55071954bc
Frame slots indexes numbers are used more consistently for computation in both TurboFan and Crankshaft. Specifically, Crankshaft now uses frame slot indexes in LChunk, removing the need for some special-case maths when building the deoptimization translation table. LOG=N R=mstarzinger@chromium.org Committed: https://crrev.com/81423b84dbb2eaf7e1a57b0f6029fc8e643b4755 Cr-Commit-Position: refs/heads/master@{#34078} Review URL: https://codereview.chromium.org/1702593002 Cr-Commit-Position: refs/heads/master@{#34114}
3766 lines
135 KiB
C++
3766 lines
135 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/deoptimizer.h"
|
|
|
|
#include "src/accessors.h"
|
|
#include "src/ast/prettyprinter.h"
|
|
#include "src/codegen.h"
|
|
#include "src/disasm.h"
|
|
#include "src/frames-inl.h"
|
|
#include "src/full-codegen/full-codegen.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/interpreter/interpreter.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/profiler/cpu-profiler.h"
|
|
#include "src/tracing/trace-event.h"
|
|
#include "src/v8.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
|
|
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
|
|
base::OS::CommitPageSize(),
|
|
#if defined(__native_client__)
|
|
// The Native Client port of V8 uses an interpreter,
|
|
// so code pages don't need PROT_EXEC.
|
|
NOT_EXECUTABLE,
|
|
#else
|
|
EXECUTABLE,
|
|
#endif
|
|
NULL);
|
|
}
|
|
|
|
|
|
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
|
|
: allocator_(allocator),
|
|
current_(NULL) {
|
|
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
|
|
deopt_entry_code_entries_[i] = -1;
|
|
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
|
|
}
|
|
}
|
|
|
|
|
|
DeoptimizerData::~DeoptimizerData() {
|
|
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
|
|
allocator_->Free(deopt_entry_code_[i]);
|
|
deopt_entry_code_[i] = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
|
|
if (function_->IsHeapObject()) {
|
|
// Search all deoptimizing code in the native context of the function.
|
|
Context* native_context = function_->context()->native_context();
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined()) {
|
|
Code* code = Code::cast(element);
|
|
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
if (code->contains(addr)) return code;
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
Deoptimizer* Deoptimizer::New(JSFunction* function,
|
|
BailoutType type,
|
|
unsigned bailout_id,
|
|
Address from,
|
|
int fp_to_sp_delta,
|
|
Isolate* isolate) {
|
|
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
|
|
function,
|
|
type,
|
|
bailout_id,
|
|
from,
|
|
fp_to_sp_delta,
|
|
NULL);
|
|
CHECK(isolate->deoptimizer_data()->current_ == NULL);
|
|
isolate->deoptimizer_data()->current_ = deoptimizer;
|
|
return deoptimizer;
|
|
}
|
|
|
|
|
|
// No larger than 2K on all platforms
|
|
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
|
|
|
|
|
|
size_t Deoptimizer::GetMaxDeoptTableSize() {
|
|
int entries_size =
|
|
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
|
|
int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
|
|
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
|
|
commit_page_size) + 1;
|
|
return static_cast<size_t>(commit_page_size * page_count);
|
|
}
|
|
|
|
|
|
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
|
|
Deoptimizer* result = isolate->deoptimizer_data()->current_;
|
|
CHECK_NOT_NULL(result);
|
|
result->DeleteFrameDescriptions();
|
|
isolate->deoptimizer_data()->current_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
|
|
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
|
|
if (jsframe_index == 0) return 0;
|
|
|
|
int frame_index = 0;
|
|
while (jsframe_index >= 0) {
|
|
FrameDescription* frame = output_[frame_index];
|
|
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
|
|
jsframe_index--;
|
|
}
|
|
frame_index++;
|
|
}
|
|
|
|
return frame_index - 1;
|
|
}
|
|
|
|
|
|
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
|
|
JavaScriptFrame* frame,
|
|
int jsframe_index,
|
|
Isolate* isolate) {
|
|
CHECK(frame->is_optimized());
|
|
|
|
TranslatedState translated_values(frame);
|
|
translated_values.Prepare(false, frame->fp());
|
|
|
|
TranslatedState::iterator frame_it = translated_values.end();
|
|
int counter = jsframe_index;
|
|
for (auto it = translated_values.begin(); it != translated_values.end();
|
|
it++) {
|
|
if (it->kind() == TranslatedFrame::kFunction ||
|
|
it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
if (counter == 0) {
|
|
frame_it = it;
|
|
break;
|
|
}
|
|
counter--;
|
|
}
|
|
}
|
|
CHECK(frame_it != translated_values.end());
|
|
|
|
DeoptimizedFrameInfo* info =
|
|
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
|
|
|
|
return info;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
|
|
Isolate* isolate) {
|
|
delete info;
|
|
}
|
|
|
|
|
|
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
|
|
int count,
|
|
BailoutType type) {
|
|
TableEntryGenerator generator(masm, type, count);
|
|
generator.Generate();
|
|
}
|
|
|
|
|
|
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
|
|
Context* context, OptimizedFunctionVisitor* visitor) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
CHECK(context->IsNativeContext());
|
|
|
|
visitor->EnterContext(context);
|
|
|
|
// Visit the list of optimized functions, removing elements that
|
|
// no longer refer to optimized code.
|
|
JSFunction* prev = NULL;
|
|
Object* element = context->OptimizedFunctionsListHead();
|
|
while (!element->IsUndefined()) {
|
|
JSFunction* function = JSFunction::cast(element);
|
|
Object* next = function->next_function_link();
|
|
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
|
|
(visitor->VisitFunction(function),
|
|
function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
|
|
// The function no longer refers to optimized code, or the visitor
|
|
// changed the code to which it refers to no longer be optimized code.
|
|
// Remove the function from this list.
|
|
if (prev != NULL) {
|
|
prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER);
|
|
} else {
|
|
context->SetOptimizedFunctionsListHead(next);
|
|
}
|
|
// The visitor should not alter the link directly.
|
|
CHECK_EQ(function->next_function_link(), next);
|
|
// Set the next function link to undefined to indicate it is no longer
|
|
// in the optimized functions list.
|
|
function->set_next_function_link(context->GetHeap()->undefined_value(),
|
|
SKIP_WRITE_BARRIER);
|
|
} else {
|
|
// The visitor should not alter the link directly.
|
|
CHECK_EQ(function->next_function_link(), next);
|
|
// preserve this element.
|
|
prev = function;
|
|
}
|
|
element = next;
|
|
}
|
|
|
|
visitor->LeaveContext(context);
|
|
}
|
|
|
|
|
|
void Deoptimizer::VisitAllOptimizedFunctions(
|
|
Isolate* isolate,
|
|
OptimizedFunctionVisitor* visitor) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// Run through the list of all native contexts.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined()) {
|
|
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
// Unlink functions referring to code marked for deoptimization, then move
|
|
// marked code from the optimized code list to the deoptimized code list,
|
|
// and patch code for lazy deopt.
|
|
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// A "closure" that unlinks optimized code that is going to be
|
|
// deoptimized from the functions that refer to it.
|
|
class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
|
|
public:
|
|
virtual void EnterContext(Context* context) { } // Don't care.
|
|
virtual void LeaveContext(Context* context) { } // Don't care.
|
|
virtual void VisitFunction(JSFunction* function) {
|
|
Code* code = function->code();
|
|
if (!code->marked_for_deoptimization()) return;
|
|
|
|
// Unlink this function and evict from optimized code map.
|
|
SharedFunctionInfo* shared = function->shared();
|
|
function->set_code(shared->code());
|
|
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimizer unlinked: ");
|
|
function->PrintName(scope.file());
|
|
PrintF(scope.file(),
|
|
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Unlink all functions that refer to marked code.
|
|
SelectedCodeUnlinker unlinker;
|
|
VisitAllOptimizedFunctionsForContext(context, &unlinker);
|
|
|
|
Isolate* isolate = context->GetHeap()->isolate();
|
|
#ifdef DEBUG
|
|
Code* topmost_optimized_code = NULL;
|
|
bool safe_to_deopt_topmost_optimized_code = false;
|
|
// Make sure all activations of optimized code can deopt at their current PC.
|
|
// The topmost optimized code has special handling because it cannot be
|
|
// deoptimized due to weak object dependency.
|
|
for (StackFrameIterator it(isolate, isolate->thread_local_top());
|
|
!it.done(); it.Advance()) {
|
|
StackFrame::Type type = it.frame()->type();
|
|
if (type == StackFrame::OPTIMIZED) {
|
|
Code* code = it.frame()->LookupCode();
|
|
JSFunction* function =
|
|
static_cast<OptimizedFrame*>(it.frame())->function();
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimizer found activation of function: ");
|
|
function->PrintName(scope.file());
|
|
PrintF(scope.file(),
|
|
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
|
|
}
|
|
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
|
|
int deopt_index = safepoint.deoptimization_index();
|
|
// Turbofan deopt is checked when we are patching addresses on stack.
|
|
bool turbofanned = code->is_turbofanned() &&
|
|
function->shared()->asm_function() &&
|
|
!FLAG_turbo_asm_deoptimization;
|
|
bool safe_to_deopt =
|
|
deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
|
|
CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned);
|
|
if (topmost_optimized_code == NULL) {
|
|
topmost_optimized_code = code;
|
|
safe_to_deopt_topmost_optimized_code = safe_to_deopt;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Move marked code from the optimized code list to the deoptimized
|
|
// code list, collecting them into a ZoneList.
|
|
Zone zone;
|
|
ZoneList<Code*> codes(10, &zone);
|
|
|
|
// Walk over all optimized code objects in this native context.
|
|
Code* prev = NULL;
|
|
Object* element = context->OptimizedCodeListHead();
|
|
while (!element->IsUndefined()) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
Object* next = code->next_code_link();
|
|
|
|
if (code->marked_for_deoptimization()) {
|
|
// Put the code into the list for later patching.
|
|
codes.Add(code, &zone);
|
|
|
|
if (prev != NULL) {
|
|
// Skip this code in the optimized code list.
|
|
prev->set_next_code_link(next);
|
|
} else {
|
|
// There was no previous node, the next node is the new head.
|
|
context->SetOptimizedCodeListHead(next);
|
|
}
|
|
|
|
// Move the code to the _deoptimized_ code list.
|
|
code->set_next_code_link(context->DeoptimizedCodeListHead());
|
|
context->SetDeoptimizedCodeListHead(code);
|
|
} else {
|
|
// Not marked; preserve this element.
|
|
prev = code;
|
|
}
|
|
element = next;
|
|
}
|
|
|
|
// We need a handle scope only because of the macro assembler,
|
|
// which is used in code patching in EnsureCodeForDeoptimizationEntry.
|
|
HandleScope scope(isolate);
|
|
|
|
// Now patch all the codes for deoptimization.
|
|
for (int i = 0; i < codes.length(); i++) {
|
|
#ifdef DEBUG
|
|
if (codes[i] == topmost_optimized_code) {
|
|
DCHECK(safe_to_deopt_topmost_optimized_code);
|
|
}
|
|
#endif
|
|
// It is finally time to die, code object.
|
|
|
|
// Remove the code from optimized code map.
