e05c2e3693
a reason to stack allocate large chunks of stack space. - Runtime_GetCFrames used to allocate a frame size of 52040 bytes. - PreallocatedMemoryThread::Run used to allocate 32784 bytes. - Fixed StringStream overflow conditions. Review URL: http://codereview.chromium.org/67197 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1729 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1866 lines
54 KiB
C++
1866 lines
54 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Platform specific code for Win32.
|
|
#ifndef WIN32_LEAN_AND_MEAN
|
|
// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#endif
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#ifndef NOKERNEL
|
|
#define NOKERNEL
|
|
#endif
|
|
#ifndef NOUSER
|
|
#define NOUSER
|
|
#endif
|
|
#ifndef NOSERVICE
|
|
#define NOSERVICE
|
|
#endif
|
|
#ifndef NOSOUND
|
|
#define NOSOUND
|
|
#endif
|
|
#ifndef NOMCX
|
|
#define NOMCX
|
|
#endif
|
|
// Require Windows 2000 or higher (this is required for the IsDebuggerPresent
|
|
// function to be present).
|
|
#ifndef _WIN32_WINNT
|
|
#define _WIN32_WINNT 0x500
|
|
#endif
|
|
|
|
#include <windows.h>
|
|
|
|
#include <time.h> // For LocalOffset() implementation.
|
|
#include <mmsystem.h> // For timeGetTime().
|
|
#ifndef __MINGW32__
|
|
#include <dbghelp.h> // For SymLoadModule64 and al.
|
|
#endif // __MINGW32__
|
|
#include <limits.h> // For INT_MAX and al.
|
|
#include <tlhelp32.h> // For Module32First and al.
|
|
|
|
// These additional WIN32 includes have to be right here as the #undef's below
|
|
// makes it impossible to have them elsewhere.
|
|
#include <winsock2.h>
|
|
#include <ws2tcpip.h>
|
|
#include <process.h> // for _beginthreadex()
|
|
#include <stdlib.h>
|
|
|
|
#undef VOID
|
|
#undef DELETE
|
|
#undef IN
|
|
#undef THIS
|
|
#undef CONST
|
|
#undef NAN
|
|
#undef GetObject
|
|
#undef CreateMutex
|
|
#undef CreateSemaphore
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
|
|
// Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
|
|
// refer to The Open Group Base Specification for specification of the correct
|
|
// semantics for these functions.
|
|
// (http://www.opengroup.org/onlinepubs/000095399/)
|
|
#ifdef _MSC_VER
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Test for finite value - usually defined in math.h
|
|
int isfinite(double x) {
|
|
return _finite(x);
|
|
}
|
|
|
|
} // namespace v8
|
|
} // namespace internal
|
|
|
|
// Test for a NaN (not a number) value - usually defined in math.h
|
|
int isnan(double x) {
|
|
return _isnan(x);
|
|
}
|
|
|
|
|
|
// Test for infinity - usually defined in math.h
|
|
int isinf(double x) {
|
|
return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
|
|
}
|
|
|
|
|
|
// Test if x is less than y and both nominal - usually defined in math.h
|
|
int isless(double x, double y) {
|
|
return isnan(x) || isnan(y) ? 0 : x < y;
|
|
}
|
|
|
|
|
|
// Test if x is greater than y and both nominal - usually defined in math.h
|
|
int isgreater(double x, double y) {
|
|
return isnan(x) || isnan(y) ? 0 : x > y;
|
|
}
|
|
|
|
|
|
// Classify floating point number - usually defined in math.h
|
|
int fpclassify(double x) {
|
|
// Use the MS-specific _fpclass() for classification.
|
|
int flags = _fpclass(x);
|
|
|
|
// Determine class. We cannot use a switch statement because
|
|
// the _FPCLASS_ constants are defined as flags.
|
|
if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
|
|
if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
|
|
if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
|
|
if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
|
|
|
|
// All cases should be covered by the code above.
|
|
ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
|
|
return FP_NAN;
|
|
}
|
|
|
|
|
|
// Test sign - usually defined in math.h
|
|
int signbit(double x) {
|
|
// We need to take care of the special case of both positive
|
|
// and negative versions of zero.
|
|
if (x == 0)
|
|
return _fpclass(x) & _FPCLASS_NZ;
|
|
else
|
|
return x < 0;
|
|
}
|
|
|
|
|
|
// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
|
|
// defined in strings.h.
|
|
int strncasecmp(const char* s1, const char* s2, int n) {
|
|
return _strnicmp(s1, s2, n);
|
|
}
|
|
|
|
#endif // _MSC_VER
|
|
|
|
|
|
// Extra functions for MinGW. Most of these are the _s functions which are in
|
|
// the Microsoft Visual Studio C++ CRT.
|
|
#ifdef __MINGW32__
|
|
|
|
int localtime_s(tm* out_tm, const time_t* time) {
|
|
tm* posix_local_time_struct = localtime(time);
|
|
if (posix_local_time_struct == NULL) return 1;
|
|
*out_tm = *posix_local_time_struct;
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Not sure this the correct interpretation of _mkgmtime
|
|
time_t _mkgmtime(tm* timeptr) {
|
|
return mktime(timeptr);
|
|
}
|
|
|
|
|
|
int fopen_s(FILE** pFile, const char* filename, const char* mode) {
|
|
*pFile = fopen(filename, mode);
|
|
return *pFile != NULL ? 0 : 1;
|
|
}
|
|
|
|
|
|
int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
|
|
const char* format, va_list argptr) {
|
|
return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
|
|
}
|
|
#define _TRUNCATE 0
|
|
|
|
|
|
int strncpy_s(char* strDest, size_t numberOfElements,
|
|
const char* strSource, size_t count) {
|
|
strncpy(strDest, strSource, count);
|
|
return 0;
|
|
}
|
|
|
|
#endif // __MINGW32__
|
|
|
|
// Generate a pseudo-random number in the range 0-2^31-1. Usually
|
|
// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
|
|
int random() {
|
|
return rand();
|
|
}
|
|
|
|
|
|
namespace v8 { namespace internal {
|
|
|
|
double ceiling(double x) {
|
|
return ceil(x);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The Time class represents time on win32. A timestamp is represented as
|
|
// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
|
|
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
|
|
// January 1, 1970.
