634b0f20f4
R=jkummerow@chromium.org Review URL: https://codereview.chromium.org/900193002 Cr-Commit-Position: refs/heads/master@{#26454}
1034 lines
32 KiB
C++
1034 lines
32 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/ast.h"
|
|
|
|
#include <cmath> // For isfinite.
|
|
#include "src/builtins.h"
|
|
#include "src/code-stubs.h"
|
|
#include "src/contexts.h"
|
|
#include "src/conversions.h"
|
|
#include "src/hashmap.h"
|
|
#include "src/parser.h"
|
|
#include "src/property.h"
|
|
#include "src/property-details.h"
|
|
#include "src/scopes.h"
|
|
#include "src/string-stream.h"
|
|
#include "src/type-info.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// All the Accept member functions for each syntax tree node type.
|
|
|
|
#define DECL_ACCEPT(type) \
|
|
void type::Accept(AstVisitor* v) { v->Visit##type(this); }
|
|
AST_NODE_LIST(DECL_ACCEPT)
|
|
#undef DECL_ACCEPT
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of other node functionality.
|
|
|
|
|
|
bool Expression::IsSmiLiteral() const {
|
|
return IsLiteral() && AsLiteral()->value()->IsSmi();
|
|
}
|
|
|
|
|
|
bool Expression::IsStringLiteral() const {
|
|
return IsLiteral() && AsLiteral()->value()->IsString();
|
|
}
|
|
|
|
|
|
bool Expression::IsNullLiteral() const {
|
|
return IsLiteral() && AsLiteral()->value()->IsNull();
|
|
}
|
|
|
|
|
|
bool Expression::IsUndefinedLiteral(Isolate* isolate) const {
|
|
const VariableProxy* var_proxy = AsVariableProxy();
|
|
if (var_proxy == NULL) return false;
|
|
Variable* var = var_proxy->var();
|
|
// The global identifier "undefined" is immutable. Everything
|
|
// else could be reassigned.
|
|
return var != NULL && var->location() == Variable::UNALLOCATED &&
|
|
var_proxy->raw_name()->IsOneByteEqualTo("undefined");
|
|
}
|
|
|
|
|
|
VariableProxy::VariableProxy(Zone* zone, Variable* var, int position)
|
|
: Expression(zone, position),
|
|
bit_field_(IsThisField::encode(var->is_this()) |
|
|
IsAssignedField::encode(false) |
|
|
IsResolvedField::encode(false)),
|
|
variable_feedback_slot_(FeedbackVectorICSlot::Invalid()),
|
|
raw_name_(var->raw_name()),
|
|
interface_(var->interface()) {
|
|
BindTo(var);
|
|
}
|
|
|
|
|
|
VariableProxy::VariableProxy(Zone* zone, const AstRawString* name, bool is_this,
|
|
Interface* interface, int position)
|
|
: Expression(zone, position),
|
|
bit_field_(IsThisField::encode(is_this) | IsAssignedField::encode(false) |
|
|
IsResolvedField::encode(false)),
|
|
variable_feedback_slot_(FeedbackVectorICSlot::Invalid()),
|
|
raw_name_(name),
|
|
interface_(interface) {}
|
|
|
|
|
|
void VariableProxy::BindTo(Variable* var) {
|
|
DCHECK(!FLAG_harmony_modules || interface_->IsUnified(var->interface()));
|
|
DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
|
|
// Ideally CONST-ness should match. However, this is very hard to achieve
|
|
// because we don't know the exact semantics of conflicting (const and
|
|
// non-const) multiple variable declarations, const vars introduced via
|
|
// eval() etc. Const-ness and variable declarations are a complete mess
|
|
// in JS. Sigh...
