), s);
|
|
}
|
|
|
|
// Untag the source value into destination and jump if source is a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
|
|
|
|
// Untag the source value into destination and jump if source is not a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
|
|
|
|
// Test if the register contains a smi (Z == 0 (eq) if true).
|
|
inline void SmiTst(Register value) {
|
|
tst(value, Operand(kSmiTagMask));
|
|
}
|
|
inline void NonNegativeSmiTst(Register value) {
|
|
tst(value, Operand(kSmiTagMask | kSmiSignMask));
|
|
}
|
|
// Jump if the register contains a smi.
|
|
inline void JumpIfSmi(Register value, Label* smi_label) {
|
|
tst(value, Operand(kSmiTagMask));
|
|
b(eq, smi_label);
|
|
}
|
|
// Jump if either of the registers contain a non-smi.
|
|
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
|
|
tst(value, Operand(kSmiTagMask));
|
|
b(ne, not_smi_label);
|
|
}
|
|
// Jump if either of the registers contain a non-smi.
|
|
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
|
|
// Jump if either of the registers contain a smi.
|
|
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
|
|
|
|
// Abort execution if argument is a smi, enabled via --debug-code.
|
|
void AssertNotSmi(Register object);
|
|
void AssertSmi(Register object);
|
|
|
|
// Abort execution if argument is not a string, enabled via --debug-code.
|
|
void AssertString(Register object);
|
|
|
|
// Abort execution if argument is not a name, enabled via --debug-code.
|
|
void AssertName(Register object);
|
|
|
|
// Abort execution if argument is not undefined or an AllocationSite, enabled
|
|
// via --debug-code.
|
|
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
|
|
|
|
// Abort execution if reg is not the root value with the given index,
|
|
// enabled via --debug-code.
|
|
void AssertIsRoot(Register reg, Heap::RootListIndex index);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// HeapNumber utilities
|
|
|
|
void JumpIfNotHeapNumber(Register object,
|
|
Register heap_number_map,
|
|
Register scratch,
|
|
Label* on_not_heap_number);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// String utilities
|
|
|
|
// Generate code to do a lookup in the number string cache. If the number in
|
|
// the register object is found in the cache the generated code falls through
|
|
// with the result in the result register. The object and the result register
|
|
// can be the same. If the number is not found in the cache the code jumps to
|
|
// the label not_found with only the content of register object unchanged.
|
|
void LookupNumberStringCache(Register object,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* not_found);
|
|
|
|
// Checks if both objects are sequential one-byte strings and jumps to label
|
|
// if either is not. Assumes that neither object is a smi.
|
|
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
|
|
Register object2,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure);
|
|
|
|
// Checks if both objects are sequential one-byte strings and jumps to label
|
|
// if either is not.
|
|
void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* not_flat_one_byte_strings);
|
|
|
|
// Checks if both instance types are sequential one-byte strings and jumps to
|
|
// label if either is not.
|
|
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
|
|
Register first_object_instance_type, Register second_object_instance_type,
|
|
Register scratch1, Register scratch2, Label* failure);
|
|
|
|
// Check if instance type is sequential one-byte string and jump to label if
|
|
// it is not.
|
|
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
|
|
Label* failure);
|
|
|
|
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
|
|
|
|
void EmitSeqStringSetCharCheck(Register string,
|
|
Register index,
|
|
Register value,
|
|
uint32_t encoding_mask);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Patching helpers.
|
|
|
|
// Get the location of a relocated constant (its address in the constant pool)
|
|
// from its load site.
|
|
void GetRelocatedValueLocation(Register ldr_location, Register result,
|
|
Register scratch);
|
|
|
|
|
|
void ClampUint8(Register output_reg, Register input_reg);
|
|
|
|
void ClampDoubleToUint8(Register result_reg,
|
|
DwVfpRegister input_reg,
|
|
LowDwVfpRegister double_scratch);
|
|
|
|
|
|
void LoadInstanceDescriptors(Register map, Register descriptors);
|
|
void EnumLength(Register dst, Register map);
|
|
void NumberOfOwnDescriptors(Register dst, Register map);
|
|
void LoadAccessor(Register dst, Register holder, int accessor_index,
|
|
AccessorComponent accessor);
|
|
|
|
template<typename Field>
|
|
void DecodeField(Register dst, Register src) {
|
|
Ubfx(dst, src, Field::kShift, Field::kSize);
|
|
}
|
|
|
|
template<typename Field>
|
|
void DecodeField(Register reg) {
|
|
DecodeField<Field>(reg, reg);
|
|
}
|
|
|
|
template<typename Field>
|
|
void DecodeFieldToSmi(Register dst, Register src) {
|
|
static const int shift = Field::kShift;
|
|
static const int mask = Field::kMask >> shift << kSmiTagSize;
|
|
STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
if (shift < kSmiTagSize) {
|
|
mov(dst, Operand(src, LSL, kSmiTagSize - shift));
|
|
and_(dst, dst, Operand(mask));
|
|
} else if (shift > kSmiTagSize) {
|
|
mov(dst, Operand(src, LSR, shift - kSmiTagSize));
|
|
and_(dst, dst, Operand(mask));
|
|
} else {
|
|
and_(dst, src, Operand(mask));
|
|
}
|
|
}
|
|
|
|
template<typename Field>
|
|
void DecodeFieldToSmi(Register reg) {
|
|
DecodeField<Field>(reg, reg);
|
|
}
|
|
|
|
// Activation support.