|
|
|
|
class Time {
|
|
public:
|
|
// Constructors.
|
|
Time();
|
|
explicit Time(double jstime);
|
|
Time(int year, int mon, int day, int hour, int min, int sec);
|
|
|
|
// Convert timestamp to JavaScript representation.
|
|
double ToJSTime();
|
|
|
|
// Set timestamp to current time.
|
|
void SetToCurrentTime();
|
|
|
|
// Returns the local timezone offset in milliseconds east of UTC. This is
|
|
// the number of milliseconds you must add to UTC to get local time, i.e.
|
|
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
|
|
// routine also takes into account whether daylight saving is effect
|
|
// at the time.
|
|
int64_t LocalOffset();
|
|
|
|
// Returns the daylight savings time offset for the time in milliseconds.
|
|
int64_t DaylightSavingsOffset();
|
|
|
|
// Returns a string identifying the current timezone for the
|
|
// timestamp taking into account daylight saving.
|
|
char* LocalTimezone();
|
|
|
|
private:
|
|
// Constants for time conversion.
|
|
static const int64_t kTimeEpoc = 116444736000000000LL;
|
|
static const int64_t kTimeScaler = 10000;
|
|
static const int64_t kMsPerMinute = 60000;
|
|
|
|
// Constants for timezone information.
|
|
static const int kTzNameSize = 128;
|
|
static const bool kShortTzNames = false;
|
|
|
|
// Timezone information. We need to have static buffers for the
|
|
// timezone names because we return pointers to these in
|
|
// LocalTimezone().
|
|
static bool tz_initialized_;
|
|
static TIME_ZONE_INFORMATION tzinfo_;
|
|
static char std_tz_name_[kTzNameSize];
|
|
static char dst_tz_name_[kTzNameSize];
|
|
|
|
// Initialize the timezone information (if not already done).
|
|
static void TzSet();
|
|
|
|
// Guess the name of the timezone from the bias.
|
|
static const char* GuessTimezoneNameFromBias(int bias);
|
|
|
|
// Return whether or not daylight savings time is in effect at this time.
|
|
bool InDST();
|
|
|
|
// Return the difference (in milliseconds) between this timestamp and
|
|
// another timestamp.
|
|
int64_t Diff(Time* other);
|
|
|
|
// Accessor for FILETIME representation.
|
|
FILETIME& ft() { return time_.ft_; }
|
|
|
|
// Accessor for integer representation.
|
|
int64_t& t() { return time_.t_; }
|
|
|
|
// Although win32 uses 64-bit integers for representing timestamps,
|
|
// these are packed into a FILETIME structure. The FILETIME structure
|
|
// is just a struct representing a 64-bit integer. The TimeStamp union
|
|
// allows access to both a FILETIME and an integer representation of
|
|
// the timestamp.
|
|
union TimeStamp {
|
|
FILETIME ft_;
|
|
int64_t t_;
|
|
};
|
|
|
|
TimeStamp time_;
|
|
};
|
|
|
|
// Static variables.
|
|
bool Time::tz_initialized_ = false;
|
|
TIME_ZONE_INFORMATION Time::tzinfo_;
|
|
char Time::std_tz_name_[kTzNameSize];
|
|
char Time::dst_tz_name_[kTzNameSize];
|
|
|
|
|
|
// Initialize timestamp to start of epoc.
|
|
Time::Time() {
|
|
t() = 0;
|
|
}
|
|
|
|
|
|
// Initialize timestamp from a JavaScript timestamp.
|
|
Time::Time(double jstime) {
|
|
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
|
|
}
|
|
|
|
|
|
// Initialize timestamp from date/time components.
|
|
Time::Time(int year, int mon, int day, int hour, int min, int sec) {
|
|
SYSTEMTIME st;
|
|
st.wYear = year;
|
|
st.wMonth = mon;
|
|
st.wDay = day;
|
|
st.wHour = hour;
|
|
st.wMinute = min;
|
|
st.wSecond = sec;
|
|
st.wMilliseconds = 0;
|
|
SystemTimeToFileTime(&st, &ft());
|
|
}
|
|
|
|
|
|
// Convert timestamp to JavaScript timestamp.
|
|
double Time::ToJSTime() {
|
|
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
|
|
}
|
|
|
|
|
|
// Guess the name of the timezone from the bias.
|
|
// The guess is very biased towards the northern hemisphere.
|
|
const char* Time::GuessTimezoneNameFromBias(int bias) {
|
|
static const int kHour = 60;
|
|
switch (-bias) {
|
|
case -9*kHour: return "Alaska";
|
|
case -8*kHour: return "Pacific";
|
|
case -7*kHour: return "Mountain";
|
|
case -6*kHour: return "Central";
|
|
case -5*kHour: return "Eastern";
|
|
case -4*kHour: return "Atlantic";
|
|
case 0*kHour: return "GMT";
|
|
case +1*kHour: return "Central Europe";
|
|
case +2*kHour: return "Eastern Europe";
|
|
case +3*kHour: return "Russia";
|
|
case +5*kHour + 30: return "India";
|
|
case +8*kHour: return "China";
|
|
case +9*kHour: return "Japan";
|
|
case +12*kHour: return "New Zealand";
|
|
default: return "Local";
|
|
}
|
|
}
|
|
|
|
|
|
// Initialize timezone information. The timezone information is obtained from
|
|
// windows. If we cannot get the timezone information we fall back to CET.
|
|
// Please notice that this code is not thread-safe.
|
|
void Time::TzSet() {
|
|
// Just return if timezone information has already been initialized.
|
|
if (tz_initialized_) return;
|
|
|
|
// Initialize POSIX time zone data.
|
|
_tzset();
|
|
// Obtain timezone information from operating system.
|
|
memset(&tzinfo_, 0, sizeof(tzinfo_));
|
|
if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
|
|
// If we cannot get timezone information we fall back to CET.