|
|
set_var(var);
|
|
set_is_resolved();
|
|
var->set_is_used();
|
|
}
|
|
|
|
|
|
Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
|
|
Expression* value, int pos)
|
|
: Expression(zone, pos),
|
|
bit_field_(IsUninitializedField::encode(false) |
|
|
KeyTypeField::encode(ELEMENT) |
|
|
StoreModeField::encode(STANDARD_STORE) |
|
|
TokenField::encode(op)),
|
|
target_(target),
|
|
value_(value),
|
|
binary_operation_(NULL) {}
|
|
|
|
|
|
Token::Value Assignment::binary_op() const {
|
|
switch (op()) {
|
|
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
|
|
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
|
|
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
|
|
case Token::ASSIGN_SHL: return Token::SHL;
|
|
case Token::ASSIGN_SAR: return Token::SAR;
|
|
case Token::ASSIGN_SHR: return Token::SHR;
|
|
case Token::ASSIGN_ADD: return Token::ADD;
|
|
case Token::ASSIGN_SUB: return Token::SUB;
|
|
case Token::ASSIGN_MUL: return Token::MUL;
|
|
case Token::ASSIGN_DIV: return Token::DIV;
|
|
case Token::ASSIGN_MOD: return Token::MOD;
|
|
default: UNREACHABLE();
|
|
}
|
|
return Token::ILLEGAL;
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::AllowsLazyCompilation() {
|
|
return scope()->AllowsLazyCompilation();
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
|
|
return scope()->AllowsLazyCompilationWithoutContext();
|
|
}
|
|
|
|
|
|
int FunctionLiteral::start_position() const {
|
|
return scope()->start_position();
|
|
}
|
|
|
|
|
|
int FunctionLiteral::end_position() const {
|
|
return scope()->end_position();
|
|
}
|
|
|
|
|
|
LanguageMode FunctionLiteral::language_mode() const {
|
|
return scope()->language_mode();
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::uses_super_property() const {
|
|
DCHECK_NOT_NULL(scope());
|
|
return scope()->uses_super_property() || scope()->inner_uses_super_property();
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::uses_super_constructor_call() const {
|
|
DCHECK_NOT_NULL(scope());
|
|
return scope()->uses_super_constructor_call() ||
|
|
scope()->inner_uses_super_constructor_call();
|
|
}
|
|
|
|
|
|
// Helper to find an existing shared function info in the baseline code for the
|
|
// given function literal. Used to canonicalize SharedFunctionInfo objects.
|
|
void FunctionLiteral::InitializeSharedInfo(
|
|
Handle<Code> unoptimized_code) {
|
|
for (RelocIterator it(*unoptimized_code); !it.done(); it.next()) {
|
|
RelocInfo* rinfo = it.rinfo();
|
|
if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
|
|
Object* obj = rinfo->target_object();
|
|
if (obj->IsSharedFunctionInfo()) {
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
|
|
if (shared->start_position() == start_position()) {
|
|
shared_info_ = Handle<SharedFunctionInfo>(shared);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
|
|
Kind kind, bool is_static,
|
|
bool is_computed_name)
|
|
: key_(key),
|
|
value_(value),
|
|
kind_(kind),
|
|
emit_store_(true),
|
|
is_static_(is_static),
|
|
is_computed_name_(is_computed_name) {}
|
|
|
|
|
|
ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
|
|
Expression* key, Expression* value,
|
|
bool is_static,
|
|
bool is_computed_name)
|
|
: key_(key),
|
|
value_(value),
|
|
emit_store_(true),
|
|
is_static_(is_static),
|
|
is_computed_name_(is_computed_name) {
|
|
if (!is_computed_name &&
|
|
key->AsLiteral()->raw_value()->EqualsString(
|
|
ast_value_factory->proto_string())) {
|
|
kind_ = PROTOTYPE;
|
|
} else if (value_->AsMaterializedLiteral() != NULL) {
|
|
kind_ = MATERIALIZED_LITERAL;
|
|
} else if (value_->IsLiteral()) {
|
|
kind_ = CONSTANT;
|
|
} else {
|
|
kind_ = COMPUTED;
|
|
}
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::Property::IsCompileTimeValue() {
|
|
return kind_ == CONSTANT ||
|
|
(kind_ == MATERIALIZED_LITERAL &&
|
|
CompileTimeValue::IsCompileTimeValue(value_));
|
|
}
|
|
|
|
|
|
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
|
|
emit_store_ = emit_store;
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::Property::emit_store() {
|
|
return emit_store_;
|
|
}
|
|
|
|
|
|
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
|
|
const auto GETTER = ObjectLiteral::Property::GETTER;
|
|
const auto SETTER = ObjectLiteral::Property::SETTER;
|
|
|
|
ZoneAllocationPolicy allocator(zone);
|
|
|
|
ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
|
|
allocator);
|
|
for (int i = properties()->length() - 1; i >= 0; i--) {
|
|
ObjectLiteral::Property* property = properties()->at(i);
|
|
if (property->is_computed_name()) continue;
|
|
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
|
|
Literal* literal = property->key()->AsLiteral();
|
|
DCHECK(!literal->value()->IsNull());
|
|
|
|
// If there is an existing entry do not emit a store unless the previous
|
|
// entry was also an accessor.