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(codes[i]->deoptimization_data());
|
|
SharedFunctionInfo* shared =
|
|
SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
|
|
shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
|
|
|
|
// Do platform-specific patching to force any activations to lazy deopt.
|
|
PatchCodeForDeoptimization(isolate, codes[i]);
|
|
|
|
// We might be in the middle of incremental marking with compaction.
|
|
// Tell collector to treat this code object in a special way and
|
|
// ignore all slots that might have been recorded on it.
|
|
isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, mark all code, then deoptimize.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined()) {
|
|
Context* native_context = Context::cast(context);
|
|
MarkAllCodeForContext(native_context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, deoptimize code already marked.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined()) {
|
|
Context* native_context = Context::cast(context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::MarkAllCodeForContext(Context* context) {
|
|
Object* element = context->OptimizedCodeListHead();
|
|
while (!element->IsUndefined()) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
code->set_marked_for_deoptimization(true);
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(function->GetIsolate());
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
Code* code = function->code();
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
// Mark the code for deoptimization and unlink any functions that also
|
|
// refer to that code. The code cannot be shared across native contexts,
|
|
// so we only need to search one.
|
|
code->set_marked_for_deoptimization(true);
|
|
DeoptimizeMarkedCodeForContext(function->context()->native_context());
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
|
|
deoptimizer->DoComputeOutputFrames();
|
|
}
|
|
|
|
|
|
bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
|
|
StackFrame::Type frame_type) {
|
|
switch (deopt_type) {
|
|
case EAGER:
|
|
case SOFT:
|
|
case LAZY:
|
|
case DEBUGGER:
|
|
return (frame_type == StackFrame::STUB)
|
|
? FLAG_trace_stub_failures
|
|
: FLAG_trace_deopt;
|
|
}
|
|
FATAL("Unsupported deopt type");
|
|
return false;
|
|
}
|
|
|
|
|
|
const char* Deoptimizer::MessageFor(BailoutType type) {
|
|
switch (type) {
|
|
case EAGER: return "eager";
|
|
case SOFT: return "soft";
|
|
case LAZY: return "lazy";
|
|
case DEBUGGER: return "debugger";
|
|
}
|
|
FATAL("Unsupported deopt type");
|
|
return NULL;
|
|
}
|
|
|
|
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
|
|
BailoutType type, unsigned bailout_id, Address from,
|
|
int fp_to_sp_delta, Code* optimized_code)
|
|
: isolate_(isolate),
|
|
function_(function),
|
|
bailout_id_(bailout_id),
|
|
bailout_type_(type),
|
|
from_(from),
|
|
fp_to_sp_delta_(fp_to_sp_delta),
|
|
has_alignment_padding_(0),
|
|
deoptimizing_throw_(false),
|
|
catch_handler_data_(-1),
|
|
catch_handler_pc_offset_(-1),
|
|
input_(nullptr),
|
|
output_count_(0),
|
|
jsframe_count_(0),
|
|
output_(nullptr),
|
|
trace_scope_(nullptr) {
|
|
if (isolate->deoptimizer_lazy_throw()) {
|
|
isolate->set_deoptimizer_lazy_throw(false);
|
|
deoptimizing_throw_ = true;
|
|
}
|
|
|
|
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
|
|
// indicating an internal frame.
|
|
if (function->IsSmi()) {
|
|
function = nullptr;
|
|
}
|
|
DCHECK(from != nullptr);
|
|
if (function != nullptr && function->IsOptimized()) {
|
|
function->shared()->increment_deopt_count();
|
|
if (bailout_type_ == Deoptimizer::SOFT) {
|
|
isolate->counters()->soft_deopts_executed()->Increment();
|
|
// Soft deopts shouldn't count against the overall re-optimization count
|
|
// that can eventually lead to disabling optimization for a function.
|
|
int opt_count = function->shared()->opt_count();
|
|
if (opt_count > 0) opt_count--;
|
|
function->shared()->set_opt_count(opt_count);
|
|
}
|
|
}
|
|
compiled_code_ = FindOptimizedCode(function, optimized_code);
|
|
#if DEBUG
|
|
DCHECK(compiled_code_ != NULL);
|
|
if (type == EAGER || type == SOFT || type == LAZY) {
|
|
DCHECK(compiled_code_->kind() != Code::FUNCTION);
|
|
}
|
|
#endif
|
|
|
|
StackFrame::Type frame_type = function == NULL
|
|
? StackFrame::STUB
|
|
: StackFrame::JAVA_SCRIPT;
|
|
trace_scope_ = TraceEnabledFor(type, frame_type) ?
|
|
new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
|
|
#ifdef DEBUG
|
|
CHECK(AllowHeapAllocation::IsAllowed());
|
|
disallow_heap_allocation_ = new DisallowHeapAllocation();
|
|
#endif // DEBUG
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_));
|
|
}
|
|
unsigned size = ComputeInputFrameSize();
|
|
int parameter_count =
|
|
function == nullptr
|
|
? 0
|
|
: (function->shared()->internal_formal_parameter_count() + 1);
|
|
input_ = new (size) FrameDescription(size, parameter_count);
|
|
input_->SetFrameType(frame_type);
|
|
}
|
|
|
|
|
|
Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
|
|
Code* optimized_code) {
|
|
switch (bailout_type_) {
|
|
case Deoptimizer::SOFT:
|
|
case Deoptimizer::EAGER:
|
|
case Deoptimizer::LAZY: {
|
|
Code* compiled_code = FindDeoptimizingCode(from_);
|
|
return (compiled_code == NULL)
|
|
? static_cast<Code*>(isolate_->FindCodeObject(from_))
|
|
: compiled_code;
|
|
}
|
|
case Deoptimizer::DEBUGGER:
|
|
DCHECK(optimized_code->contains(from_));
|
|
return optimized_code;
|
|
}
|
|
FATAL("Could not find code for optimized function");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Deoptimizer::PrintFunctionName() {
|
|
if (function_->IsJSFunction()) {
|
|
function_->ShortPrint(trace_scope_->file());
|
|
} else {
|
|
PrintF(trace_scope_->file(),
|
|
"%s", Code::Kind2String(compiled_code_->kind()));
|
|
}
|
|
}
|
|
|
|
|
|
Deoptimizer::~Deoptimizer() {
|
|
DCHECK(input_ == NULL && output_ == NULL);
|
|
DCHECK(disallow_heap_allocation_ == NULL);
|
|
delete trace_scope_;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeleteFrameDescriptions() {
|
|
delete input_;
|
|
for (int i = 0; i < output_count_; ++i) {
|
|
if (output_[i] != input_) delete output_[i];
|
|
}
|
|
delete[] output_;
|
|
input_ = NULL;
|
|
output_ = NULL;
|
|
#ifdef DEBUG
|
|
CHECK(!AllowHeapAllocation::IsAllowed());
|
|
CHECK(disallow_heap_allocation_ != NULL);
|
|
delete disallow_heap_allocation_;
|
|
disallow_heap_allocation_ = NULL;
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
|
|
int id,
|
|
BailoutType type,
|
|
GetEntryMode mode) {
|
|
CHECK_GE(id, 0);
|
|
if (id >= kMaxNumberOfEntries) return NULL;
|
|
if (mode == ENSURE_ENTRY_CODE) {
|
|
EnsureCodeForDeoptimizationEntry(isolate, type, id);
|
|
} else {
|
|
CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
|
|
}
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
CHECK_LT(type, kBailoutTypesWithCodeEntry);
|
|
MemoryChunk* base = data->deopt_entry_code_[type];
|
|
return base->area_start() + (id * table_entry_size_);
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
|
|
Address addr,
|
|
BailoutType type) {
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
MemoryChunk* base = data->deopt_entry_code_[type];
|
|
Address start = base->area_start();
|
|
if (addr < start ||
|
|
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
|
|
return kNotDeoptimizationEntry;
|
|
}
|
|
DCHECK_EQ(0,
|
|
static_cast<int>(addr - start) % table_entry_size_);
|
|
return static_cast<int>(addr - start) / table_entry_size_;
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
|
|
BailoutId id,
|
|
SharedFunctionInfo* shared) {
|
|
// TODO(kasperl): For now, we do a simple linear search for the PC
|
|
// offset associated with the given node id. This should probably be
|
|
// changed to a binary search.
|
|
int length = data->DeoptPoints();
|
|
for (int i = 0; i < length; i++) {
|
|
if (data->AstId(i) == id) {
|
|
return data->PcAndState(i)->value();
|
|
}
|
|
}
|
|
OFStream os(stderr);
|
|
os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
|
|
<< "[method: " << shared->DebugName()->ToCString().get() << "]\n"
|
|
<< "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl;
|
|
|
|
shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared,
|
|
0xfefefeff);
|
|
FATAL("unable to find pc offset during deoptimization");
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
|
|
int length = 0;
|
|
// Count all entries in the deoptimizing code list of every context.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined()) {
|
|
Context* native_context = Context::cast(context);
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined()) {
|
|
Code* code = Code::cast(element);
|
|
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
length++;
|
|
element = code->next_code_link();
|
|
}
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
namespace {
|
|
|
|
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
|
|
switch (translated_frame->kind()) {
|
|
case TranslatedFrame::kFunction: {
|
|
BailoutId node_id = translated_frame->node_id();
|
|
JSFunction* function =
|
|
JSFunction::cast(translated_frame->begin()->GetRawValue());
|
|
Code* non_optimized_code = function->shared()->code();
|
|
FixedArray* raw_data = non_optimized_code->deoptimization_data();
|
|
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
|
|
unsigned pc_and_state =
|
|
Deoptimizer::GetOutputInfo(data, node_id, function->shared());
|
|
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
|
|
HandlerTable* table =
|
|
HandlerTable::cast(non_optimized_code->handler_table());
|
|
HandlerTable::CatchPrediction prediction;
|
|
return table->LookupRange(pc_offset, data_out, &prediction);
|
|
}
|
|
case TranslatedFrame::kInterpretedFunction: {
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
JSFunction* function =
|
|
JSFunction::cast(translated_frame->begin()->GetRawValue());
|
|
BytecodeArray* bytecode = function->shared()->bytecode_array();
|
|
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
|
|
HandlerTable::CatchPrediction prediction;
|
|
return table->LookupRange(bytecode_offset, data_out, &prediction);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
void Deoptimizer::DoComputeOutputFrames() {
|
|
base::ElapsedTimer timer;
|
|
|
|
// Determine basic deoptimization information. The optimized frame is
|
|
// described by the input data.
|
|
DeoptimizationInputData* input_data =
|
|
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
|
|
|
|
if (trace_scope_ != NULL) {
|
|
timer.Start();
|
|
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" (opt #%d) @%d, FP to SP delta: %d]\n",
|
|
input_data->OptimizationId()->value(),
|
|
bailout_id_,
|
|
fp_to_sp_delta_);
|
|
if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
|
|
(compiled_code_->is_hydrogen_stub())) {
|
|
compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_);
|
|
}
|
|
}
|
|
|
|
BailoutId node_id = input_data->AstId(bailout_id_);
|
|
ByteArray* translations = input_data->TranslationByteArray();
|
|
unsigned translation_index =
|
|
input_data->TranslationIndex(bailout_id_)->value();
|
|
|
|
TranslationIterator state_iterator(translations, translation_index);
|
|
translated_state_.Init(
|
|
input_->GetFramePointerAddress(), &state_iterator,
|
|
input_data->LiteralArray(), input_->GetRegisterValues(),
|
|
trace_scope_ == nullptr ? nullptr : trace_scope_->file());
|
|
|
|
// Do the input frame to output frame(s) translation.
|
|
size_t count = translated_state_.frames().size();
|
|
// If we are supposed to go to the catch handler, find the catching frame
|
|
// for the catch and make sure we only deoptimize upto that frame.
|
|
if (deoptimizing_throw_) {
|
|
size_t catch_handler_frame_index = count;
|
|
for (size_t i = count; i-- > 0;) {
|
|
catch_handler_pc_offset_ = LookupCatchHandler(
|
|
&(translated_state_.frames()[i]), &catch_handler_data_);
|
|
if (catch_handler_pc_offset_ >= 0) {
|
|
catch_handler_frame_index = i;
|
|
break;
|
|
}
|
|
}
|
|
CHECK_LT(catch_handler_frame_index, count);
|
|
count = catch_handler_frame_index + 1;
|
|
}
|
|
|
|
DCHECK(output_ == NULL);
|
|
output_ = new FrameDescription*[count];
|
|
for (size_t i = 0; i < count; ++i) {
|
|
output_[i] = NULL;
|
|
}
|
|
output_count_ = static_cast<int>(count);
|
|
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
stack_fp_ = reinterpret_cast<Address>(
|
|
input_->GetRegister(fp_reg.code()) +
|
|
has_alignment_padding_ * kPointerSize);
|
|
|
|
// Translate each output frame.
|
|
for (size_t i = 0; i < count; ++i) {
|
|
// Read the ast node id, function, and frame height for this output frame.
|
|
int frame_index = static_cast<int>(i);
|
|
switch (translated_state_.frames()[i].kind()) {
|
|
case TranslatedFrame::kFunction:
|
|
DoComputeJSFrame(frame_index, deoptimizing_throw_ && i == count - 1);
|
|
jsframe_count_++;
|
|
break;
|
|
case TranslatedFrame::kInterpretedFunction:
|
|
DoComputeInterpretedFrame(frame_index,
|
|
deoptimizing_throw_ && i == count - 1);
|
|
jsframe_count_++;
|
|
break;
|
|
case TranslatedFrame::kArgumentsAdaptor:
|
|
DoComputeArgumentsAdaptorFrame(frame_index);
|
|
break;
|
|
case TranslatedFrame::kConstructStub:
|
|
DoComputeConstructStubFrame(frame_index);
|
|
break;
|
|
case TranslatedFrame::kGetter:
|
|
DoComputeAccessorStubFrame(frame_index, false);
|
|
break;
|
|
case TranslatedFrame::kSetter:
|
|
DoComputeAccessorStubFrame(frame_index, true);
|
|
break;
|
|
case TranslatedFrame::kCompiledStub:
|
|
DoComputeCompiledStubFrame(frame_index);
|
|
break;
|
|
case TranslatedFrame::kInvalid:
|
|
FATAL("invalid frame");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Print some helpful diagnostic information.
|
|
if (trace_scope_ != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
int index = output_count_ - 1; // Index of the topmost frame.
|
|
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
|
|
" took %0.3f ms]\n",
|
|
bailout_id_,
|
|
node_id.ToInt(),
|
|
output_[index]->GetPc(),
|
|
FullCodeGenerator::State2String(
|
|
static_cast<FullCodeGenerator::State>(
|
|
output_[index]->GetState()->value())),
|
|
has_alignment_padding_ ? "with padding" : "no padding",
|
|
ms);
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeJSFrame(int frame_index, bool goto_catch_handler) {
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
int input_index = 0;
|
|
|
|
BailoutId node_id = translated_frame->node_id();
|
|
unsigned height =
|
|
translated_frame->height() - 1; // Do not count the context.