|
|
tzinfo_.Bias = -60;
|
|
tzinfo_.StandardDate.wMonth = 10;
|
|
tzinfo_.StandardDate.wDay = 5;
|
|
tzinfo_.StandardDate.wHour = 3;
|
|
tzinfo_.StandardBias = 0;
|
|
tzinfo_.DaylightDate.wMonth = 3;
|
|
tzinfo_.DaylightDate.wDay = 5;
|
|
tzinfo_.DaylightDate.wHour = 2;
|
|
tzinfo_.DaylightBias = -60;
|
|
}
|
|
|
|
// Make standard and DST timezone names.
|
|
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
|
|
"%S",
|
|
tzinfo_.StandardName);
|
|
std_tz_name_[kTzNameSize - 1] = '\0';
|
|
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
|
|
"%S",
|
|
tzinfo_.DaylightName);
|
|
dst_tz_name_[kTzNameSize - 1] = '\0';
|
|
|
|
// If OS returned empty string or resource id (like "@tzres.dll,-211")
|
|
// simply guess the name from the UTC bias of the timezone.
|
|
// To properly resolve the resource identifier requires a library load,
|
|
// which is not possible in a sandbox.
|
|
if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
|
|
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
|
|
"%s Standard Time",
|
|
GuessTimezoneNameFromBias(tzinfo_.Bias));
|
|
}
|
|
if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
|
|
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
|
|
"%s Daylight Time",
|
|
GuessTimezoneNameFromBias(tzinfo_.Bias));
|
|
}
|
|
|
|
// Timezone information initialized.
|
|
tz_initialized_ = true;
|
|
}
|
|
|
|
|
|
// Return the difference in milliseconds between this and another timestamp.
|
|
int64_t Time::Diff(Time* other) {
|
|
return (t() - other->t()) / kTimeScaler;
|
|
}
|
|
|
|
|
|
// Set timestamp to current time.
|
|
void Time::SetToCurrentTime() {
|
|
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
|
|
// Because we're fast, we like fast timers which have at least a
|
|
// 1ms resolution.
|
|
//
|
|
// timeGetTime() provides 1ms granularity when combined with
|
|
// timeBeginPeriod(). If the host application for v8 wants fast
|
|
// timers, it can use timeBeginPeriod to increase the resolution.
|
|
//
|
|
// Using timeGetTime() has a drawback because it is a 32bit value
|
|
// and hence rolls-over every ~49days.
|
|
//
|
|
// To use the clock, we use GetSystemTimeAsFileTime as our base;
|
|
// and then use timeGetTime to extrapolate current time from the
|
|
// start time. To deal with rollovers, we resync the clock
|
|
// any time when more than kMaxClockElapsedTime has passed or
|
|
// whenever timeGetTime creates a rollover.
|
|
|
|
static bool initialized = false;
|
|
static TimeStamp init_time;
|
|
static DWORD init_ticks;
|
|
static const int64_t kHundredNanosecondsPerSecond = 10000000;
|
|
static const int64_t kMaxClockElapsedTime =
|
|
60*kHundredNanosecondsPerSecond; // 1 minute
|
|
|
|
// If we are uninitialized, we need to resync the clock.
|
|
bool needs_resync = !initialized;
|
|
|
|
// Get the current time.
|
|
TimeStamp time_now;
|
|
GetSystemTimeAsFileTime(&time_now.ft_);
|
|
DWORD ticks_now = timeGetTime();
|
|
|
|
// Check if we need to resync due to clock rollover.
|
|
needs_resync |= ticks_now < init_ticks;
|
|
|
|
// Check if we need to resync due to elapsed time.
|
|
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
|
|
|
|
// Resync the clock if necessary.
|
|
if (needs_resync) {
|
|
GetSystemTimeAsFileTime(&init_time.ft_);
|
|
init_ticks = ticks_now = timeGetTime();
|
|
initialized = true;
|
|
}
|
|
|
|
// Finally, compute the actual time. Why is this so hard.
|
|
DWORD elapsed = ticks_now - init_ticks;
|
|
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
|
|
}
|
|
|
|
|
|
// Return the local timezone offset in milliseconds east of UTC. This
|
|
// takes into account whether daylight saving is in effect at the time.
|
|
// Only times in the 32-bit Unix range may be passed to this function.
|
|
// Also, adding the time-zone offset to the input must not overflow.
|
|
// The function EquivalentTime() in date-delay.js guarantees this.
|
|
int64_t Time::LocalOffset() {
|
|
// Initialize timezone information, if needed.
|
|
TzSet();
|
|
|
|
Time rounded_to_second(*this);
|
|
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
|
|
1000 * kTimeScaler;
|
|
// Convert to local time using POSIX localtime function.
|
|
// Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
|
|
// very slow. Other browsers use localtime().
|
|
|
|
// Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
|
|
// POSIX seconds past 1/1/1970 0:00:00.
|
|
double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
|
|
if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
|
|
return 0;
|
|
}
|
|
// Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
|
|
time_t posix_time = static_cast<time_t>(unchecked_posix_time);
|
|
|
|
// Convert to local time, as struct with fields for day, hour, year, etc.
|
|
tm posix_local_time_struct;
|
|
if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
|
|
// Convert local time in struct to POSIX time as if it were a UTC time.
|
|
time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
|
|
Time localtime(1000.0 * local_posix_time);
|
|
|
|
return localtime.Diff(&rounded_to_second);
|
|
}
|
|
|
|
|
|
// Return whether or not daylight savings time is in effect at this time.
|
|
bool Time::InDST() {
|
|
// Initialize timezone information, if needed.
|
|
TzSet();
|
|
|
|
// Determine if DST is in effect at the specified time.
|
|
bool in_dst = false;
|
|
if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
|
|
// Get the local timezone offset for the timestamp in milliseconds.
|
|
int64_t offset = LocalOffset();
|
|
|
|
// Compute the offset for DST. The bias parameters in the timezone info
|
|
// are specified in minutes. These must be converted to milliseconds.
|
|
int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
|
|
|
|
// If the local time offset equals the timezone bias plus the daylight
|
|
// bias then DST is in effect.
|
|
in_dst = offset == dstofs;
|
|
}
|
|
|
|
return in_dst;
|
|
}
|
|
|
|
|
|
// Return the daylight savings time offset for this time.