|
|
uint32_t hash = literal->Hash();
|
|
ZoneHashMap::Entry* entry = table.Lookup(literal, hash, true, allocator);
|
|
if (entry->value != NULL) {
|
|
auto previous_kind =
|
|
static_cast<ObjectLiteral::Property*>(entry->value)->kind();
|
|
if (!((property->kind() == GETTER && previous_kind == SETTER) ||
|
|
(property->kind() == SETTER && previous_kind == GETTER))) {
|
|
property->set_emit_store(false);
|
|
}
|
|
}
|
|
entry->value = property;
|
|
}
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
|
|
return property != NULL &&
|
|
property->kind() != ObjectLiteral::Property::PROTOTYPE;
|
|
}
|
|
|
|
|
|
void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
|
|
if (!constant_properties_.is_null()) return;
|
|
|
|
// Allocate a fixed array to hold all the constant properties.
|
|
Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
|
|
boilerplate_properties_ * 2, TENURED);
|
|
|
|
int position = 0;
|
|
// Accumulate the value in local variables and store it at the end.
|
|
bool is_simple = true;
|
|
int depth_acc = 1;
|
|
uint32_t max_element_index = 0;
|
|
uint32_t elements = 0;
|
|
for (int i = 0; i < properties()->length(); i++) {
|
|
ObjectLiteral::Property* property = properties()->at(i);
|
|
if (!IsBoilerplateProperty(property)) {
|
|
is_simple = false;
|
|
continue;
|
|
}
|
|
|
|
if (position == boilerplate_properties_ * 2) {
|
|
DCHECK(property->is_computed_name());
|
|
break;
|
|
}
|
|
DCHECK(!property->is_computed_name());
|
|
|
|
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
|
|
if (m_literal != NULL) {
|
|
m_literal->BuildConstants(isolate);
|
|
if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
|
|
}
|
|
|
|
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
|
|
// value for COMPUTED properties, the real value is filled in at
|
|
// runtime. The enumeration order is maintained.
|
|
Handle<Object> key = property->key()->AsLiteral()->value();
|
|
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
|
|
|
|
// Ensure objects that may, at any point in time, contain fields with double
|
|
// representation are always treated as nested objects. This is true for
|
|
// computed fields (value is undefined), and smi and double literals
|
|
// (value->IsNumber()).
|
|
// TODO(verwaest): Remove once we can store them inline.
|
|
if (FLAG_track_double_fields &&
|
|
(value->IsNumber() || value->IsUninitialized())) {
|
|
may_store_doubles_ = true;
|
|
}
|
|
|
|
is_simple = is_simple && !value->IsUninitialized();
|
|
|
|
// Keep track of the number of elements in the object literal and
|
|
// the largest element index. If the largest element index is
|
|
// much larger than the number of elements, creating an object
|
|
// literal with fast elements will be a waste of space.
|
|
uint32_t element_index = 0;
|
|
if (key->IsString()
|
|
&& Handle<String>::cast(key)->AsArrayIndex(&element_index)
|
|
&& element_index > max_element_index) {
|
|
max_element_index = element_index;
|
|
elements++;
|
|
} else if (key->IsSmi()) {
|
|
int key_value = Smi::cast(*key)->value();
|
|
if (key_value > 0
|
|
&& static_cast<uint32_t>(key_value) > max_element_index) {
|
|
max_element_index = key_value;
|
|
}
|
|
elements++;
|
|
}
|
|
|
|
// Add name, value pair to the fixed array.