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
if (goto_catch_handler) {
|
|
// Take the stack height from the handler table.
|
|
height = catch_handler_data_;
|
|
// We also make space for the exception itself.
|
|
height_in_bytes = (height + 1) * kPointerSize;
|
|
CHECK(is_topmost);
|
|
}
|
|
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(), " translating frame ");
|
|
base::SmartArrayPointer<char> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s", name.get());
|
|
PrintF(trace_scope_->file(),
|
|
" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
|
|
PrintF(trace_scope_->file(), " => node=%d, height=%d%s\n", node_id.ToInt(),
|
|
height_in_bytes, goto_catch_handler ? " (throw)" : "");
|
|
}
|
|
|
|
// The 'fixed' part of the frame consists of the incoming parameters and
|
|
// the part described by JavaScriptFrameConstants.
|
|
unsigned fixed_frame_size = ComputeJavascriptFixedSize(shared);
|
|
unsigned input_frame_size = input_->GetFrameSize();
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = shared->internal_formal_parameter_count() + 1;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
|
|
|
|
CHECK(frame_index >= 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address for the bottommost output frame can be computed from
|
|
// the input frame pointer and the output frame's height. For all
|
|
// subsequent output frames, it can be computed from the previous one's
|
|
// top address and the current frame's size.
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
// Determine whether the input frame contains alignment padding.
|
|
has_alignment_padding_ =
|
|
(!compiled_code_->is_turbofanned() && HasAlignmentPadding(shared)) ? 1
|
|
: 0;
|
|
// 2 = context and function in the frame.
|
|
// If the optimized frame had alignment padding, adjust the frame pointer
|
|
// to point to the new position of the old frame pointer after padding
|
|
// is removed. Subtract 2 * kPointerSize for the context and function slots.
|
|
top_address = input_->GetRegister(fp_reg.code()) -
|
|
StandardFrameConstants::kFixedFrameSizeFromFp -
|
|
height_in_bytes + has_alignment_padding_ * kPointerSize;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
unsigned input_offset = input_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
input_offset -= (parameter_count * kPointerSize);
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, and the function. Synthesize their values and set them up
|
|
// explicitly.
|
|
//
|
|
// The caller's pc for the bottommost output frame is the same as in the
|
|
// input frame. For all subsequent output frames, it can be read from the
|
|
// previous one. This frame's pc can be computed from the non-optimized
|
|
// function code and AST id of the bailout.
|
|
output_offset -= kPCOnStackSize;
|
|
input_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// The caller's frame pointer for the bottommost output frame is the same
|
|
// as in the input frame. For all subsequent output frames, it can be
|
|
// read from the previous one. Also compute and set this frame's frame
|
|
// pointer.
|
|
output_offset -= kFPOnStackSize;
|
|
input_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
DCHECK(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
|
|
has_alignment_padding_ * kPointerSize) == fp_value);
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
DCHECK(!is_bottommost || !has_alignment_padding_ ||
|
|
(fp_value & kPointerSize) != 0);
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// For the bottommost output frame the constant pool pointer can be gotten
|
|
// from the input frame. For subsequent output frames, it can be read from
|
|
// the previous frame.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// For the bottommost output frame the context can be gotten from the input
|
|
// frame. For all subsequent output frames it can be gotten from the function
|
|
// so long as we don't inline functions that need local contexts.
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
|
|
TranslatedFrame::iterator context_pos = value_iterator;
|
|
int context_input_index = input_index;
|
|
// When deoptimizing into a catch block, we need to take the context
|
|
// from just above the top of the operand stack (we push the context
|
|
// at the entry of the try block).
|
|
if (goto_catch_handler) {
|
|
for (unsigned i = 0; i < height + 1; ++i) {
|
|
context_pos++;
|
|
context_input_index++;
|
|
}
|
|
}
|
|
// Read the context from the translations.
|
|
Object* context = context_pos->GetRawValue();
|
|
if (context == isolate_->heap()->undefined_value()) {
|
|
// If the context was optimized away, just use the context from
|
|
// the activation. This should only apply to Crankshaft code.
|
|
CHECK(!compiled_code_->is_turbofanned());
|
|
context =
|
|
is_bottommost
|
|
? reinterpret_cast<Object*>(input_->GetFrameSlot(input_offset))
|
|
: function->context();
|
|
}
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
output_frame->SetContext(value);
|
|
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
|
|
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
|
|
"context ");
|
|
if (context == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, context_pos});
|
|
}
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
// The function was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
// The function for the bottommost output frame should also agree with the
|
|
// input frame.
|
|
DCHECK(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
// Translate the rest of the frame.
|
|
for (unsigned i = 0; i < height; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
if (goto_catch_handler) {
|
|
// Write out the exception for the catch handler.
|
|
output_offset -= kPointerSize;
|
|
Object* exception_obj = reinterpret_cast<Object*>(
|
|
input_->GetRegister(FullCodeGenerator::result_register().code()));
|
|
WriteValueToOutput(exception_obj, input_index, frame_index, output_offset,
|
|
"exception ");
|
|
input_index++;
|
|
}
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
// Update constant pool.
|
|
Code* non_optimized_code = shared->code();
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
JavaScriptFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
}
|
|
|
|
// Compute this frame's PC, state, and continuation.
|
|
FixedArray* raw_data = non_optimized_code->deoptimization_data();
|
|
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
|
|
Address start = non_optimized_code->instruction_start();
|
|
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
|
|
unsigned pc_offset = goto_catch_handler
|
|
? catch_handler_pc_offset_
|
|
: FullCodeGenerator::PcField::decode(pc_and_state);
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
|
|
output_frame->SetPc(pc_value);
|
|
|
|
// If we are going to the catch handler, then the exception lives in
|
|
// the accumulator.
|
|
FullCodeGenerator::State state =
|
|
goto_catch_handler ? FullCodeGenerator::TOS_REG
|
|
: FullCodeGenerator::StateField::decode(pc_and_state);
|
|
output_frame->SetState(Smi::FromInt(state));
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost && bailout_type_ != DEBUGGER) {
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
|
|
if (bailout_type_ == LAZY) {
|
|
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
|
|
} else if (bailout_type_ == SOFT) {
|
|
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
|
|
} else {
|
|
CHECK_EQ(bailout_type_, EAGER);
|
|
}
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeInterpretedFrame(int frame_index,
|
|
bool goto_catch_handler) {
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(), " translating interpreted frame ");
|
|
base::SmartArrayPointer<char> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s", name.get());
|
|
PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
|
|
bytecode_offset, height_in_bytes,
|
|
goto_catch_handler ? " (throw)" : "");
|
|
}
|
|
if (goto_catch_handler) {
|
|
bytecode_offset = catch_handler_pc_offset_;
|
|
}
|
|
|
|
// The 'fixed' part of the frame consists of the incoming parameters and
|
|
// the part described by InterpreterFrameConstants.
|
|
unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
|
|
unsigned input_frame_size = input_->GetFrameSize();
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = shared->internal_formal_parameter_count() + 1;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::INTERPRETED);
|
|
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
CHECK(frame_index >= 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address for the bottommost output frame can be computed from
|
|
// the input frame pointer and the output frame's height. For all
|
|
// subsequent output frames, it can be computed from the previous one's
|
|
// top address and the current frame's size.
|
|
Register fp_reg = InterpretedFrame::fp_register();
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
// Subtract interpreter fixed frame size for the context function slots,
|
|
// new,target and bytecode offset.
|
|
top_address = input_->GetRegister(fp_reg.code()) -
|
|
InterpreterFrameConstants::kFixedFrameSizeFromFp -
|
|
height_in_bytes;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
unsigned input_offset = input_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
input_offset -= (parameter_count * kPointerSize);
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, the function, new.target and the bytecode offset. Synthesize
|
|
// their values and set them up
|
|
// explicitly.
|
|
//
|
|
// The caller's pc for the bottommost output frame is the same as in the
|
|
// input frame. For all subsequent output frames, it can be read from the
|
|
// previous one. This frame's pc can be computed from the non-optimized
|
|
// function code and AST id of the bailout.
|
|
output_offset -= kPCOnStackSize;
|
|
input_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// The caller's frame pointer for the bottommost output frame is the same
|
|
// as in the input frame. For all subsequent output frames, it can be
|
|
// read from the previous one. Also compute and set this frame's frame
|
|
// pointer.
|
|
output_offset -= kFPOnStackSize;
|
|
input_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
DCHECK(!is_bottommost ||
|
|
(input_->GetRegister(fp_reg.code()) +
|
|
has_alignment_padding_ * kPointerSize) == fp_value);
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
DCHECK(!is_bottommost || !has_alignment_padding_ ||
|
|
(fp_value & kPointerSize) != 0);
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// For the bottommost output frame the constant pool pointer can be gotten
|
|
// from the input frame. For subsequent output frames, it can be read from
|
|
// the previous frame.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = input_->GetFrameSlot(input_offset);
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// For the bottommost output frame the context can be gotten from the input
|
|
// frame. For all subsequent output frames it can be gotten from the function
|
|
// so long as we don't inline functions that need local contexts.
|
|
Register context_reg = InterpretedFrame::context_register();
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
|
|
// When deoptimizing into a catch block, we need to take the context
|
|
// from a register that was specified in the handler table.
|
|
TranslatedFrame::iterator context_pos = value_iterator;
|
|
int context_input_index = input_index;
|
|
if (goto_catch_handler) {
|
|
// Skip to the translated value of the register specified
|
|
// in the handler table.
|
|
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
|
|
context_pos++;
|
|
context_input_index++;
|
|
}
|
|
}
|
|
// Read the context from the translations.
|
|
Object* context = context_pos->GetRawValue();
|
|
// The context should not be a placeholder for a materialized object.
|
|
CHECK(context != isolate_->heap()->arguments_marker());
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
output_frame->SetContext(value);
|
|
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
|
|
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
|
|
"context ");
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
// The function was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
// The function for the bottommost output frame should also agree with the
|
|
// input frame.
|
|
DCHECK(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
// The new.target slot is only used during function activiation which is
|
|
// before the first deopt point, so should never be needed. Just set it to
|
|
// undefined.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
Object* new_target = isolate_->heap()->undefined_value();
|
|
WriteValueToOutput(new_target, 0, frame_index, output_offset, "new_target ");
|
|
|
|
// Set the bytecode array pointer.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
Object* bytecode_array = shared->bytecode_array();
|
|
WriteValueToOutput(bytecode_array, 0, frame_index, output_offset,
|
|
"bytecode array ");
|
|
|
|
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
input_offset -= kPointerSize;
|
|
int raw_bytecode_offset =
|
|
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
|
|
Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
|
|
WriteValueToOutput(smi_bytecode_offset, 0, frame_index, output_offset,
|
|
"bytecode offset ");
|
|
|
|
// Translate the rest of the interpreter registers in the frame.
|
|
for (unsigned i = 0; i < height - 1; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
// Put the accumulator on the stack. It will be popped by the
|
|
// InterpreterNotifyDeopt builtin (possibly after materialization).
|
|
output_offset -= kPointerSize;
|
|
if (goto_catch_handler) {
|
|
// If we are lazy deopting to a catch handler, we set the accumulator to
|
|
// the exception (which lives in the result register).
|
|
intptr_t accumulator_value =
|
|
input_->GetRegister(FullCodeGenerator::result_register().code());
|
|
WriteValueToOutput(reinterpret_cast<Object*>(accumulator_value), 0,
|
|
frame_index, output_offset, "accumulator ");
|
|
value_iterator++;
|
|
} else {
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* dispatch_builtin =
|
|
builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
|
|
output_frame->SetPc(reinterpret_cast<intptr_t>(dispatch_builtin->entry()));
|
|
output_frame->SetState(0);
|
|
|
|
// Update constant pool.