|
|
int64_t Time::DaylightSavingsOffset() {
|
|
return InDST() ? 60 * kMsPerMinute : 0;
|
|
}
|
|
|
|
|
|
// Returns a string identifying the current timezone for the
|
|
// timestamp taking into account daylight saving.
|
|
char* Time::LocalTimezone() {
|
|
// Return the standard or DST time zone name based on whether daylight
|
|
// saving is in effect at the given time.
|
|
return InDST() ? dst_tz_name_ : std_tz_name_;
|
|
}
|
|
|
|
|
|
void OS::Setup() {
|
|
// Seed the random number generator.
|
|
// Convert the current time to a 64-bit integer first, before converting it
|
|
// to an unsigned. Going directly can cause an overflow and the seed to be
|
|
// set to all ones. The seed will be identical for different instances that
|
|
// call this setup code within the same millisecond.
|
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
|
|
srand(static_cast<unsigned int>(seed));
|
|
}
|
|
|
|
|
|
// Returns the accumulated user time for thread.
|
|
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
|
|
FILETIME dummy;
|
|
uint64_t usertime;
|
|
|
|
// Get the amount of time that the thread has executed in user mode.
|
|
if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
|
|
reinterpret_cast<FILETIME*>(&usertime))) return -1;
|
|
|
|
// Adjust the resolution to micro-seconds.
|
|
usertime /= 10;
|
|
|
|
// Convert to seconds and microseconds
|
|
*secs = static_cast<uint32_t>(usertime / 1000000);
|
|
*usecs = static_cast<uint32_t>(usertime % 1000000);
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Returns current time as the number of milliseconds since
|
|
// 00:00:00 UTC, January 1, 1970.
|
|
double OS::TimeCurrentMillis() {
|
|
Time t;
|
|
t.SetToCurrentTime();
|
|
return t.ToJSTime();
|
|
}
|
|
|
|
// Returns the tickcounter based on timeGetTime.
|
|
int64_t OS::Ticks() {
|
|
return timeGetTime() * 1000; // Convert to microseconds.
|
|
}
|
|
|
|
|
|
// Returns a string identifying the current timezone taking into
|
|
// account daylight saving.
|
|
char* OS::LocalTimezone(double time) {
|
|
return Time(time).LocalTimezone();
|
|
}
|
|
|
|
|
|
// Returns the local time offset in milliseconds east of UTC without
|
|
// taking daylight savings time into account.
|
|
double OS::LocalTimeOffset() {
|
|
// Use current time, rounded to the millisecond.
|
|
Time t(TimeCurrentMillis());
|
|
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
|
|
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
|
|
}
|
|
|
|
|
|
// Returns the daylight savings offset in milliseconds for the given
|
|
// time.
|
|
double OS::DaylightSavingsOffset(double time) {
|
|
int64_t offset = Time(time).DaylightSavingsOffset();
|
|
return static_cast<double>(offset);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 console output.
|
|
//
|
|
// If a Win32 application is linked as a console application it has a normal
|
|
// standard output and standard error. In this case normal printf works fine
|
|
// for output. However, if the application is linked as a GUI application,
|
|
// the process doesn't have a console, and therefore (debugging) output is lost.
|
|
// This is the case if we are embedded in a windows program (like a browser).
|
|
// In order to be able to get debug output in this case the the debugging
|
|
// facility using OutputDebugString. This output goes to the active debugger
|
|
// for the process (if any). Else the output can be monitored using DBMON.EXE.
|
|
|
|
enum OutputMode {
|
|
UNKNOWN, // Output method has not yet been determined.
|
|
CONSOLE, // Output is written to stdout.
|
|
ODS // Output is written to debug facility.
|
|
};
|
|
|
|
static OutputMode output_mode = UNKNOWN; // Current output mode.
|
|
|
|
|
|
// Determine if the process has a console for output.
|
|
static bool HasConsole() {
|
|
// Only check the first time. Eventual race conditions are not a problem,
|
|
// because all threads will eventually determine the same mode.
|
|
if (output_mode == UNKNOWN) {
|
|
// We cannot just check that the standard output is attached to a console
|
|
// because this would fail if output is redirected to a file. Therefore we
|
|
// say that a process does not have an output console if either the
|
|
// standard output handle is invalid or its file type is unknown.
|
|
if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
|
|
GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
|
|
output_mode = CONSOLE;
|
|
else
|
|
output_mode = ODS;
|
|
}
|
|
return output_mode == CONSOLE;
|
|
}
|
|
|
|
|
|
static void VPrintHelper(FILE* stream, const char* format, va_list args) {
|
|
if (HasConsole()) {
|
|
vfprintf(stream, format, args);
|
|
} else {
|
|
// It is important to use safe print here in order to avoid
|
|
// overflowing the buffer. We might truncate the output, but this
|
|
// does not crash.
|
|
EmbeddedVector<char, 4096> buffer;
|
|
OS::VSNPrintF(buffer, format, args);
|
|
OutputDebugStringA(buffer.start());
|
|
}
|
|
}
|
|
|
|
|
|
FILE* OS::FOpen(const char* path, const char* mode) {
|
|
FILE* result;
|
|
if (fopen_s(&result, path, mode) == 0) {
|
|
return result;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
// Open log file in binary mode to avoid /n -> /r/n conversion.
|
|
const char* OS::LogFileOpenMode = "wb";
|
|
|
|
|
|
// Print (debug) message to console.
|
|
void OS::Print(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
VPrint(format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
void OS::VPrint(const char* format, va_list args) {
|
|
VPrintHelper(stdout, format, args);
|
|
}
|
|
|
|
|
|
// Print error message to console.
|
|
void OS::PrintError(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
VPrintError(format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
void OS::VPrintError(const char* format, va_list args) {
|
|
VPrintHelper(stderr, format, args);
|
|
}
|
|
|
|
|
|
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int result = VSNPrintF(str, format, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
|
|
int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
|
|
int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
|
|
// Make sure to zero-terminate the string if the output was
|
|
// truncated or if there was an error.