|
|
constant_properties->set(position++, *key);
|
|
constant_properties->set(position++, *value);
|
|
}
|
|
|
|
constant_properties_ = constant_properties;
|
|
fast_elements_ =
|
|
(max_element_index <= 32) || ((2 * elements) >= max_element_index);
|
|
set_is_simple(is_simple);
|
|
set_depth(depth_acc);
|
|
}
|
|
|
|
|
|
void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
|
|
if (!constant_elements_.is_null()) return;
|
|
|
|
// Allocate a fixed array to hold all the object literals.
|
|
Handle<JSArray> array =
|
|
isolate->factory()->NewJSArray(0, FAST_HOLEY_SMI_ELEMENTS);
|
|
JSArray::Expand(array, values()->length());
|
|
|
|
// Fill in the literals.
|
|
bool is_simple = true;
|
|
int depth_acc = 1;
|
|
bool is_holey = false;
|
|
for (int i = 0, n = values()->length(); i < n; i++) {
|
|
Expression* element = values()->at(i);
|
|
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
|
|
if (m_literal != NULL) {
|
|
m_literal->BuildConstants(isolate);
|
|
if (m_literal->depth() + 1 > depth_acc) {
|
|
depth_acc = m_literal->depth() + 1;
|
|
}
|
|
}
|
|
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
|
|
if (boilerplate_value->IsTheHole()) {
|
|
is_holey = true;
|
|
} else if (boilerplate_value->IsUninitialized()) {
|
|
is_simple = false;
|
|
JSObject::SetOwnElement(
|
|
array, i, handle(Smi::FromInt(0), isolate), SLOPPY).Assert();
|
|
} else {
|
|
JSObject::SetOwnElement(array, i, boilerplate_value, SLOPPY).Assert();
|
|
}
|
|
}
|
|
|
|
Handle<FixedArrayBase> element_values(array->elements());
|
|
|
|
// Simple and shallow arrays can be lazily copied, we transform the
|
|
// elements array to a copy-on-write array.
|
|
if (is_simple && depth_acc == 1 && values()->length() > 0 &&
|
|
array->HasFastSmiOrObjectElements()) {
|
|
element_values->set_map(isolate->heap()->fixed_cow_array_map());
|
|
}
|
|
|
|
// Remember both the literal's constant values as well as the ElementsKind
|
|
// in a 2-element FixedArray.
|
|
Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
|
|
|
|
ElementsKind kind = array->GetElementsKind();
|
|
kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
|
|
|
|
literals->set(0, Smi::FromInt(kind));
|
|
literals->set(1, *element_values);
|
|
|
|
constant_elements_ = literals;
|
|
set_is_simple(is_simple);
|
|
set_depth(depth_acc);
|
|
}
|
|
|
|
|
|
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
|
|
Isolate* isolate) {
|
|
if (expression->IsLiteral()) {
|
|
return expression->AsLiteral()->value();
|
|
}
|
|
if (CompileTimeValue::IsCompileTimeValue(expression)) {
|
|
return CompileTimeValue::GetValue(isolate, expression);
|
|
}
|
|
return isolate->factory()->uninitialized_value();
|
|
}
|
|
|
|
|
|
void MaterializedLiteral::BuildConstants(Isolate* isolate) {
|
|
if (IsArrayLiteral()) {
|
|
return AsArrayLiteral()->BuildConstantElements(isolate);
|
|
}
|
|
if (IsObjectLiteral()) {
|
|
return AsObjectLiteral()->BuildConstantProperties(isolate);
|
|
}
|
|
DCHECK(IsRegExpLiteral());
|
|
DCHECK(depth() >= 1); // Depth should be initialized.
|
|
}
|
|
|
|
|
|
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
// TODO(olivf) If this Operation is used in a test context, then the
|
|
// expression has a ToBoolean stub and we want to collect the type
|
|
// information. However the GraphBuilder expects it to be on the instruction
|
|
// corresponding to the TestContext, therefore we have to store it here and
|
|
// not on the operand.