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(dispatch_builtin->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
InterpretedFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost && bailout_type_ != DEBUGGER) {
|
|
Code* continuation =
|
|
builtins->builtin(Builtins::kInterpreterNotifyDeoptimized);
|
|
if (bailout_type_ == LAZY) {
|
|
continuation =
|
|
builtins->builtin(Builtins::kInterpreterNotifyLazyDeoptimized);
|
|
} else if (bailout_type_ == SOFT) {
|
|
continuation =
|
|
builtins->builtin(Builtins::kInterpreterNotifySoftDeoptimized);
|
|
} else {
|
|
CHECK_EQ(bailout_type_, EAGER);
|
|
}
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeArgumentsAdaptorFrame(int frame_index) {
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating arguments adaptor => height=%d\n", height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = height;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
|
|
|
|
// Arguments adaptor can not be topmost or bottommost.
|
|
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
|
|
CHECK(output_[frame_index] == NULL);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous
|
|
// frame's top and this frame's size.
|
|
intptr_t top_address;
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used in place of the context.
|
|
output_offset -= kPointerSize;
|
|
intptr_t context = reinterpret_cast<intptr_t>(
|
|
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
output_frame->SetFrameSlot(output_offset, context);
|
|
DebugPrintOutputSlot(context, frame_index, output_offset,
|
|
"context (adaptor sentinel)\n");
|
|
|
|
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
DCHECK(0 == output_offset);
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* adaptor_trampoline =
|
|
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(
|
|
adaptor_trampoline->instruction_start() +
|
|
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
|
|
output_frame->SetPc(pc_value);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeConstructStubFrame(int frame_index) {
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
// Skip function.
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating construct stub => height=%d\n", height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::CONSTRUCT);
|
|
|
|
// Construct stub can not be topmost or bottommost.
|
|
DCHECK(frame_index > 0 && frame_index < output_count_ - 1);
|
|
DCHECK(output_[frame_index] == NULL);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous
|
|
// frame's top and this frame's size.
|
|
intptr_t top_address;
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
int parameter_count = height;
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
// The allocated receiver of a construct stub frame is passed as the
|
|
// receiver parameter through the translation. It might be encoding
|
|
// a captured object, override the slot address for a captured object.
|
|
WriteTranslatedValueToOutput(
|
|
&value_iterator, &input_index, frame_index, output_offset, nullptr,
|
|
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
|
|
}
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// The context can be gotten from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetContext();
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
|
|
|
|
// A marker value is used in place of the function.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"function (construct sentinel)\n");
|
|
|
|
// The output frame reflects a JSConstructStubGeneric frame.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(construct_stub);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
|
|
|
|
// The allocation site.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value());
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "allocation site\n");
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
// The newly allocated object was passed as receiver in the artificial
|
|
// constructor stub environment created by HEnvironment::CopyForInlining().
|
|
output_offset -= kPointerSize;
|
|
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"allocated receiver\n");
|
|
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
intptr_t pc = reinterpret_cast<intptr_t>(
|
|
construct_stub->instruction_start() +
|
|
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
|
|
output_frame->SetPc(pc);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeAccessorStubFrame(int frame_index,
|
|
bool is_setter_stub_frame) {
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
// Skip accessor.
|
|
value_iterator++;
|
|
input_index++;
|
|
// The receiver (and the implicit return value, if any) are expected in
|
|
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
|
|
// frame. This means that we have to use a height of 0.
|
|
unsigned height = 0;
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
const char* kind = is_setter_stub_frame ? "setter" : "getter";
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating %s stub => height=%u\n", kind, height_in_bytes);
|
|
}
|
|
|
|
// We need 1 stack entry for the return address and enough entries for the
|
|
// StackFrame::INTERNAL (FP, context, frame type, code object and constant
|
|
// pool (if enabled)- see MacroAssembler::EnterFrame).
|
|
// For a setter stub frame we need one additional entry for the implicit
|
|
// return value, see StoreStubCompiler::CompileStoreViaSetter.
|
|
unsigned fixed_frame_entries =
|
|
(StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
|
|
(is_setter_stub_frame ? 1 : 0);
|
|
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::INTERNAL);
|
|
|
|
// A frame for an accessor stub can not be the topmost or bottommost one.
|
|
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
unsigned output_offset = output_frame_size;
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// The context can be gotten from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetContext();
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
|
|
|
|
// A marker value is used in place of the function.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "function ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%s sentinel)\n", kind);
|
|
}
|
|
|
|
// Get Code object from accessor stub.
|
|
output_offset -= kPointerSize;
|
|
Builtins::Name name = is_setter_stub_frame ?
|
|
Builtins::kStoreIC_Setter_ForDeopt :
|
|
Builtins::kLoadIC_Getter_ForDeopt;
|
|
Code* accessor_stub = isolate_->builtins()->builtin(name);
|
|
value = reinterpret_cast<intptr_t>(accessor_stub);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
|
|
|
|
// Skip receiver.
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
if (is_setter_stub_frame) {
|
|
// The implicit return value was part of the artificial setter stub
|
|
// environment.
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
Smi* offset = is_setter_stub_frame ?
|
|
isolate_->heap()->setter_stub_deopt_pc_offset() :
|
|
isolate_->heap()->getter_stub_deopt_pc_offset();
|
|
intptr_t pc = reinterpret_cast<intptr_t>(
|
|
accessor_stub->instruction_start() + offset->value());
|
|
output_frame->SetPc(pc);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeCompiledStubFrame(int frame_index) {
|
|
//
|
|
// FROM TO
|
|
// | .... | | .... |
|
|
// +-------------------------+ +-------------------------+
|
|
// | JSFunction continuation | | JSFunction continuation |
|
|
// +-------------------------+ +-------------------------+
|
|
// | | saved frame (FP) | | saved frame (FP) |
|
|
// | +=========================+<-fpreg +=========================+<-fpreg
|
|
// | |constant pool (if ool_cp)| |constant pool (if ool_cp)|
|
|
// | +-------------------------+ +-------------------------|
|
|
// | | JSFunction context | | JSFunction context |
|
|
// v +-------------------------+ +-------------------------|
|
|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
|
|
// +-------------------------+ +-------------------------+
|
|
// | | | caller args.arguments_ |
|
|
// | ... | +-------------------------+
|
|
// | | | caller args.length_ |
|
|
// |-------------------------|<-spreg +-------------------------+
|
|
// | caller args pointer |
|
|
// +-------------------------+
|
|
// | caller stack param 1 |
|
|
// parameters in registers +-------------------------+
|
|
// and spilled to stack | .... |
|
|
// +-------------------------+
|
|
// | caller stack param n |
|
|
// +-------------------------+<-spreg
|
|
// reg = number of parameters
|
|
// reg = failure handler address
|
|
// reg = saved frame
|
|
// reg = JSFunction context
|
|
//
|
|
// Caller stack params contain the register parameters to the stub first,
|
|
// and then, if the descriptor specifies a constant number of stack
|
|
// parameters, the stack parameters as well.
|
|
|
|
TranslatedFrame* translated_frame =
|
|
&(translated_state_.frames()[frame_index]);
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
CHECK(compiled_code_->is_hydrogen_stub());
|
|
int major_key = CodeStub::GetMajorKey(compiled_code_);
|
|
CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
|
|
|
|
// The output frame must have room for all pushed register parameters
|
|
// and the standard stack frame slots. Include space for an argument
|
|
// object to the callee and optionally the space to pass the argument
|
|
// object to the stub failure handler.
|
|
int param_count = descriptor.GetRegisterParameterCount();
|
|
int stack_param_count = descriptor.GetStackParameterCount();
|
|
// The translated frame contains all of the register parameters
|
|
// plus the context.
|
|
CHECK_EQ(translated_frame->height(), param_count + 1);
|
|
CHECK_GE(param_count, 0);
|
|
|
|
int height_in_bytes = kPointerSize * (param_count + stack_param_count) +
|
|
sizeof(Arguments) + kPointerSize;
|
|
int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
|
|
int input_frame_size = input_->GetFrameSize();
|
|
int output_frame_size = height_in_bytes + fixed_frame_size;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating %s => StubFailureTrampolineStub, height=%d\n",
|
|
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key)),
|
|
height_in_bytes);
|
|
}
|
|
|
|
// The stub failure trampoline is a single frame.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
|
|
CHECK_EQ(frame_index, 0);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address for the output frame can be computed from the input
|
|
// frame pointer and the output frame's height. Subtract space for the
|
|
// context and function slots.
|
|
Register fp_reg = StubFailureTrampolineFrame::fp_register();
|
|
intptr_t top_address = input_->GetRegister(fp_reg.code()) -
|
|
StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Read caller's PC (JSFunction continuation) from the input frame.
|
|
unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
|
|
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
|
|
intptr_t value = input_->GetFrameSlot(input_frame_offset);
|
|
output_frame->SetCallerPc(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's pc\n");
|
|
|
|
// Read caller's FP from the input frame, and set this frame's FP.
|
|
input_frame_offset -= kFPOnStackSize;
|
|
value = input_->GetFrameSlot(input_frame_offset);
|
|
output_frame_offset -= kFPOnStackSize;
|
|
output_frame->SetCallerFp(output_frame_offset, value);
|
|
intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
|
|
output_frame->SetRegister(fp_reg.code(), frame_ptr);
|
|
output_frame->SetFp(frame_ptr);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the input frame.
|
|
input_frame_offset -= kPointerSize;
|
|
value = input_->GetFrameSlot(input_frame_offset);
|
|
output_frame_offset -= kPointerSize;
|
|
output_frame->SetCallerConstantPool(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// Remember where the context will need to be written back from the deopt
|
|
// translation.
|
|
output_frame_offset -= kPointerSize;
|
|
unsigned context_frame_offset = output_frame_offset;
|
|
|
|
// A marker value is used in place of the function.
|
|
output_frame_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(
|
|
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"function (stub failure sentinel)\n");
|
|
|
|
intptr_t caller_arg_count = stack_param_count;
|
|
bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
|
|
|
|
// Build the Arguments object for the caller's parameters and a pointer to it.
|
|
output_frame_offset -= kPointerSize;
|
|
int args_arguments_offset = output_frame_offset;
|
|
intptr_t the_hole = reinterpret_cast<intptr_t>(
|
|
isolate_->heap()->the_hole_value());
|
|
if (arg_count_known) {
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(caller_arg_count - 1) * kPointerSize;
|
|
} else {
|
|
value = the_hole;
|
|
}
|
|
|
|
output_frame->SetFrameSlot(args_arguments_offset, value);
|
|
DebugPrintOutputSlot(
|
|
value, frame_index, args_arguments_offset,
|
|
arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n");
|
|
|
|
output_frame_offset -= kPointerSize;
|
|
int length_frame_offset = output_frame_offset;
|
|
value = arg_count_known ? caller_arg_count : the_hole;
|
|
output_frame->SetFrameSlot(length_frame_offset, value);
|
|
DebugPrintOutputSlot(
|
|
value, frame_index, length_frame_offset,
|
|
arg_count_known ? "args.length\n" : "args.length (the hole)\n");
|
|
|
|
output_frame_offset -= kPointerSize;
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
|
|
(output_frame_size - output_frame_offset) + kPointerSize;
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n");
|
|
|
|
// Copy the register parameters to the failure frame.
|
|
int arguments_length_offset = -1;
|
|
for (int i = 0; i < param_count; ++i) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, 0,
|
|
output_frame_offset);
|
|
|
|
if (!arg_count_known &&
|
|
descriptor.GetRegisterParameter(i)
|
|
.is(descriptor.stack_parameter_count())) {
|
|
arguments_length_offset = output_frame_offset;
|
|
}
|
|
}
|
|
|
|
Object* maybe_context = value_iterator->GetRawValue();
|
|
CHECK(maybe_context->IsContext());
|
|
Register context_reg = StubFailureTrampolineFrame::context_register();
|
|
value = reinterpret_cast<intptr_t>(maybe_context);
|
|
output_frame->SetRegister(context_reg.code(), value);
|
|
output_frame->SetFrameSlot(context_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, context_frame_offset, "context\n");
|
|
++value_iterator;
|
|
|
|
// Copy constant stack parameters to the failure frame. If the number of stack
|
|
// parameters is not known in the descriptor, the arguments object is the way
|
|
// to access them.
|
|
for (int i = 0; i < stack_param_count; i++) {
|
|
output_frame_offset -= kPointerSize;
|
|
Object** stack_parameter = reinterpret_cast<Object**>(
|
|
frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(stack_param_count - i - 1) * kPointerSize);
|
|
value = reinterpret_cast<intptr_t>(*stack_parameter);
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"stack parameter\n");
|
|
}
|
|
|
|
CHECK_EQ(0u, output_frame_offset);
|
|
|
|
if (!arg_count_known) {
|
|
CHECK_GE(arguments_length_offset, 0);
|
|
// We know it's a smi because 1) the code stub guarantees the stack
|
|
// parameter count is in smi range, and 2) the DoTranslateCommand in the
|
|
// parameter loop above translated that to a tagged value.