|
|
if (n < 0 || n >= str.length()) {
|
|
str[str.length() - 1] = '\0';
|
|
return -1;
|
|
} else {
|
|
return n;
|
|
}
|
|
}
|
|
|
|
|
|
char* OS::StrChr(char* str, int c) {
|
|
return const_cast<char*>(strchr(str, c));
|
|
}
|
|
|
|
|
|
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
|
|
int result = strncpy_s(dest.start(), dest.length(), src, n);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
}
|
|
|
|
|
|
// We keep the lowest and highest addresses mapped as a quick way of
|
|
// determining that pointers are outside the heap (used mostly in assertions
|
|
// and verification). The estimate is conservative, ie, not all addresses in
|
|
// 'allocated' space are actually allocated to our heap. The range is
|
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
|
|
|
|
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
|
highest_ever_allocated =
|
|
Max(highest_ever_allocated,
|
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
|
}
|
|
|
|
|
|
bool OS::IsOutsideAllocatedSpace(void* pointer) {
|
|
if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
|
|
return true;
|
|
// Ask the Windows API
|
|
if (IsBadWritePtr(pointer, 1))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
// Get the system's page size used by VirtualAlloc() or the next power
|
|
// of two. The reason for always returning a power of two is that the
|
|
// rounding up in OS::Allocate expects that.
|
|
static size_t GetPageSize() {
|
|
static size_t page_size = 0;
|
|
if (page_size == 0) {
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
page_size = RoundUpToPowerOf2(info.dwPageSize);
|
|
}
|
|
return page_size;
|
|
}
|
|
|
|
|
|
// The allocation alignment is the guaranteed alignment for
|
|
// VirtualAlloc'ed blocks of memory.
|
|
size_t OS::AllocateAlignment() {
|
|
static size_t allocate_alignment = 0;
|
|
if (allocate_alignment == 0) {
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
allocate_alignment = info.dwAllocationGranularity;
|
|
}
|
|
return allocate_alignment;
|
|
}
|
|
|
|
|
|
void* OS::Allocate(const size_t requested,
|
|
size_t* allocated,
|
|
bool is_executable) {
|
|
// VirtualAlloc rounds allocated size to page size automatically.
|
|
size_t msize = RoundUp(requested, GetPageSize());
|
|
|
|
// Windows XP SP2 allows Data Excution Prevention (DEP).
|
|
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
|
|
if (mbase == NULL) {
|
|
LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
|
|
|
|
*allocated = msize;
|
|
UpdateAllocatedSpaceLimits(mbase, msize);
|
|
return mbase;
|
|
}
|
|
|
|
|
|
void OS::Free(void* address, const size_t size) {
|
|
// TODO(1240712): VirtualFree has a return value which is ignored here.
|
|
VirtualFree(address, 0, MEM_RELEASE);
|
|
USE(size);
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_HEAP_PROTECTION
|
|
|
|
void OS::Protect(void* address, size_t size) {
|
|
// TODO(1240712): VirtualProtect has a return value which is ignored here.
|
|
DWORD old_protect;
|
|
VirtualProtect(address, size, PAGE_READONLY, &old_protect);
|
|
}
|
|
|
|
|
|
void OS::Unprotect(void* address, size_t size, bool is_executable) {
|
|
// TODO(1240712): VirtualProtect has a return value which is ignored here.
|
|
DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
DWORD old_protect;
|
|
VirtualProtect(address, size, new_protect, &old_protect);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
void OS::Sleep(int milliseconds) {
|
|
::Sleep(milliseconds);
|
|
}
|
|
|
|
|
|
void OS::Abort() {
|
|
if (!IsDebuggerPresent()) {
|
|
#ifdef _MSC_VER
|
|
// Make the MSVCRT do a silent abort.
|
|
_set_abort_behavior(0, _WRITE_ABORT_MSG);
|
|
_set_abort_behavior(0, _CALL_REPORTFAULT);
|
|
#endif // _MSC_VER
|
|
abort();
|
|
} else {
|
|
DebugBreak();
|
|
}
|
|
}
|
|
|
|
|
|
void OS::DebugBreak() {
|
|
#ifdef _MSC_VER
|
|
__debugbreak();
|
|
#else
|
|
::DebugBreak();
|
|
#endif
|
|
}
|
|
|
|
|
|
class Win32MemoryMappedFile : public OS::MemoryMappedFile {
|
|
public:
|
|
Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
|
|
: file_(file), file_mapping_(file_mapping), memory_(memory) { }
|
|
virtual ~Win32MemoryMappedFile();
|
|
virtual void* memory() { return memory_; }
|
|
private:
|
|
HANDLE file_;
|
|
HANDLE file_mapping_;
|
|
void* memory_;
|
|
};
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
|
void* initial) {
|
|
// Open a physical file
|
|
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
|
|
if (file == NULL) return NULL;
|
|
// Create a file mapping for the physical file
|
|
HANDLE file_mapping = CreateFileMapping(file, NULL,
|
|
PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
|
|
if (file_mapping == NULL) return NULL;
|
|
// Map a view of the file into memory
|
|
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
|
|
if (memory) memmove(memory, initial, size);
|
|
return new Win32MemoryMappedFile(file, file_mapping, memory);
|
|
}
|
|
|
|
|
|
Win32MemoryMappedFile::~Win32MemoryMappedFile() {
|
|
if (memory_ != NULL)
|
|
UnmapViewOfFile(memory_);
|
|
CloseHandle(file_mapping_);
|
|
CloseHandle(file_);
|
|
}
|
|
|
|
|
|
// The following code loads functions defined in DbhHelp.h and TlHelp32.h
|
|
// dynamically. This is to avoid being depending on dbghelp.dll and
|
|
// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
|
|
// kernel32.dll at some point so loading functions defines in TlHelp32.h
|
|
// dynamically might not be necessary any more - for some versions of Windows?).
|
|
|
|
// Function pointers to functions dynamically loaded from dbghelp.dll.
|
|
#define DBGHELP_FUNCTION_LIST(V) \
|
|
V(SymInitialize) \
|
|
V(SymGetOptions) \
|
|
V(SymSetOptions) \
|
|
V(SymGetSearchPath) \
|
|
V(SymLoadModule64) \
|
|
V(StackWalk64) \
|
|
V(SymGetSymFromAddr64) \
|
|
V(SymGetLineFromAddr64) \
|
|
V(SymFunctionTableAccess64) \
|
|
V(SymGetModuleBase64)
|
|
|
|
// Function pointers to functions dynamically loaded from dbghelp.dll.