|
|
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
|
|
}
|
|
|
|
|
|
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
// TODO(olivf) If this Operation is used in a test context, then the right
|
|
// hand side has a ToBoolean stub and we want to collect the type information.
|
|
// However the GraphBuilder expects it to be on the instruction corresponding
|
|
// to the TestContext, therefore we have to store it here and not on the
|
|
// right hand operand.
|
|
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
|
|
}
|
|
|
|
|
|
static bool IsTypeof(Expression* expr) {
|
|
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
|
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
|
|
}
|
|
|
|
|
|
// Check for the pattern: typeof <expression> equals <string literal>.
|
|
static bool MatchLiteralCompareTypeof(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr,
|
|
Handle<String>* check) {
|
|
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
|
|
*expr = left->AsUnaryOperation()->expression();
|
|
*check = Handle<String>::cast(right->AsLiteral()->value());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
|
|
Handle<String>* check) {
|
|
return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
|
|
MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
|
|
}
|
|
|
|
|
|
static bool IsVoidOfLiteral(Expression* expr) {
|
|
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
|
return maybe_unary != NULL &&
|
|
maybe_unary->op() == Token::VOID &&
|
|
maybe_unary->expression()->IsLiteral();
|
|
}
|
|
|
|
|
|
// Check for the pattern: void <literal> equals <expression> or
|
|
// undefined equals <expression>
|
|
static bool MatchLiteralCompareUndefined(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr,
|
|
Isolate* isolate) {
|
|
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareUndefined(
|
|
Expression** expr, Isolate* isolate) {
|
|
return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
|
|
MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
|
|
}
|
|
|
|
|
|
// Check for the pattern: null equals <expression>
|
|
static bool MatchLiteralCompareNull(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr) {
|
|
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
|
|
return MatchLiteralCompareNull(left_, op_, right_, expr) ||
|
|
MatchLiteralCompareNull(right_, op_, left_, expr);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Inlining support
|
|
|
|
bool Declaration::IsInlineable() const {
|
|
return proxy()->var()->IsStackAllocated();
|
|
}
|
|
|
|
bool FunctionDeclaration::IsInlineable() const {
|
|
return false;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Recording of type feedback
|
|
|
|
// TODO(rossberg): all RecordTypeFeedback functions should disappear
|
|
// once we use the common type field in the AST consistently.
|
|
|
|
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
|
|
}
|
|
|
|
|
|
bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
|
|
CallType call_type = GetCallType(isolate);
|
|
if (IsUsingCallFeedbackSlot(isolate) || call_type == POSSIBLY_EVAL_CALL) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
|
|
// SuperConstructorCall uses a CallConstructStub, which wants
|
|
// a Slot, not an IC slot.
|
|
return FLAG_experimental_classes && GetCallType(isolate) == SUPER_CALL;
|
|
}
|
|
|
|
|
|
FeedbackVectorRequirements Call::ComputeFeedbackRequirements(Isolate* isolate) {
|
|
int ic_slots = IsUsingCallFeedbackICSlot(isolate) ? 1 : 0;
|
|
int slots = IsUsingCallFeedbackSlot(isolate) ? 1 : 0;
|
|
// A Call uses either a slot or an IC slot.
|
|
DCHECK((ic_slots & slots) == 0);
|
|
return FeedbackVectorRequirements(slots, ic_slots);
|
|
}
|
|
|
|
|
|
Call::CallType Call::GetCallType(Isolate* isolate) const {
|
|
VariableProxy* proxy = expression()->AsVariableProxy();
|
|
if (proxy != NULL) {
|
|
if (proxy->var()->is_possibly_eval(isolate)) {
|
|
return POSSIBLY_EVAL_CALL;
|
|
} else if (proxy->var()->IsUnallocated()) {
|
|
return GLOBAL_CALL;
|
|
} else if (proxy->var()->IsLookupSlot()) {
|
|
return LOOKUP_SLOT_CALL;
|
|
}
|
|
}
|
|
|
|
if (expression()->AsSuperReference() != NULL) return SUPER_CALL;
|
|
|
|
Property* property = expression()->AsProperty();
|
|
return property != NULL ? PROPERTY_CALL : OTHER_CALL;
|
|
}
|
|
|
|
|
|
bool Call::ComputeGlobalTarget(Handle<GlobalObject> global,
|
|
LookupIterator* it) {
|
|
target_ = Handle<JSFunction>::null();
|
|
cell_ = Handle<Cell>::null();
|
|
DCHECK(it->IsFound() && it->GetHolder<JSObject>().is_identical_to(global));
|
|
cell_ = it->GetPropertyCell();
|
|
if (cell_->value()->IsJSFunction()) {
|
|
Handle<JSFunction> candidate(JSFunction::cast(cell_->value()));
|
|
// If the function is in new space we assume it's more likely to
|
|
// change and thus prefer the general IC code.