|
|
Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
|
|
output_frame->GetFrameSlot(arguments_length_offset));
|
|
caller_arg_count = smi_caller_arg_count->value();
|
|
output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
|
|
DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset,
|
|
"args.length\n");
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(caller_arg_count - 1) * kPointerSize;
|
|
output_frame->SetFrameSlot(args_arguments_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, args_arguments_offset,
|
|
"args.arguments");
|
|
}
|
|
|
|
// Copy the double registers from the input into the output frame.
|
|
CopyDoubleRegisters(output_frame);
|
|
|
|
// Fill registers containing handler and number of parameters.
|
|
SetPlatformCompiledStubRegisters(output_frame, &descriptor);
|
|
|
|
// Compute this frame's PC, state, and continuation.
|
|
Code* trampoline = NULL;
|
|
StubFunctionMode function_mode = descriptor.function_mode();
|
|
StubFailureTrampolineStub(isolate_, function_mode)
|
|
.FindCodeInCache(&trampoline);
|
|
DCHECK(trampoline != NULL);
|
|
output_frame->SetPc(reinterpret_cast<intptr_t>(
|
|
trampoline->instruction_start()));
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
Register constant_pool_reg =
|
|
StubFailureTrampolineFrame::constant_pool_pointer_register();
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(trampoline->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
|
|
Code* notify_failure =
|
|
isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(notify_failure->entry()));
|
|
}
|
|
|
|
|
|
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
|
|
DCHECK_NE(DEBUGGER, bailout_type_);
|
|
|
|
// Walk to the last JavaScript output frame to find out if it has
|
|
// adapted arguments.
|
|
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
|
|
if (frame_index != 0) it->Advance();
|
|
}
|
|
translated_state_.Prepare(it->frame()->has_adapted_arguments(), stack_fp_);
|
|
|
|
for (auto& materialization : values_to_materialize_) {
|
|
Handle<Object> value = materialization.value_->GetValue();
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
|
|
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
|
|
reinterpret_cast<intptr_t>(*value));
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), "\n");
|
|
}
|
|
|
|
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
|
|
reinterpret_cast<intptr_t>(*value);
|
|
}
|
|
|
|
isolate_->materialized_object_store()->Remove(stack_fp_);
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteTranslatedValueToOutput(
|
|
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
|
|
unsigned output_offset, const char* debug_hint_string,
|
|
Address output_address_for_materialization) {
|
|
Object* value = (*iterator)->GetRawValue();
|
|
|
|
WriteValueToOutput(value, *input_index, frame_index, output_offset,
|
|
debug_hint_string);
|
|
|
|
if (value == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
if (output_address_for_materialization == nullptr) {
|
|
output_address_for_materialization = output_address;
|
|
}
|
|
values_to_materialize_.push_back(
|
|
{output_address_for_materialization, *iterator});
|
|
}
|
|
|
|
(*iterator)++;
|
|
(*input_index)++;
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
|
|
int frame_index, unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
output_[frame_index]->SetFrameSlot(output_offset,
|
|
reinterpret_cast<intptr_t>(value));
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
|
|
output_offset, debug_hint_string);
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
|
|
unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
if (trace_scope_ != nullptr) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
PrintF(trace_scope_->file(),
|
|
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
|
|
reinterpret_cast<intptr_t>(output_address), output_offset, value,
|
|
debug_hint_string == nullptr ? "" : debug_hint_string);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned Deoptimizer::ComputeInputFrameSize() const {
|
|
unsigned fixed_size = StandardFrameConstants::kFixedFrameSize;
|
|
if (!function_->IsSmi()) {
|
|
fixed_size += ComputeIncomingArgumentSize(function_->shared());
|
|
} else {
|
|
CHECK_EQ(Smi::cast(function_), Smi::FromInt(StackFrame::STUB));
|
|
}
|
|
// The fp-to-sp delta already takes the context, constant pool pointer and the
|
|
// function into account so we have to avoid double counting them.
|
|
unsigned result = fixed_size + fp_to_sp_delta_ -
|
|
StandardFrameConstants::kFixedFrameSizeFromFp;
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
unsigned stack_slots = compiled_code_->stack_slots();
|
|
unsigned outgoing_size =
|
|
ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
|
|
CHECK(result ==
|
|
fixed_size + (stack_slots * kPointerSize) -
|
|
StandardFrameConstants::kFixedFrameSize + outgoing_size);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeJavascriptFixedSize(SharedFunctionInfo* shared) {
|
|
// The fixed part of the frame consists of the return address, frame
|
|
// pointer, function, context, and all the incoming arguments.
|
|
return ComputeIncomingArgumentSize(shared) +
|
|
StandardFrameConstants::kFixedFrameSize;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
|
|
// The fixed part of the frame consists of the return address, frame
|
|
// pointer, function, context, new.target, bytecode offset and all the
|
|
// incoming arguments.
|
|
return ComputeIncomingArgumentSize(shared) +
|
|
InterpreterFrameConstants::kFixedFrameSize;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
|
|
return (shared->internal_formal_parameter_count() + 1) * kPointerSize;
|
|
}
|
|
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeOutgoingArgumentSize(Code* code,
|
|
unsigned bailout_id) {
|
|
DeoptimizationInputData* data =
|
|
DeoptimizationInputData::cast(code->deoptimization_data());
|
|
unsigned height = data->ArgumentsStackHeight(bailout_id)->value();
|
|
return height * kPointerSize;
|
|
}
|
|
|
|
|
|
Object* Deoptimizer::ComputeLiteral(int index) const {
|
|
DeoptimizationInputData* data =
|
|
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
|
|
FixedArray* literals = data->LiteralArray();
|
|
return literals->get(index);
|
|
}
|
|
|
|
|
|
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
|
|
BailoutType type,
|
|
int max_entry_id) {
|
|
// We cannot run this if the serializer is enabled because this will
|
|
// cause us to emit relocation information for the external
|
|
// references. This is fine because the deoptimizer's code section
|
|
// isn't meant to be serialized at all.
|
|
CHECK(type == EAGER || type == SOFT || type == LAZY);
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
int entry_count = data->deopt_entry_code_entries_[type];
|
|
if (max_entry_id < entry_count) return;
|
|
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
|
|
while (max_entry_id >= entry_count) entry_count *= 2;
|
|
CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
|
|
|
|
MacroAssembler masm(isolate, NULL, 16 * KB, CodeObjectRequired::kYes);
|
|
masm.set_emit_debug_code(false);
|
|
GenerateDeoptimizationEntries(&masm, entry_count, type);
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(!RelocInfo::RequiresRelocation(desc));
|
|
|
|
MemoryChunk* chunk = data->deopt_entry_code_[type];
|
|
CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
|
|
desc.instr_size);
|
|
if (!chunk->CommitArea(desc.instr_size)) {
|
|
V8::FatalProcessOutOfMemory(
|
|
"Deoptimizer::EnsureCodeForDeoptimizationEntry");
|
|
}
|
|
CopyBytes(chunk->area_start(), desc.buffer,
|
|
static_cast<size_t>(desc.instr_size));
|
|
Assembler::FlushICache(isolate, chunk->area_start(), desc.instr_size);
|
|
|
|
data->deopt_entry_code_entries_[type] = entry_count;
|
|
}
|
|
|
|
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
|
|
: frame_size_(frame_size),
|
|
parameter_count_(parameter_count),
|
|
top_(kZapUint32),
|
|
pc_(kZapUint32),
|
|
fp_(kZapUint32),
|
|
context_(kZapUint32),
|
|
constant_pool_(kZapUint32) {
|
|
// Zap all the registers.
|
|
for (int r = 0; r < Register::kNumRegisters; r++) {
|
|
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
|
|
// isn't used before the next safepoint, the GC will try to scan it as a
|
|
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
|
|
SetRegister(r, kZapUint32);
|
|
}
|
|
|
|
// Zap all the slots.
|
|
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
|
|
SetFrameSlot(o, kZapUint32);
|
|
}
|
|
}
|
|
|
|
|
|
int FrameDescription::ComputeFixedSize() {
|
|
if (type_ == StackFrame::INTERPRETED) {
|
|
return InterpreterFrameConstants::kFixedFrameSize +
|
|
parameter_count() * kPointerSize;
|
|
} else {
|
|
return StandardFrameConstants::kFixedFrameSize +
|
|
parameter_count() * kPointerSize;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
|
|
if (slot_index >= 0) {
|
|
// Local or spill slots. Skip the fixed part of the frame
|
|
// including all arguments.
|
|
unsigned base = GetFrameSize() - ComputeFixedSize();
|
|
return base - ((slot_index + 1) * kPointerSize);
|
|
} else {
|
|
// Incoming parameter.
|
|
int arg_size = parameter_count() * kPointerSize;
|
|
unsigned base = GetFrameSize() - arg_size;
|
|
return base - ((slot_index + 1) * kPointerSize);
|
|
}
|
|
}
|
|
|
|
|
|
void TranslationBuffer::Add(int32_t value, Zone* zone) {
|
|
// This wouldn't handle kMinInt correctly if it ever encountered it.
|
|
DCHECK(value != kMinInt);
|
|
// Encode the sign bit in the least significant bit.
|
|
bool is_negative = (value < 0);
|
|
uint32_t bits = ((is_negative ? -value : value) << 1) |
|
|
static_cast<int32_t>(is_negative);
|
|
// Encode the individual bytes using the least significant bit of
|
|
// each byte to indicate whether or not more bytes follow.
|
|
do {
|
|
uint32_t next = bits >> 7;
|
|
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
|
|
bits = next;
|
|
} while (bits != 0);
|
|
}
|
|
|
|
|
|
int32_t TranslationIterator::Next() {
|
|
// Run through the bytes until we reach one with a least significant
|
|
// bit of zero (marks the end).
|
|
uint32_t bits = 0;
|
|
for (int i = 0; true; i += 7) {
|
|
DCHECK(HasNext());
|
|
uint8_t next = buffer_->get(index_++);
|
|
bits |= (next >> 1) << i;
|
|
if ((next & 1) == 0) break;
|
|
}
|
|
// The bits encode the sign in the least significant bit.