|
|
#define TLHELP32_FUNCTION_LIST(V) \
|
|
V(CreateToolhelp32Snapshot) \
|
|
V(Module32FirstW) \
|
|
V(Module32NextW)
|
|
|
|
// Define the decoration to use for the type and variable name used for
|
|
// dynamically loaded DLL function..
|
|
#define DLL_FUNC_TYPE(name) _##name##_
|
|
#define DLL_FUNC_VAR(name) _##name
|
|
|
|
// Define the type for each dynamically loaded DLL function. The function
|
|
// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
|
|
// from the Windows include files are redefined here to have the function
|
|
// definitions to be as close to the ones in the original .h files as possible.
|
|
#ifndef IN
|
|
#define IN
|
|
#endif
|
|
#ifndef VOID
|
|
#define VOID void
|
|
#endif
|
|
|
|
// DbgHelp isn't supported on MinGW yet
|
|
#ifndef __MINGW32__
|
|
// DbgHelp.h functions.
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
|
|
IN PSTR UserSearchPath,
|
|
IN BOOL fInvadeProcess);
|
|
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
|
|
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
|
|
IN HANDLE hProcess,
|
|
OUT PSTR SearchPath,
|
|
IN DWORD SearchPathLength);
|
|
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
|
|
IN HANDLE hProcess,
|
|
IN HANDLE hFile,
|
|
IN PSTR ImageName,
|
|
IN PSTR ModuleName,
|
|
IN DWORD64 BaseOfDll,
|
|
IN DWORD SizeOfDll);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
|
|
DWORD MachineType,
|
|
HANDLE hProcess,
|
|
HANDLE hThread,
|
|
LPSTACKFRAME64 StackFrame,
|
|
PVOID ContextRecord,
|
|
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
|
|
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
|
|
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
|
|
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
|
|
IN HANDLE hProcess,
|
|
IN DWORD64 qwAddr,
|
|
OUT PDWORD64 pdwDisplacement,
|
|
OUT PIMAGEHLP_SYMBOL64 Symbol);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
|
|
IN HANDLE hProcess,
|
|
IN DWORD64 qwAddr,
|
|
OUT PDWORD pdwDisplacement,
|
|
OUT PIMAGEHLP_LINE64 Line64);
|
|
// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
|
|
typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
|
|
HANDLE hProcess,
|
|
DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
|
|
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
|
|
HANDLE hProcess,
|
|
DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
|
|
|
|
// TlHelp32.h functions.
|
|
typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
|
|
DWORD dwFlags,
|
|
DWORD th32ProcessID);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
|
|
LPMODULEENTRY32W lpme);
|
|
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
|
|
LPMODULEENTRY32W lpme);
|
|
|
|
#undef IN
|
|
#undef VOID
|
|
|
|
// Declare a variable for each dynamically loaded DLL function.
|
|
#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
|
|
DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
|
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
|
|
#undef DEF_DLL_FUNCTION
|
|
|
|
// Load the functions. This function has a lot of "ugly" macros in order to
|
|
// keep down code duplication.
|
|
|
|
static bool LoadDbgHelpAndTlHelp32() {
|
|
static bool dbghelp_loaded = false;
|
|
|
|
if (dbghelp_loaded) return true;
|
|
|
|
HMODULE module;
|
|
|
|
// Load functions from the dbghelp.dll module.
|
|
module = LoadLibrary(TEXT("dbghelp.dll"));
|
|
if (module == NULL) {
|
|
return false;
|
|
}
|
|
|
|
#define LOAD_DLL_FUNC(name) \
|
|
DLL_FUNC_VAR(name) = \
|
|
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
|
|
|
DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
|
|
|
|
#undef LOAD_DLL_FUNC
|
|
|
|
// Load functions from the kernel32.dll module (the TlHelp32.h function used
|
|
// to be in tlhelp32.dll but are now moved to kernel32.dll).
|
|
module = LoadLibrary(TEXT("kernel32.dll"));
|
|
if (module == NULL) {
|
|
return false;
|
|
}
|
|
|
|
#define LOAD_DLL_FUNC(name) \
|
|
DLL_FUNC_VAR(name) = \
|
|
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
|
|
|
|
TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
|
|
|
|
#undef LOAD_DLL_FUNC
|
|
|
|
// Check that all functions where loaded.
|
|
bool result =
|
|
#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
|
|
|
|
DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
|
|
TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
|
|
|
|
#undef DLL_FUNC_LOADED
|
|
true;
|
|
|
|
dbghelp_loaded = result;
|
|
return result;
|
|
// NOTE: The modules are never unloaded and will stay around until the
|
|
// application is closed.
|
|
}
|
|
|
|
|
|
// Load the symbols for generating stack traces.
|
|
static bool LoadSymbols(HANDLE process_handle) {
|
|
static bool symbols_loaded = false;
|
|
|
|
if (symbols_loaded) return true;
|
|
|
|
BOOL ok;
|
|
|
|
// Initialize the symbol engine.
|
|
ok = _SymInitialize(process_handle, // hProcess
|
|
NULL, // UserSearchPath
|
|
FALSE); // fInvadeProcess
|
|
if (!ok) return false;
|
|
|
|
DWORD options = _SymGetOptions();
|
|
options |= SYMOPT_LOAD_LINES;
|
|
options |= SYMOPT_FAIL_CRITICAL_ERRORS;
|
|
options = _SymSetOptions(options);
|
|
|
|
char buf[OS::kStackWalkMaxNameLen] = {0};
|
|
ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
|
|
if (!ok) {
|
|
int err = GetLastError();
|
|
PrintF("%d\n", err);
|
|
return false;
|
|
}
|
|
|
|
HANDLE snapshot = _CreateToolhelp32Snapshot(
|
|
TH32CS_SNAPMODULE, // dwFlags
|
|
GetCurrentProcessId()); // th32ProcessId
|
|
if (snapshot == INVALID_HANDLE_VALUE) return false;
|
|
MODULEENTRY32W module_entry;
|
|
module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
|
|
BOOL cont = _Module32FirstW(snapshot, &module_entry);
|
|
while (cont) {
|
|
DWORD64 base;
|
|
// NOTE the SymLoadModule64 function has the peculiarity of accepting a
|
|
// both unicode and ASCII strings even though the parameter is PSTR.