|
|
if (!it->isolate()->heap()->InNewSpace(*candidate)) {
|
|
target_ = candidate;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void CallNew::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
FeedbackVectorSlot allocation_site_feedback_slot =
|
|
FLAG_pretenuring_call_new ? AllocationSiteFeedbackSlot()
|
|
: CallNewFeedbackSlot();
|
|
allocation_site_ =
|
|
oracle->GetCallNewAllocationSite(allocation_site_feedback_slot);
|
|
is_monomorphic_ = oracle->CallNewIsMonomorphic(CallNewFeedbackSlot());
|
|
if (is_monomorphic_) {
|
|
target_ = oracle->GetCallNewTarget(CallNewFeedbackSlot());
|
|
}
|
|
}
|
|
|
|
|
|
void ObjectLiteral::Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
DCHECK(!is_computed_name());
|
|
TypeFeedbackId id = key()->AsLiteral()->LiteralFeedbackId();
|
|
SmallMapList maps;
|
|
oracle->CollectReceiverTypes(id, &maps);
|
|
receiver_type_ = maps.length() == 1 ? maps.at(0)
|
|
: Handle<Map>::null();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of AstVisitor
|
|
|
|
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
|
|
for (int i = 0; i < declarations->length(); i++) {
|
|
Visit(declarations->at(i));
|
|
}
|
|
}
|
|
|
|
|
|
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
Statement* stmt = statements->at(i);
|
|
Visit(stmt);
|
|
if (stmt->IsJump()) break;
|
|
}
|
|
}
|
|
|
|
|
|
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
|
|
for (int i = 0; i < expressions->length(); i++) {
|
|
// The variable statement visiting code may pass NULL expressions
|
|
// to this code. Maybe this should be handled by introducing an
|
|
// undefined expression or literal? Revisit this code if this
|
|
// changes
|
|
Expression* expression = expressions->at(i);
|
|
if (expression != NULL) Visit(expression);
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Regular expressions
|
|
|
|
#define MAKE_ACCEPT(Name) \
|
|
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
|
|
return visitor->Visit##Name(this, data); \
|
|
}
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
|
|
#undef MAKE_ACCEPT
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
RegExp##Name* RegExpTree::As##Name() { \
|
|
return NULL; \
|
|
} \
|
|
bool RegExpTree::Is##Name() { return false; }
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
RegExp##Name* RegExp##Name::As##Name() { \
|
|
return this; \
|
|
} \
|
|
bool RegExp##Name::Is##Name() { return true; }
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
|
|
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
|
|
Interval result = Interval::Empty();
|
|
for (int i = 0; i < children->length(); i++)
|
|
result = result.Union(children->at(i)->CaptureRegisters());
|
|
return result;
|
|
}
|
|
|
|
|
|
Interval RegExpAlternative::CaptureRegisters() {
|
|
return ListCaptureRegisters(nodes());
|
|
}
|
|
|
|
|
|
Interval RegExpDisjunction::CaptureRegisters() {
|
|
return ListCaptureRegisters(alternatives());
|
|
}
|
|
|
|
|
|
Interval RegExpLookahead::CaptureRegisters() {
|
|
return body()->CaptureRegisters();
|
|
}
|
|
|
|
|
|
Interval RegExpCapture::CaptureRegisters() {
|
|
Interval self(StartRegister(index()), EndRegister(index()));
|
|
return self.Union(body()->CaptureRegisters());
|
|
}
|
|
|
|
|
|
Interval RegExpQuantifier::CaptureRegisters() {
|
|
return body()->CaptureRegisters();
|
|
}
|
|
|
|
|
|
bool RegExpAssertion::IsAnchoredAtStart() {
|
|
return assertion_type() == RegExpAssertion::START_OF_INPUT;
|
|
}
|
|
|
|
|
|
bool RegExpAssertion::IsAnchoredAtEnd() {
|
|