|
|
bool is_negative = (bits & 1) == 1;
|
|
int32_t result = bits >> 1;
|
|
return is_negative ? -result : result;
|
|
}
|
|
|
|
|
|
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
|
|
int length = contents_.length();
|
|
Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
|
|
MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
|
|
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
|
|
buffer_->Add(literal_id, zone());
|
|
buffer_->Add(height, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginGetterStubFrame(int literal_id) {
|
|
buffer_->Add(GETTER_STUB_FRAME, zone());
|
|
buffer_->Add(literal_id, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginSetterStubFrame(int literal_id) {
|
|
buffer_->Add(SETTER_STUB_FRAME, zone());
|
|
buffer_->Add(literal_id, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
|
|
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
|
|
buffer_->Add(literal_id, zone());
|
|
buffer_->Add(height, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginJSFrame(BailoutId node_id,
|
|
int literal_id,
|
|
unsigned height) {
|
|
buffer_->Add(JS_FRAME, zone());
|
|
buffer_->Add(node_id.ToInt(), zone());
|
|
buffer_->Add(literal_id, zone());
|
|
buffer_->Add(height, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
|
|
int literal_id, unsigned height) {
|
|
buffer_->Add(INTERPRETED_FRAME, zone());
|
|
buffer_->Add(bytecode_offset.ToInt(), zone());
|
|
buffer_->Add(literal_id, zone());
|
|
buffer_->Add(height, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginCompiledStubFrame(int height) {
|
|
buffer_->Add(COMPILED_STUB_FRAME, zone());
|
|
buffer_->Add(height, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginArgumentsObject(int args_length) {
|
|
buffer_->Add(ARGUMENTS_OBJECT, zone());
|
|
buffer_->Add(args_length, zone());
|
|
}
|
|
|
|
|
|
void Translation::BeginCapturedObject(int length) {
|
|
buffer_->Add(CAPTURED_OBJECT, zone());
|
|
buffer_->Add(length, zone());
|
|
}
|
|
|
|
|
|
void Translation::DuplicateObject(int object_index) {
|
|
buffer_->Add(DUPLICATED_OBJECT, zone());
|
|
buffer_->Add(object_index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreRegister(Register reg) {
|
|
buffer_->Add(REGISTER, zone());
|
|
buffer_->Add(reg.code(), zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32Register(Register reg) {
|
|
buffer_->Add(INT32_REGISTER, zone());
|
|
buffer_->Add(reg.code(), zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32Register(Register reg) {
|
|
buffer_->Add(UINT32_REGISTER, zone());
|
|
buffer_->Add(reg.code(), zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolRegister(Register reg) {
|
|
buffer_->Add(BOOL_REGISTER, zone());
|
|
buffer_->Add(reg.code(), zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreDoubleRegister(DoubleRegister reg) {
|
|
buffer_->Add(DOUBLE_REGISTER, zone());
|
|
buffer_->Add(reg.code(), zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreStackSlot(int index) {
|
|
buffer_->Add(STACK_SLOT, zone());
|
|
buffer_->Add(index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32StackSlot(int index) {
|
|
buffer_->Add(INT32_STACK_SLOT, zone());
|
|
buffer_->Add(index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32StackSlot(int index) {
|
|
buffer_->Add(UINT32_STACK_SLOT, zone());
|
|
buffer_->Add(index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolStackSlot(int index) {
|
|
buffer_->Add(BOOL_STACK_SLOT, zone());
|
|
buffer_->Add(index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreDoubleStackSlot(int index) {
|
|
buffer_->Add(DOUBLE_STACK_SLOT, zone());
|
|
buffer_->Add(index, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreLiteral(int literal_id) {
|
|
buffer_->Add(LITERAL, zone());
|
|
buffer_->Add(literal_id, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreArgumentsObject(bool args_known,
|
|
int args_index,
|
|
int args_length) {
|
|
buffer_->Add(ARGUMENTS_OBJECT, zone());
|
|
buffer_->Add(args_known, zone());
|
|
buffer_->Add(args_index, zone());
|
|
buffer_->Add(args_length, zone());
|
|
}
|
|
|
|
|
|
void Translation::StoreJSFrameFunction() {
|
|
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
|
|
StandardFrameConstants::kMarkerOffset) /
|
|
kPointerSize);
|
|
}
|
|
|
|
int Translation::NumberOfOperandsFor(Opcode opcode) {
|
|
switch (opcode) {
|
|
case GETTER_STUB_FRAME:
|
|
case SETTER_STUB_FRAME:
|
|
case DUPLICATED_OBJECT:
|
|
case ARGUMENTS_OBJECT:
|
|
case CAPTURED_OBJECT:
|
|
case REGISTER:
|
|
case INT32_REGISTER:
|
|
case UINT32_REGISTER:
|
|
case BOOL_REGISTER:
|
|
case DOUBLE_REGISTER:
|
|
case STACK_SLOT:
|
|
case INT32_STACK_SLOT:
|
|
case UINT32_STACK_SLOT:
|
|
case BOOL_STACK_SLOT:
|
|
case DOUBLE_STACK_SLOT:
|
|
case LITERAL:
|
|
case COMPILED_STUB_FRAME:
|
|
return 1;
|
|
case BEGIN:
|
|
case ARGUMENTS_ADAPTOR_FRAME:
|
|
case CONSTRUCT_STUB_FRAME:
|
|
return 2;
|
|
case JS_FRAME:
|
|
case INTERPRETED_FRAME:
|
|
return 3;
|
|
}
|
|
FATAL("Unexpected translation type");
|
|
return -1;
|
|
}
|
|
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
|
|
const char* Translation::StringFor(Opcode opcode) {
|
|
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
|
|
switch (opcode) {
|
|
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
|
|
}
|
|
#undef TRANSLATION_OPCODE_CASE
|
|
UNREACHABLE();
|
|
return "";
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
return Handle<FixedArray>::null();
|
|
}
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
CHECK_GT(array->length(), index);
|
|
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
|
|
}
|
|
|
|
|
|
void MaterializedObjectStore::Set(Address fp,
|
|
Handle<FixedArray> materialized_objects) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
index = frame_fps_.length();
|
|
frame_fps_.Add(fp);
|
|
}
|
|
|
|
Handle<FixedArray> array = EnsureStackEntries(index + 1);
|
|
array->set(index, *materialized_objects);
|
|
}
|
|
|
|
|
|
bool MaterializedObjectStore::Remove(Address fp) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
return false;
|
|
}
|
|
CHECK_GE(index, 0);
|
|
|
|
frame_fps_.Remove(index);
|
|
FixedArray* array = isolate()->heap()->materialized_objects();
|
|
CHECK_LT(index, array->length());
|
|
for (int i = index; i < frame_fps_.length(); i++) {
|
|
array->set(i, array->get(i + 1));
|
|
}
|
|
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
|
|
return true;
|
|
}
|
|
|
|
|
|
int MaterializedObjectStore::StackIdToIndex(Address fp) {
|
|
for (int i = 0; i < frame_fps_.length(); i++) {
|
|
if (frame_fps_[i] == fp) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
|
|
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
if (array->length() >= length) {
|
|
return array;
|
|
}
|
|
|
|
int new_length = length > 10 ? length : 10;
|
|
if (new_length < 2 * array->length()) {
|
|
new_length = 2 * array->length();
|
|
}
|
|
|
|
Handle<FixedArray> new_array =
|
|
isolate()->factory()->NewFixedArray(new_length, TENURED);
|
|
for (int i = 0; i < array->length(); i++) {
|
|
new_array->set(i, array->get(i));
|
|
}
|
|
for (int i = array->length(); i < length; i++) {
|
|
new_array->set(i, isolate()->heap()->undefined_value());
|
|
}
|
|
isolate()->heap()->SetRootMaterializedObjects(*new_array);
|
|
return new_array;
|
|
}
|
|
|
|
namespace {
|
|
|
|
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
|
|
Isolate* isolate) {
|
|
if (it->GetRawValue() == isolate->heap()->arguments_marker()) {
|
|
if (!it->IsMaterializableByDebugger()) {
|
|
return isolate->factory()->undefined_value();
|
|
}
|
|
}
|
|
return it->GetValue();
|
|
}
|
|
|
|
int ComputeSourcePosition(Handle<SharedFunctionInfo> shared,
|
|
BailoutId node_id) {
|
|
if (shared->HasBytecodeArray()) {
|
|
BytecodeArray* bytecodes = shared->bytecode_array();
|
|
return bytecodes->SourcePosition(node_id.ToInt());
|
|
} else {
|
|
Code* non_optimized_code = shared->code();
|
|
FixedArray* raw_data = non_optimized_code->deoptimization_data();
|
|
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
|
|
unsigned pc_and_state = Deoptimizer::GetOutputInfo(data, node_id, *shared);
|
|
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
|
|
return non_optimized_code->SourcePosition(pc_offset);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
|
|
TranslatedState::iterator frame_it,
|
|
Isolate* isolate) {
|
|
// If the previous frame is an adaptor frame, we will take the parameters
|
|
// from there.
|
|
TranslatedState::iterator parameter_frame = frame_it;
|
|
if (parameter_frame != state->begin()) {
|
|
parameter_frame--;
|
|
}
|
|
int parameter_count;
|
|
if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
parameter_count = parameter_frame->height() - 1; // Ignore the receiver.
|
|
} else {
|
|
parameter_frame = frame_it;
|
|
parameter_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count();
|
|
}
|
|
TranslatedFrame::iterator parameter_it = parameter_frame->begin();
|
|
parameter_it++; // Skip the function.
|
|
parameter_it++; // Skip the receiver.
|
|
|
|
// Figure out whether there is a construct stub frame on top of
|
|
// the parameter frame.
|
|
has_construct_stub_ =
|
|
parameter_frame != state->begin() &&
|
|
(parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub;
|
|
|
|
source_position_ =
|
|
ComputeSourcePosition(frame_it->shared_info(), frame_it->node_id());
|
|
|
|
TranslatedFrame::iterator value_it = frame_it->begin();
|
|
// Get the function. Note that this might materialize the function.
|
|
// In case the debugger mutates this value, we should deoptimize
|
|
// the function and remember the value in the materialized value store.
|
|
function_ = Handle<JSFunction>::cast(value_it->GetValue());
|
|
|
|
parameters_.resize(static_cast<size_t>(parameter_count));
|
|
for (int i = 0; i < parameter_count; i++) {
|
|
Handle<Object> parameter = GetValueForDebugger(parameter_it, isolate);
|
|
SetParameter(i, parameter);
|
|
parameter_it++;
|
|
}
|
|
|
|
// Skip the function, the receiver and the arguments.
|
|
int skip_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count() + 2;
|
|
TranslatedFrame::iterator stack_it = frame_it->begin();
|
|
for (int i = 0; i < skip_count; i++) {
|
|
stack_it++;
|
|
}
|
|
|
|
// Get the context.
|
|
context_ = GetValueForDebugger(stack_it, isolate);
|
|
stack_it++;
|
|
|
|
// Get the expression stack.
|
|
int stack_height = frame_it->height();
|
|
if (frame_it->kind() == TranslatedFrame::kFunction ||
|
|
frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
// For full-code frames, we should not count the context.
|
|
// For interpreter frames, we should not count the accumulator.
|
|
// TODO(jarin): Clean up the indexing in translated frames.
|
|
stack_height--;
|
|
}
|
|
expression_stack_.resize(static_cast<size_t>(stack_height));
|
|
for (int i = 0; i < stack_height; i++) {
|
|
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
|
|
SetExpression(i, expression);
|
|
stack_it++;
|
|
}
|
|
|
|
// For interpreter frame, skip the accumulator.
|
|
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
stack_it++;
|
|
}
|
|
CHECK(stack_it == frame_it->end());
|
|
}
|
|
|
|
|
|
const char* Deoptimizer::GetDeoptReason(DeoptReason deopt_reason) {
|
|
DCHECK(deopt_reason < kLastDeoptReason);
|
|
#define DEOPT_MESSAGES_TEXTS(C, T) T,
|
|
static const char* deopt_messages_[] = {
|
|
DEOPT_MESSAGES_LIST(DEOPT_MESSAGES_TEXTS)};
|
|
#undef DEOPT_MESSAGES_TEXTS
|
|
return deopt_messages_[deopt_reason];
|
|
}
|
|
|
|
|
|
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
|
|
SourcePosition last_position = SourcePosition::Unknown();
|
|
Deoptimizer::DeoptReason last_reason = Deoptimizer::kNoReason;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
|
|
RelocInfo::ModeMask(RelocInfo::POSITION);
|
|
for (RelocIterator it(code, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (info->pc() >= pc) return DeoptInfo(last_position, NULL, last_reason);
|
|
if (info->rmode() == RelocInfo::POSITION) {
|
|
int raw_position = static_cast<int>(info->data());
|
|
last_position = raw_position ? SourcePosition::FromRaw(raw_position)
|
|
: SourcePosition::Unknown();
|
|
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
|
|
last_reason = static_cast<Deoptimizer::DeoptReason>(info->data());
|
|
}
|
|
}
|
|
return DeoptInfo(SourcePosition::Unknown(), NULL, Deoptimizer::kNoReason);
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container,
|
|
int length,
|
|
int object_index) {
|
|
TranslatedValue slot(container, kArgumentsObject);
|
|
slot.materialization_info_ = {object_index, length};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
|
|
int length,
|
|
int object_index) {
|
|
TranslatedValue slot(container, kCapturedObject);
|
|
slot.materialization_info_ = {object_index, length};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
|
|
int id) {
|
|
TranslatedValue slot(container, kDuplicatedObject);
|
|
slot.materialization_info_ = {id, -1};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
|
|
double value) {
|
|
TranslatedValue slot(container, kDouble);
|
|
slot.double_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
|
|
int32_t value) {
|
|
TranslatedValue slot(container, kInt32);
|
|
slot.int32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kUInt32);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kBoolBit);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
|
|
Object* literal) {
|
|
TranslatedValue slot(container, kTagged);
|
|
slot.raw_literal_ = literal;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
|
|
return TranslatedValue(container, kInvalid);
|
|
}
|
|
|
|
|
|
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
|
|
|
|
|
|
Object* TranslatedValue::raw_literal() const {
|
|
DCHECK_EQ(kTagged, kind());
|
|
return raw_literal_;
|
|
}
|
|
|
|
|
|
int32_t TranslatedValue::int32_value() const {
|
|
DCHECK_EQ(kInt32, kind());
|
|
return int32_value_;
|
|
}
|
|
|
|
|
|
uint32_t TranslatedValue::uint32_value() const {
|
|
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
|
|
return uint32_value_;
|
|
}
|
|
|
|
|
|
double TranslatedValue::double_value() const {
|
|
DCHECK_EQ(kDouble, kind());
|
|
return double_value_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_length() const {
|
|
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject);
|
|
return materialization_info_.length_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_index() const {
|
|
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject ||
|
|
kind() == kDuplicatedObject);
|
|
return materialization_info_.id_;
|
|
}
|
|
|
|
|
|
Object* TranslatedValue::GetRawValue() const {
|
|
// If we have a value, return it.
|
|
Handle<Object> result_handle;
|
|
if (value_.ToHandle(&result_handle)) {
|
|
return *result_handle;
|
|
}
|
|
|
|
// Otherwise, do a best effort to get the value without allocation.
|
|
switch (kind()) {
|
|
case kTagged:
|
|
return raw_literal();
|
|
|
|
case kInt32: {
|
|
bool is_smi = Smi::IsValid(int32_value());
|
|
if (is_smi) {
|
|
return Smi::FromInt(int32_value());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kUInt32: {
|
|
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
|
|
if (is_smi) {
|
|
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kBoolBit: {
|
|
if (uint32_value() == 0) {
|
|
return isolate()->heap()->false_value();
|
|
} else {
|
|
CHECK_EQ(1U, uint32_value());
|
|
return isolate()->heap()->true_value();
|
|
}
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If we could not get the value without allocation, return the arguments
|
|
// marker.