|
|
base = _SymLoadModule64(
|
|
process_handle, // hProcess
|
|
0, // hFile
|
|
reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
|
|
reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
|
|
reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
|
|
module_entry.modBaseSize); // SizeOfDll
|
|
if (base == 0) {
|
|
int err = GetLastError();
|
|
if (err != ERROR_MOD_NOT_FOUND &&
|
|
err != ERROR_INVALID_HANDLE) return false;
|
|
}
|
|
LOG(SharedLibraryEvent(
|
|
module_entry.szExePath,
|
|
reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
|
|
reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
|
|
module_entry.modBaseSize)));
|
|
cont = _Module32NextW(snapshot, &module_entry);
|
|
}
|
|
CloseHandle(snapshot);
|
|
|
|
symbols_loaded = true;
|
|
return true;
|
|
}
|
|
|
|
|
|
void OS::LogSharedLibraryAddresses() {
|
|
// SharedLibraryEvents are logged when loading symbol information.
|
|
// Only the shared libraries loaded at the time of the call to
|
|
// LogSharedLibraryAddresses are logged. DLLs loaded after
|
|
// initialization are not accounted for.
|
|
if (!LoadDbgHelpAndTlHelp32()) return;
|
|
HANDLE process_handle = GetCurrentProcess();
|
|
LoadSymbols(process_handle);
|
|
}
|
|
|
|
|
|
// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
|
|
|
|
// Switch off warning 4748 (/GS can not protect parameters and local variables
|
|
// from local buffer overrun because optimizations are disabled in function) as
|
|
// it is triggered by the use of inline assembler.
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4748)
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) {
|
|
BOOL ok;
|
|
|
|
// Load the required functions from DLL's.
|
|
if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
|
|
|
|
// Get the process and thread handles.
|
|
HANDLE process_handle = GetCurrentProcess();
|
|
HANDLE thread_handle = GetCurrentThread();
|
|
|
|
// Read the symbols.
|
|
if (!LoadSymbols(process_handle)) return kStackWalkError;
|
|
|
|
// Capture current context.
|
|
CONTEXT context;
|
|
memset(&context, 0, sizeof(context));
|
|
context.ContextFlags = CONTEXT_CONTROL;
|
|
context.ContextFlags = CONTEXT_CONTROL;
|
|
__asm call x
|
|
__asm x: pop eax
|
|
__asm mov context.Eip, eax
|
|
__asm mov context.Ebp, ebp
|
|
__asm mov context.Esp, esp
|
|
// NOTE: At some point, we could use RtlCaptureContext(&context) to
|
|
// capture the context instead of inline assembler. However it is
|
|
// only available on XP, Vista, Server 2003 and Server 2008 which
|
|
// might not be sufficient.
|
|
|
|
// Initialize the stack walking
|
|
STACKFRAME64 stack_frame;
|
|
memset(&stack_frame, 0, sizeof(stack_frame));
|
|
stack_frame.AddrPC.Offset = context.Eip;
|
|
stack_frame.AddrPC.Mode = AddrModeFlat;
|
|
stack_frame.AddrFrame.Offset = context.Ebp;
|
|
stack_frame.AddrFrame.Mode = AddrModeFlat;
|
|
stack_frame.AddrStack.Offset = context.Esp;
|
|
stack_frame.AddrStack.Mode = AddrModeFlat;
|
|
int frames_count = 0;
|
|
|
|
// Collect stack frames.
|
|
int frames_size = frames.length();
|
|
while (frames_count < frames_size) {
|
|
ok = _StackWalk64(
|
|
IMAGE_FILE_MACHINE_I386, // MachineType
|
|
process_handle, // hProcess
|
|
thread_handle, // hThread
|
|
&stack_frame, // StackFrame
|
|
&context, // ContextRecord
|
|
NULL, // ReadMemoryRoutine
|
|
_SymFunctionTableAccess64, // FunctionTableAccessRoutine
|
|
_SymGetModuleBase64, // GetModuleBaseRoutine
|
|
NULL); // TranslateAddress
|
|
if (!ok) break;
|
|
|
|
// Store the address.
|
|
ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
|
|
frames[frames_count].address =
|
|
reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
|
|
|
|
// Try to locate a symbol for this frame.
|
|
DWORD64 symbol_displacement;
|
|
IMAGEHLP_SYMBOL64* symbol = NULL;
|
|
symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
|
|
if (!symbol) return kStackWalkError; // Out of memory.
|
|
memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
|
|
symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
|
|
symbol->MaxNameLength = kStackWalkMaxNameLen;
|
|
ok = _SymGetSymFromAddr64(process_handle, // hProcess
|
|
stack_frame.AddrPC.Offset, // Address
|
|
&symbol_displacement, // Displacement
|
|
symbol); // Symbol
|
|
if (ok) {
|
|
// Try to locate more source information for the symbol.
|
|
IMAGEHLP_LINE64 Line;
|
|
memset(&Line, 0, sizeof(Line));
|
|
Line.SizeOfStruct = sizeof(Line);
|
|
DWORD line_displacement;
|
|
ok = _SymGetLineFromAddr64(
|
|
process_handle, // hProcess
|
|
stack_frame.AddrPC.Offset, // dwAddr
|
|
&line_displacement, // pdwDisplacement
|
|
&Line); // Line
|
|
// Format a text representation of the frame based on the information
|
|
// available.
|
|
if (ok) {
|
|
SNPrintF(MutableCStrVector(frames[frames_count].text,
|
|
kStackWalkMaxTextLen),
|
|
"%s %s:%d:%d",
|
|
symbol->Name, Line.FileName, Line.LineNumber,
|
|
line_displacement);
|
|
} else {
|
|
SNPrintF(MutableCStrVector(frames[frames_count].text,
|
|
kStackWalkMaxTextLen),
|
|
"%s",
|
|
symbol->Name);
|
|
}
|
|
// Make sure line termination is in place.
|
|
frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
|
|
} else {
|
|
// No text representation of this frame
|
|
frames[frames_count].text[0] = '\0';
|
|
|
|
// Continue if we are just missing a module (for non C/C++ frames a
|
|
// module will never be found).