return assertion_type() == RegExpAssertion::END_OF_INPUT;
|
|
}
|
|
|
|
|
|
bool RegExpAlternative::IsAnchoredAtStart() {
|
|
ZoneList<RegExpTree*>* nodes = this->nodes();
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
RegExpTree* node = nodes->at(i);
|
|
if (node->IsAnchoredAtStart()) { return true; }
|
|
if (node->max_match() > 0) { return false; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RegExpAlternative::IsAnchoredAtEnd() {
|
|
ZoneList<RegExpTree*>* nodes = this->nodes();
|
|
for (int i = nodes->length() - 1; i >= 0; i--) {
|
|
RegExpTree* node = nodes->at(i);
|
|
if (node->IsAnchoredAtEnd()) { return true; }
|
|
if (node->max_match() > 0) { return false; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RegExpDisjunction::IsAnchoredAtStart() {
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
if (!alternatives->at(i)->IsAnchoredAtStart())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool RegExpDisjunction::IsAnchoredAtEnd() {
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
if (!alternatives->at(i)->IsAnchoredAtEnd())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool RegExpLookahead::IsAnchoredAtStart() {
|
|
return is_positive() && body()->IsAnchoredAtStart();
|
|
}
|
|
|
|
|
|
bool RegExpCapture::IsAnchoredAtStart() {
|
|
return body()->IsAnchoredAtStart();
|
|
}
|
|
|
|
|
|
bool RegExpCapture::IsAnchoredAtEnd() {
|
|
return body()->IsAnchoredAtEnd();
|
|
}
|
|
|
|
|
|
// Convert regular expression trees to a simple sexp representation.
|
|
// This representation should be different from the input grammar
|
|
// in as many cases as possible, to make it more difficult for incorrect
|
|
// parses to look as correct ones which is likely if the input and
|
|
// output formats are alike.
|
|
class RegExpUnparser FINAL : public RegExpVisitor {
|
|
public:
|
|
RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {}
|
|
void VisitCharacterRange(CharacterRange that);
|
|
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, \
|
|
void* data) OVERRIDE;
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
|
|
#undef MAKE_CASE
|
|
private:
|
|
std::ostream& os_;
|
|
Zone* zone_;
|
|
};
|
|
|
|
|
|
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
|
|
os_ << "(|";
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
os_ << " ";
|
|
that->alternatives()->at(i)->Accept(this, data);
|
|
}
|
|
os_ << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
|
|
os_ << "(:";
|
|
for (int i = 0; i < that->nodes()->length(); i++) {
|
|
os_ << " ";
|
|
that->nodes()->at(i)->Accept(this, data);
|
|
}
|
|
os_ << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
|
|
os_ << AsUC16(that.from());
|
|
if (!that.IsSingleton()) {
|
|
os_ << "-" << AsUC16(that.to());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
|
|
void* data) {
|
|
if (that->is_negated()) os_ << "^";
|
|
os_ << "[";
|
|
for (int i = 0; i < that->ranges(zone_)->length(); i++) {
|
|
if (i > 0) os_ << " ";
|
|
VisitCharacterRange(that->ranges(zone_)->at(i));
|
|
}
|
|
os_ << "]";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
|
|
switch (that->assertion_type()) {
|
|
case RegExpAssertion::START_OF_INPUT:
|
|
os_ << "@^i";
|
|
break;
|
|
case RegExpAssertion::END_OF_INPUT:
|
|
os_ << "@$i";
|
|
break;
|
|
case RegExpAssertion::START_OF_LINE:
|
|
os_ << "@^l";
|
|
break;
|
|
case RegExpAssertion::END_OF_LINE:
|
|
os_ << "@$l";
|
|
break;
|
|
case RegExpAssertion::BOUNDARY:
|
|
os_ << "@b";
|
|
break;
|
|
case RegExpAssertion::NON_BOUNDARY:
|
|
os_ << "@B";
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
|
|
os_ << "'";
|
|
Vector<const uc16> chardata = that->data();
|
|
for (int i = 0; i < chardata.length(); i++) {
|
|
os_ << AsUC16(chardata[i]);
|
|
}
|
|
os_ << "'";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
|
|
if (that->elements()->length() == 1) {
|
|
that->elements()->at(0).tree()->Accept(this, data);
|
|
} else {
|
|
os_ << "(!";
|
|
for (int i = 0; i < that->elements()->length(); i++) {
|
|
os_ << " ";
|
|
that->elements()->at(i).tree()->Accept(this, data);
|
|
}
|
|
os_ << ")";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
|
|
os_ << "(# " << that->min() << " ";
|
|
if (that->max() == RegExpTree::kInfinity) {
|
|
os_ << "- ";
|
|
} else {
|
|
os_ << that->max() << " ";
|
|
}
|
|
os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
|
|
that->body()->Accept(this, data);
|
|
os_ << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
|
|
os_ << "(^ ";
|
|
that->body()->Accept(this, data);
|
|
os_ << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
|
|
os_ << "(-> " << (that->is_positive() ? "+ " : "- ");
|
|
that->body()->Accept(this, data);
|
|
os_ << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
|
|
void* data) {
|
|
os_ << "(<- " << that->index() << ")";
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
|
|
os_ << '%';
|
|
return NULL;
|
|
}
|
|
|
|
|
|
std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT
|
|
RegExpUnparser unparser(os, zone);
|
|
Accept(&unparser, NULL);
|
|
return os;
|
|
}
|
|
|
|
|
|
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
|
|
: alternatives_(alternatives) {
|
|
DCHECK(alternatives->length() > 1);
|
|
RegExpTree* first_alternative = alternatives->at(0);
|
|
min_match_ = first_alternative->min_match();
|
|
max_match_ = first_alternative->max_match();
|
|
for (int i = 1; i < alternatives->length(); i++) {
|
|
RegExpTree* alternative = alternatives->at(i);
|
|
min_match_ = Min(min_match_, alternative->min_match());
|
|
max_match_ = Max(max_match_, alternative->max_match());
|
|
}
|
|
}
|
|
|
|
|
|
static int IncreaseBy(int previous, int increase) {
|
|
if (RegExpTree::kInfinity - previous < increase) {
|
|
return RegExpTree::kInfinity;
|
|
} else {
|
|
return previous + increase;
|
|
}
|
|
}
|
|
|
|
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
|
|
: nodes_(nodes) {
|
|
DCHECK(nodes->length() > 1);
|
|
min_match_ = 0;
|
|
max_match_ = 0;
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
RegExpTree* node = nodes->at(i);
|
|
int node_min_match = node->min_match();
|
|
min_match_ = IncreaseBy(min_match_, node_min_match);
|
|
int node_max_match = node->max_match();
|
|
max_match_ = IncreaseBy(max_match_, node_max_match);
|
|
}
|
|
}
|
|
|
|
|
|
CaseClause::CaseClause(Zone* zone, Expression* label,
|
|
ZoneList<Statement*>* statements, int pos)
|
|
: Expression(zone, pos),
|
|
label_(label),
|
|
statements_(statements),
|
|
compare_type_(Type::None(zone)) {}
|
|
|
|
|
|
uint32_t Literal::Hash() {
|
|
return raw_value()->IsString()
|
|
? raw_value()->AsString()->hash()
|
|
: ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
|
|
}
|
|
|
|
|
|
// static
|
|
bool Literal::Match(void* literal1, void* literal2) {
|
|
const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
|
|
const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
|
|
return (x->IsString() && y->IsString() && *x->AsString() == *y->AsString()) ||
|
|
(x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|