|
|
return isolate()->heap()->arguments_marker();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedValue::GetValue() {
|
|
Handle<Object> result;
|
|
// If we already have a value, then get it.
|
|
if (value_.ToHandle(&result)) return result;
|
|
|
|
// Otherwise we have to materialize.
|
|
switch (kind()) {
|
|
case TranslatedValue::kTagged:
|
|
case TranslatedValue::kInt32:
|
|
case TranslatedValue::kUInt32:
|
|
case TranslatedValue::kBoolBit:
|
|
case TranslatedValue::kDouble: {
|
|
MaterializeSimple();
|
|
return value_.ToHandleChecked();
|
|
}
|
|
|
|
case TranslatedValue::kArgumentsObject:
|
|
case TranslatedValue::kCapturedObject:
|
|
case TranslatedValue::kDuplicatedObject:
|
|
return container_->MaterializeObjectAt(object_index());
|
|
|
|
case TranslatedValue::kInvalid:
|
|
FATAL("unexpected case");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
FATAL("internal error: value missing");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
|
|
void TranslatedValue::MaterializeSimple() {
|
|
// If we already have materialized, return.
|
|
if (!value_.is_null()) return;
|
|
|
|
Object* raw_value = GetRawValue();
|
|
if (raw_value != isolate()->heap()->arguments_marker()) {
|
|
// We can get the value without allocation, just return it here.
|
|
value_ = Handle<Object>(raw_value, isolate());
|
|
return;
|
|
}
|
|
|
|
switch (kind()) {
|
|
case kInt32: {
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(int32_value()));
|
|
return;
|
|
}
|
|
|
|
case kUInt32:
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(uint32_value()));
|
|
return;
|
|
|
|
case kDouble:
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(double_value()));
|
|
return;
|
|
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
case kArgumentsObject:
|
|
case kInvalid:
|
|
case kTagged:
|
|
case kBoolBit:
|
|
FATAL("internal error: unexpected materialization.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
bool TranslatedValue::IsMaterializedObject() const {
|
|
switch (kind()) {
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
case kArgumentsObject:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool TranslatedValue::IsMaterializableByDebugger() const {
|
|
// At the moment, we only allow materialization of doubles.
|
|
return (kind() == kDouble);
|
|
}
|
|
|
|
int TranslatedValue::GetChildrenCount() const {
|
|
if (kind() == kCapturedObject || kind() == kArgumentsObject) {
|
|
return object_length();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
|
|
Address address = fp + slot_offset;
|
|
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
|
|
return Memory::uint32_at(address + kIntSize);
|
|
#else
|
|
return Memory::uint32_at(address);
|
|
#endif
|
|
}
|
|
|
|
|
|
void TranslatedValue::Handlify() {
|
|
if (kind() == kTagged) {
|
|
value_ = Handle<Object>(raw_literal(), isolate());
|
|
raw_literal_ = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id,
|
|
SharedFunctionInfo* shared_info,
|
|
int height) {
|
|
TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info,
|
|
height);
|
|
frame.node_id_ = node_id;
|
|
return frame;
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::InterpretedFrame(
|
|
BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kInterpretedFunction, shared_info->GetIsolate(),
|
|
shared_info, height);
|
|
frame.node_id_ = bytecode_offset;
|
|
return frame;
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::AccessorFrame(
|
|
Kind kind, SharedFunctionInfo* shared_info) {
|
|
DCHECK(kind == kSetter || kind == kGetter);
|
|
return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info);
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
|
|
SharedFunctionInfo* shared_info, int height) {
|
|
return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(),
|
|
shared_info, height);
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::ConstructStubFrame(
|
|
SharedFunctionInfo* shared_info, int height) {
|
|
return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info,
|
|
height);
|
|
}
|
|
|
|
|
|
int TranslatedFrame::GetValueCount() {
|
|
switch (kind()) {
|
|
case kFunction: {
|
|
int parameter_count =
|
|
raw_shared_info_->internal_formal_parameter_count() + 1;
|
|
// + 1 for function.
|
|
return height_ + parameter_count + 1;
|
|
}
|
|
|
|
case kInterpretedFunction: {
|
|
int parameter_count =
|
|
raw_shared_info_->internal_formal_parameter_count() + 1;
|
|
// + 2 for function and context.
|
|
return height_ + parameter_count + 2;
|
|
}
|
|
|
|
case kGetter:
|
|
return 2; // Function and receiver.
|
|
|
|
case kSetter:
|
|
return 3; // Function, receiver and the value to set.
|
|
|
|
case kArgumentsAdaptor:
|
|
case kConstructStub:
|
|
return 1 + height_;
|
|
|
|
case kCompiledStub:
|
|
return height_;
|
|
|
|
case kInvalid:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
void TranslatedFrame::Handlify() {
|
|
if (raw_shared_info_ != nullptr) {
|
|
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
|
|
raw_shared_info_ = nullptr;
|
|
}
|
|
for (auto& value : values_) {
|
|
value.Handlify();
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
|
|
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
|
|
FILE* trace_file) {
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::JS_FRAME: {
|
|
BailoutId node_id = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading input frame %s", name.get());
|
|
int arg_count = shared_info->internal_formal_parameter_count() + 1;
|
|
PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n",
|
|
node_id.ToInt(), arg_count, height);
|
|
}
|
|
return TranslatedFrame::JSFrame(node_id, shared_info, height);
|
|
}
|
|
|
|
case Translation::INTERPRETED_FRAME: {
|
|
BailoutId bytecode_offset = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading input frame %s", name.get());
|
|
int arg_count = shared_info->internal_formal_parameter_count() + 1;
|
|
PrintF(trace_file,
|
|
" => bytecode_offset=%d, args=%d, height=%d; inputs:\n",
|
|
bytecode_offset.ToInt(), arg_count, height);
|
|
}
|
|
return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
|
|
height);
|
|
}
|
|
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
|
|
PrintF(trace_file, " => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
|
|
}
|
|
|
|
case Translation::CONSTRUCT_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading construct stub frame %s", name.get());
|
|
PrintF(trace_file, " => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::ConstructStubFrame(shared_info, height);
|
|
}
|
|
|
|
case Translation::GETTER_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading getter frame %s; inputs:\n", name.get());
|
|
}
|
|
return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter,
|
|
shared_info);
|
|
}
|
|
|
|
case Translation::SETTER_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
if (trace_file != nullptr) {
|
|
base::SmartArrayPointer<char> name =
|
|
shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading setter frame %s; inputs:\n", name.get());
|
|
}
|
|
return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter,
|
|
shared_info);
|
|
}
|
|
|
|
case Translation::COMPILED_STUB_FRAME: {
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file,
|
|
" reading compiler stub frame => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::CompiledStubFrame(height,
|
|
literal_array->GetIsolate());
|
|
}
|
|
|
|
case Translation::BEGIN:
|
|
case Translation::DUPLICATED_OBJECT:
|
|
case Translation::ARGUMENTS_OBJECT:
|
|
case Translation::CAPTURED_OBJECT:
|
|
case Translation::REGISTER:
|
|
case Translation::INT32_REGISTER:
|
|
case Translation::UINT32_REGISTER:
|
|
case Translation::BOOL_REGISTER:
|
|
case Translation::DOUBLE_REGISTER:
|
|
case Translation::STACK_SLOT:
|
|
case Translation::INT32_STACK_SLOT:
|
|
case Translation::UINT32_STACK_SLOT:
|
|
case Translation::BOOL_STACK_SLOT:
|
|
case Translation::DOUBLE_STACK_SLOT:
|
|
case Translation::LITERAL:
|
|
break;
|
|
}
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
return TranslatedFrame::InvalidFrame();
|
|
}
|
|
|
|
|
|
// static
|
|
void TranslatedFrame::AdvanceIterator(
|
|
std::deque<TranslatedValue>::iterator* iter) {
|
|
int values_to_skip = 1;
|
|
while (values_to_skip > 0) {
|
|
// Consume the current element.
|
|
values_to_skip--;
|
|
// Add all the children.
|
|
values_to_skip += (*iter)->GetChildrenCount();
|
|
|
|
(*iter)++;
|
|
}
|
|
}
|
|
|
|
|
|
// We can't intermix stack decoding and allocations because
|
|
// deoptimization infrastracture is not GC safe.
|
|
// Thus we build a temporary structure in malloced space.
|
|
TranslatedValue TranslatedState::CreateNextTranslatedValue(
|
|
int frame_index, int value_index, TranslationIterator* iterator,
|
|
FixedArray* literal_array, Address fp, RegisterValues* registers,
|
|
FILE* trace_file) {
|
|
disasm::NameConverter converter;
|
|
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::BEGIN:
|
|
case Translation::JS_FRAME:
|
|
case Translation::INTERPRETED_FRAME:
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME:
|
|
case Translation::CONSTRUCT_STUB_FRAME:
|
|
case Translation::GETTER_STUB_FRAME:
|
|
case Translation::SETTER_STUB_FRAME:
|
|
case Translation::COMPILED_STUB_FRAME:
|
|
// Peeled off before getting here.
|
|
break;
|
|
|
|
case Translation::DUPLICATED_OBJECT: {
|
|
int object_id = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "duplicated object #%d", object_id);
|
|
}
|
|
object_positions_.push_back(object_positions_[object_id]);
|
|
return TranslatedValue::NewDuplicateObject(this, object_id);
|
|
}
|
|
|
|
case Translation::ARGUMENTS_OBJECT: {
|
|
int arg_count = iterator->Next();
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "argumets object #%d (length = %d)", object_index,
|
|
arg_count);
|
|
}
|
|
object_positions_.push_back({frame_index, value_index});
|
|
return TranslatedValue::NewArgumentsObject(this, arg_count, object_index);
|
|
}
|
|
|
|
case Translation::CAPTURED_OBJECT: {
|
|
int field_count = iterator->Next();
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
|
|
field_count);
|
|
}
|
|
object_positions_.push_back({frame_index, value_index});
|
|
return TranslatedValue::NewDeferredObject(this, field_count,
|
|
object_index);
|
|
}
|
|
|
|
case Translation::REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
}
|
|
|
|
case Translation::INT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
return TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
|
|
}
|
|
|
|
case Translation::UINT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
|
|
}
|
|
|
|
case Translation::BOOL_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
return TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
|
|
}
|
|
|
|
case Translation::DOUBLE_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
double value = registers->GetDoubleRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; %s (bool)", value,
|
|
DoubleRegister::from_code(input_reg).ToString());
|
|
}
|
|
return TranslatedValue::NewDouble(this, value);
|
|
}
|
|
|
|
case Translation::STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
}
|
|
|
|
case Translation::INT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
|
|
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
|
|
std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewInt32(this, value);
|
|
}
|
|
|
|
case Translation::UINT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewUInt32(this, value);
|
|
}
|
|
|
|
case Translation::BOOL_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewBool(this, value);
|
|
}
|
|
|
|
case Translation::DOUBLE_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
double value = ReadDoubleValue(fp + slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewDouble(this, value);
|
|
}
|
|
|
|
case Translation::LITERAL: {
|
|
int literal_index = iterator->Next();
|
|
Object* value = literal_array->get(literal_index);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
|
|
reinterpret_cast<intptr_t>(value), literal_index);
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
|
|
return TranslatedValue::NewTagged(this, value);
|
|
}
|
|
}
|
|
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
return TranslatedValue(nullptr, TranslatedValue::kInvalid);
|
|
}
|
|
|
|
|
|
TranslatedState::TranslatedState(JavaScriptFrame* frame)
|
|
: isolate_(nullptr),
|
|
stack_frame_pointer_(nullptr),
|
|
has_adapted_arguments_(false) {
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
|
DeoptimizationInputData* data =
|
|
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
|
|
TranslationIterator it(data->TranslationByteArray(),
|
|
data->TranslationIndex(deopt_index)->value());
|
|
Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
|
|
nullptr /* trace file */);
|
|
}
|
|
|
|
|
|
TranslatedState::TranslatedState()
|
|
: isolate_(nullptr),
|
|
stack_frame_pointer_(nullptr),
|
|
has_adapted_arguments_(false) {}
|
|
|
|
|
|
void TranslatedState::Init(Address input_frame_pointer,
|
|
TranslationIterator* iterator,
|
|
FixedArray* literal_array, RegisterValues* registers,
|
|
FILE* trace_file) {
|
|
DCHECK(frames_.empty());
|
|
|
|
isolate_ = literal_array->GetIsolate();
|
|
// Read out the 'header' translation.