|
|
void EnterFrame(StackFrame::Type type,
|
|
bool load_constant_pool_pointer_reg = false);
|
|
// Returns the pc offset at which the frame ends.
|
|
int LeaveFrame(StackFrame::Type type);
|
|
|
|
// Expects object in r0 and returns map with validated enum cache
|
|
// in r0. Assumes that any other register can be used as a scratch.
|
|
void CheckEnumCache(Register null_value, Label* call_runtime);
|
|
|
|
// AllocationMemento support. Arrays may have an associated
|
|
// AllocationMemento object that can be checked for in order to pretransition
|
|
// to another type.
|
|
// On entry, receiver_reg should point to the array object.
|
|
// scratch_reg gets clobbered.
|
|
// If allocation info is present, condition flags are set to eq.
|
|
void TestJSArrayForAllocationMemento(Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* no_memento_found);
|
|
|
|
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* memento_found) {
|
|
Label no_memento_found;
|
|
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
|
|
&no_memento_found);
|
|
b(eq, memento_found);
|
|
bind(&no_memento_found);
|
|
}
|
|
|
|
// Jumps to found label if a prototype map has dictionary elements.
|
|
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
|
|
Register scratch1, Label* found);
|
|
|
|
private:
|
|
void CallCFunctionHelper(Register function,
|
|
int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
|
|
|
|
// Helper functions for generating invokes.
|
|
void InvokePrologue(const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
Handle<Code> code_constant,
|
|
Register code_reg,
|
|
Label* done,
|
|
bool* definitely_mismatches,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InitializeNewString(Register string,
|
|
Register length,
|
|
Heap::RootListIndex map_index,
|
|
Register scratch1,
|
|
Register scratch2);
|
|
|
|
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
|
void InNewSpace(Register object,
|
|
Register scratch,
|
|
Condition cond, // eq for new space, ne otherwise.
|
|
Label* branch);
|
|
|
|
// Helper for finding the mark bits for an address. Afterwards, the
|
|
// bitmap register points at the word with the mark bits and the mask
|
|
// the position of the first bit. Leaves addr_reg unchanged.
|
|
inline void GetMarkBits(Register addr_reg,
|
|
Register bitmap_reg,
|
|
Register mask_reg);
|
|
|
|
// Helper for throwing exceptions. Compute a handler address and jump to
|
|
// it. See the implementation for register usage.
|
|
void JumpToHandlerEntry();
|
|
|
|
// Compute memory operands for safepoint stack slots.
|
|
static int SafepointRegisterStackIndex(int reg_code);
|
|
MemOperand SafepointRegisterSlot(Register reg);
|
|
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
|
|
|
|
// Loads the constant pool pointer (pp) register.
|
|
void LoadConstantPoolPointerRegister();
|
|
|
|
bool generating_stub_;
|
|
bool has_frame_;
|
|
// This handle will be patched with the code object on installation.
|
|
Handle<Object> code_object_;
|
|
|
|
// Needs access to SafepointRegisterStackIndex for compiled frame
|
|
// traversal.
|
|
friend class StandardFrame;
|
|
};
|
|
|
|
|
|
// The code patcher is used to patch (typically) small parts of code e.g. for
|
|
// debugging and other types of instrumentation. When using the code patcher
|
|
// the exact number of bytes specified must be emitted. It is not legal to emit
|
|
// relocation information. If any of these constraints are violated it causes
|
|
// an assertion to fail.
|
|
class CodePatcher {
|
|
public:
|
|
enum FlushICache {
|
|
FLUSH,
|
|
DONT_FLUSH
|
|
};
|
|
|
|
CodePatcher(byte* address,
|
|
int instructions,
|
|
FlushICache flush_cache = FLUSH);
|
|
virtual ~CodePatcher();
|
|
|
|
// Macro assembler to emit code.
|
|
MacroAssembler* masm() { return &masm_; }
|
|
|
|
// Emit an instruction directly.
|
|
void Emit(Instr instr);
|
|
|
|
// Emit an address directly.
|
|
void Emit(Address addr);
|
|
|
|
// Emit the condition part of an instruction leaving the rest of the current
|
|
// instruction unchanged.
|
|
void EmitCondition(Condition cond);
|
|
|
|
private:
|
|
byte* address_; // The address of the code being patched.
|
|
int size_; // Number of bytes of the expected patch size.
|
|
MacroAssembler masm_; // Macro assembler used to generate the code.
|
|
FlushICache flush_cache_; // Whether to flush the I cache after patching.
|
|
};
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Static helper functions.
|
|
|
|
inline MemOperand ContextOperand(Register context, int index) {
|
|
return MemOperand(context, Context::SlotOffset(index));
|
|
}
|
|
|
|
|
|
inline MemOperand GlobalObjectOperand() {
|
|
return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
|
|
}
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
#define CODE_COVERAGE_STRINGIFY(x) #x
|
|
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
|
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
|
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
|
|
#else
|
|
#define ACCESS_MASM(masm) masm->
|
|
#endif
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_
|