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
CHECK(opcode == Translation::BEGIN);
|
|
|
|
int count = iterator->Next();
|
|
iterator->Next(); // Drop JS frames count.
|
|
|
|
frames_.reserve(count);
|
|
|
|
std::stack<int> nested_counts;
|
|
|
|
// Read the frames
|
|
for (int i = 0; i < count; i++) {
|
|
// Read the frame descriptor.
|
|
frames_.push_back(CreateNextTranslatedFrame(
|
|
iterator, literal_array, input_frame_pointer, trace_file));
|
|
TranslatedFrame& frame = frames_.back();
|
|
|
|
// Read the values.
|
|
int values_to_process = frame.GetValueCount();
|
|
while (values_to_process > 0 || !nested_counts.empty()) {
|
|
if (trace_file != nullptr) {
|
|
if (nested_counts.empty()) {
|
|
// For top level values, print the value number.
|
|
PrintF(trace_file, " %3i: ",
|
|
frame.GetValueCount() - values_to_process);
|
|
} else {
|
|
// Take care of indenting for nested values.
|
|
PrintF(trace_file, " ");
|
|
for (size_t j = 0; j < nested_counts.size(); j++) {
|
|
PrintF(trace_file, " ");
|
|
}
|
|
}
|
|
}
|
|
|
|
TranslatedValue value = CreateNextTranslatedValue(
|
|
i, static_cast<int>(frame.values_.size()), iterator, literal_array,
|
|
input_frame_pointer, registers, trace_file);
|
|
frame.Add(value);
|
|
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "\n");
|
|
}
|
|
|
|
// Update the value count and resolve the nesting.
|
|
values_to_process--;
|
|
int children_count = value.GetChildrenCount();
|
|
if (children_count > 0) {
|
|
nested_counts.push(values_to_process);
|
|
values_to_process = children_count;
|
|
} else {
|
|
while (values_to_process == 0 && !nested_counts.empty()) {
|
|
values_to_process = nested_counts.top();
|
|
nested_counts.pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CHECK(!iterator->HasNext() ||
|
|
static_cast<Translation::Opcode>(iterator->Next()) ==
|
|
Translation::BEGIN);
|
|
}
|
|
|
|
|
|
void TranslatedState::Prepare(bool has_adapted_arguments,
|
|
Address stack_frame_pointer) {
|
|
for (auto& frame : frames_) frame.Handlify();
|
|
|
|
stack_frame_pointer_ = stack_frame_pointer;
|
|
has_adapted_arguments_ = has_adapted_arguments;
|
|
|
|
UpdateFromPreviouslyMaterializedObjects();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedState::MaterializeAt(int frame_index,
|
|
int* value_index) {
|
|
TranslatedFrame* frame = &(frames_[frame_index]);
|
|
CHECK(static_cast<size_t>(*value_index) < frame->values_.size());
|
|
|
|
TranslatedValue* slot = &(frame->values_[*value_index]);
|
|
(*value_index)++;
|
|
|
|
switch (slot->kind()) {
|
|
case TranslatedValue::kTagged:
|
|
case TranslatedValue::kInt32:
|
|
case TranslatedValue::kUInt32:
|
|
case TranslatedValue::kBoolBit:
|
|
case TranslatedValue::kDouble: {
|
|
slot->MaterializeSimple();
|
|
Handle<Object> value = slot->GetValue();
|
|
if (value->IsMutableHeapNumber()) {
|
|
HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map());
|
|
}
|
|
return value;
|
|
}
|
|
|
|
case TranslatedValue::kArgumentsObject: {
|
|
int length = slot->GetChildrenCount();
|
|
Handle<JSObject> arguments;
|
|
if (GetAdaptedArguments(&arguments, frame_index)) {
|
|
// Store the materialized object and consume the nested values.
|
|
for (int i = 0; i < length; ++i) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
} else {
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(frame->front().GetValue());
|
|
arguments = isolate_->factory()->NewArgumentsObject(function, length);
|
|
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
|
|
DCHECK_EQ(array->length(), length);
|
|
arguments->set_elements(*array);
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
array->set(i, *value);
|
|
}
|
|
}
|
|
slot->value_ = arguments;
|
|
return arguments;
|
|
}
|
|
case TranslatedValue::kCapturedObject: {
|
|
int length = slot->GetChildrenCount();
|
|
|
|
// The map must be a tagged object.
|
|
CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged);
|
|
|
|
Handle<Object> result;
|
|
if (slot->value_.ToHandle(&result)) {
|
|
// This has been previously materialized, return the previous value.
|
|
// We still need to skip all the nested objects.
|
|
for (int i = 0; i < length; i++) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Handle<Object> map_object = MaterializeAt(frame_index, value_index);
|
|
Handle<Map> map =
|
|
Map::GeneralizeAllFieldRepresentations(Handle<Map>::cast(map_object));
|
|
switch (map->instance_type()) {
|
|
case MUTABLE_HEAP_NUMBER_TYPE:
|
|
case HEAP_NUMBER_TYPE: {
|
|
// Reuse the HeapNumber value directly as it is already properly
|
|
// tagged and skip materializing the HeapNumber explicitly.
|
|
Handle<Object> object = MaterializeAt(frame_index, value_index);
|
|
slot->value_ = object;
|
|
// On 32-bit architectures, there is an extra slot there because
|
|
// the escape analysis calculates the number of slots as
|
|
// object-size/pointer-size. To account for this, we read out
|
|
// any extra slots.
|
|
for (int i = 0; i < length - 2; i++) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
return object;
|
|
}
|
|
case JS_OBJECT_TYPE: {
|
|
Handle<JSObject> object =
|
|
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED);
|
|
slot->value_ = object;
|
|
Handle<Object> properties = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> elements = MaterializeAt(frame_index, value_index);
|
|
object->set_properties(FixedArray::cast(*properties));
|
|
object->set_elements(FixedArrayBase::cast(*elements));
|
|
for (int i = 0; i < length - 3; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
|
|
object->FastPropertyAtPut(index, *value);
|
|
}
|
|
return object;
|
|
}
|
|
case JS_ARRAY_TYPE: {
|
|
Handle<JSArray> object =
|
|
isolate_->factory()->NewJSArray(0, map->elements_kind());
|
|
slot->value_ = object;
|
|
Handle<Object> properties = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> elements = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> length = MaterializeAt(frame_index, value_index);
|
|
object->set_properties(FixedArray::cast(*properties));
|
|
object->set_elements(FixedArrayBase::cast(*elements));
|
|
object->set_length(*length);
|
|
return object;
|
|
}
|
|
case FIXED_ARRAY_TYPE: {
|
|
Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
|
|
int32_t length = 0;
|
|
CHECK(lengthObject->ToInt32(&length));
|
|
Handle<FixedArray> object =
|
|
isolate_->factory()->NewFixedArray(length);
|
|
// We need to set the map, because the fixed array we are
|
|
// materializing could be a context or an arguments object,
|
|
// in which case we must retain that information.
|
|
object->set_map(*map);
|
|
slot->value_ = object;
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
object->set(i, *value);
|
|
}
|
|
return object;
|
|
}
|
|
case FIXED_DOUBLE_ARRAY_TYPE: {
|
|
DCHECK_EQ(*map, isolate_->heap()->fixed_double_array_map());
|
|
Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
|
|
int32_t length = 0;
|
|
CHECK(lengthObject->ToInt32(&length));
|
|
Handle<FixedArrayBase> object =
|
|
isolate_->factory()->NewFixedDoubleArray(length);
|
|
slot->value_ = object;
|
|
if (length > 0) {
|
|
Handle<FixedDoubleArray> double_array =
|
|
Handle<FixedDoubleArray>::cast(object);
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
CHECK(value->IsNumber());
|
|
double_array->set(i, value->Number());
|
|
}
|
|
}
|
|
return object;
|
|
}
|
|
default:
|
|
PrintF(stderr, "[couldn't handle instance type %d]\n",
|
|
map->instance_type());
|
|
FATAL("unreachable");
|
|
return Handle<Object>::null();
|
|
}
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case TranslatedValue::kDuplicatedObject: {
|
|
int object_index = slot->object_index();
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
|
|
// Make sure the duplicate is refering to a previous object.
|
|
CHECK(pos.frame_index_ < frame_index ||
|
|
(pos.frame_index_ == frame_index &&
|
|
pos.value_index_ < *value_index - 1));
|
|
|
|
Handle<Object> object =
|
|
frames_[pos.frame_index_].values_[pos.value_index_].GetValue();
|
|
|
|
// The object should have a (non-sentinel) value.
|
|
CHECK(!object.is_null() &&
|
|
!object.is_identical_to(isolate_->factory()->arguments_marker()));
|
|
|
|
slot->value_ = object;
|
|
return object;
|
|
}
|
|
|
|
case TranslatedValue::kInvalid:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
FATAL("We should never get here - unexpected deopt slot kind.");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedState::MaterializeObjectAt(int object_index) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
return MaterializeAt(pos.frame_index_, &(pos.value_index_));
|
|
}
|
|
|
|
|
|
bool TranslatedState::GetAdaptedArguments(Handle<JSObject>* result,
|
|
int frame_index) {
|
|
if (frame_index == 0) {
|
|
// Top level frame -> we need to go to the parent frame on the stack.
|
|
if (!has_adapted_arguments_) return false;
|
|
|
|
// This is top level frame, so we need to go to the stack to get
|
|
// this function's argument. (Note that this relies on not inlining
|
|
// recursive functions!)
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(frames_[frame_index].front().GetValue());
|
|
*result = Accessors::FunctionGetArguments(function);
|
|
return true;
|
|
} else {
|
|
TranslatedFrame* previous_frame = &(frames_[frame_index]);
|
|
if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) {
|
|
return false;
|
|
}
|
|
// We get the adapted arguments from the parent translation.
|
|
int length = previous_frame->height();
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(previous_frame->front().GetValue());
|
|
Handle<JSObject> arguments =
|
|
isolate_->factory()->NewArgumentsObject(function, length);
|
|
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
|
|
arguments->set_elements(*array);
|
|
TranslatedFrame::iterator arg_iterator = previous_frame->begin();
|
|
arg_iterator++; // Skip function.
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = arg_iterator->GetValue();
|
|
array->set(i, *value);
|
|
arg_iterator++;
|
|
}
|
|
CHECK(arg_iterator == previous_frame->end());
|
|
*result = arguments;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
|
|
int jsframe_index, int* args_count) {
|
|
for (size_t i = 0; i < frames_.size(); i++) {
|
|
if (frames_[i].kind() == TranslatedFrame::kFunction ||
|
|
frames_[i].kind() == TranslatedFrame::kInterpretedFunction) {
|
|
if (jsframe_index > 0) {
|
|
jsframe_index--;
|
|
} else {
|
|
// We have the JS function frame, now check if it has arguments adaptor.
|
|
if (i > 0 &&
|
|
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
*args_count = frames_[i - 1].height();
|
|
return &(frames_[i - 1]);
|
|
}
|
|
*args_count =
|
|
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
|
|
return &(frames_[i]);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
void TranslatedState::StoreMaterializedValuesAndDeopt() {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
bool new_store = false;
|
|
if (previously_materialized_objects.is_null()) {
|
|
previously_materialized_objects =
|
|
isolate_->factory()->NewFixedArray(length);
|
|
for (int i = 0; i < length; i++) {
|
|
previously_materialized_objects->set(i, *marker);
|
|
}
|
|
new_store = true;
|
|
}
|
|
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
bool value_changed = false;
|
|
for (int i = 0; i < length; i++) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
Handle<Object> value(value_info->GetRawValue(), isolate_);
|
|
|
|
if (!value.is_identical_to(marker)) {
|
|
if (previously_materialized_objects->get(i) == *marker) {
|
|
previously_materialized_objects->set(i, *value);
|
|
value_changed = true;
|
|
} else {
|
|
CHECK(previously_materialized_objects->get(i) == *value);
|
|
}
|
|
}
|
|
}
|
|
if (new_store && value_changed) {
|
|
materialized_store->Set(stack_frame_pointer_,
|
|
previously_materialized_objects);
|
|
CHECK(frames_[0].kind() == TranslatedFrame::kFunction ||
|
|
frames_[0].kind() == TranslatedFrame::kInterpretedFunction);
|
|
Object* const function = frames_[0].front().GetRawValue();
|
|
Deoptimizer::DeoptimizeFunction(JSFunction::cast(function));
|
|
}
|
|
}
|
|
|
|
|
|
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
// If we have no previously materialized objects, there is nothing to do.
|
|
if (previously_materialized_objects.is_null()) return;
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
// For a previously materialized objects, inject their value into the
|
|
// translated values.
|
|
if (previously_materialized_objects->get(i) != *marker) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
value_info->value_ =
|
|
Handle<Object>(previously_materialized_objects->get(i), isolate_);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|