|
|
int err = GetLastError();
|
|
if (err != ERROR_MOD_NOT_FOUND) {
|
|
DeleteArray(symbol);
|
|
break;
|
|
}
|
|
}
|
|
DeleteArray(symbol);
|
|
|
|
frames_count++;
|
|
}
|
|
|
|
// Return the number of frames filled in.
|
|
return frames_count;
|
|
}
|
|
|
|
// Restore warnings to previous settings.
|
|
#pragma warning(pop)
|
|
|
|
#else // __MINGW32__
|
|
void OS::LogSharedLibraryAddresses() { }
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
|
|
#endif // __MINGW32__
|
|
|
|
|
|
double OS::nan_value() {
|
|
#ifdef _MSC_VER
|
|
static const __int64 nanval = 0xfff8000000000000;
|
|
return *reinterpret_cast<const double*>(&nanval);
|
|
#else // _MSC_VER
|
|
return NAN;
|
|
#endif // _MSC_VER
|
|
}
|
|
|
|
|
|
int OS::ActivationFrameAlignment() {
|
|
// Floating point code runs faster if the stack is 8-byte aligned.
|
|
return 8;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::IsReserved() {
|
|
return address_ != NULL;
|
|
}
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size) {
|
|
address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
size_ = size;
|
|
}
|
|
|
|
|
|
VirtualMemory::~VirtualMemory() {
|
|
if (IsReserved()) {
|
|
if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
|
|
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
|
|
return false;
|
|
}
|
|
|
|
UpdateAllocatedSpaceLimits(address, size);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
|
ASSERT(IsReserved());
|
|
return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 thread support.
|
|
|
|
// Definition of invalid thread handle and id.
|
|
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
|
|
static const DWORD kNoThreadId = 0;
|
|
|
|
|
|
class ThreadHandle::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(ThreadHandle::Kind kind) {
|
|
Initialize(kind);
|
|
}
|
|
|
|
void Initialize(ThreadHandle::Kind kind) {
|
|
switch (kind) {
|
|
case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
|
|
case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
|
|
}
|
|
}
|
|
DWORD tid_; // Win32 thread identifier.
|
|
};
|
|
|
|
|
|
// Entry point for threads. The supplied argument is a pointer to the thread
|
|
// object. The entry function dispatches to the run method in the thread
|
|
// object. It is important that this function has __stdcall calling
|
|
// convention.
|
|
static unsigned int __stdcall ThreadEntry(void* arg) {
|
|
Thread* thread = reinterpret_cast<Thread*>(arg);
|
|
// This is also initialized by the last parameter to _beginthreadex() but we
|
|
// don't know which thread will run first (the original thread or the new
|
|
// one) so we initialize it here too.
|
|
thread->thread_handle_data()->tid_ = GetCurrentThreadId();
|
|
thread->Run();
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Initialize thread handle to invalid handle.
|
|
ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
|
|
data_ = new PlatformData(kind);
|
|
}
|
|
|
|
|
|
ThreadHandle::~ThreadHandle() {
|
|
delete data_;
|
|
}
|
|
|
|
|
|
// The thread is running if it has the same id as the current thread.
|
|
bool ThreadHandle::IsSelf() const {
|
|
return GetCurrentThreadId() == data_->tid_;
|
|
}
|
|
|
|
|
|
// Test for invalid thread handle.
|
|
bool ThreadHandle::IsValid() const {
|
|
return data_->tid_ != kNoThreadId;
|
|
}
|
|
|
|
|
|
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
|
|
data_->Initialize(kind);
|
|
}
|
|
|
|
|
|
class Thread::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(HANDLE thread) : thread_(thread) {}
|
|
HANDLE thread_;
|
|
};
|
|
|
|
|
|
// Initialize a Win32 thread object. The thread has an invalid thread
|
|
// handle until it is started.
|
|
|
|
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
|
|
data_ = new PlatformData(kNoThread);
|
|
}
|
|
|
|
|
|
// Close our own handle for the thread.
|
|
Thread::~Thread() {
|
|
if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
|
|
delete data_;
|
|
}
|
|
|
|
|
|
// Create a new thread. It is important to use _beginthreadex() instead of
|
|
// the Win32 function CreateThread(), because the CreateThread() does not
|
|
// initialize thread specific structures in the C runtime library.
|
|
void Thread::Start() {
|
|
data_->thread_ = reinterpret_cast<HANDLE>(
|
|
_beginthreadex(NULL,
|
|
0,
|
|
ThreadEntry,
|
|
this,
|
|
0,
|
|
reinterpret_cast<unsigned int*>(
|
|
&thread_handle_data()->tid_)));
|
|
ASSERT(IsValid());
|
|
}
|
|
|
|
|
|
// Wait for thread to terminate.
|
|
void Thread::Join() {
|
|
WaitForSingleObject(data_->thread_, INFINITE);
|
|
}
|
|
|
|
|
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
|
DWORD result = TlsAlloc();
|
|
ASSERT(result != TLS_OUT_OF_INDEXES);
|
|
return static_cast<LocalStorageKey>(result);
|
|
}
|
|
|
|
|
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
|
BOOL result = TlsFree(static_cast<DWORD>(key));
|
|
USE(result);
|
|
ASSERT(result);
|
|
}
|
|
|
|
|
|
void* Thread::GetThreadLocal(LocalStorageKey key) {
|
|
return TlsGetValue(static_cast<DWORD>(key));
|
|
}
|
|
|
|
|
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
|
BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
|
|
USE(result);
|
|
ASSERT(result);
|
|
}
|
|
|
|
|
|
|
|
void Thread::YieldCPU() {
|
|
Sleep(0);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 mutex support.
|
|
//
|
|
// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
|
|
// faster than Win32 Mutex objects because they are implemented using user mode
|
|
// atomic instructions. Therefore we only do ring transitions if there is lock
|
|
// contention.
|
|
|
|
class Win32Mutex : public Mutex {
|
|
public:
|
|
|
|
Win32Mutex() { InitializeCriticalSection(&cs_); }
|
|
|
|
~Win32Mutex() { DeleteCriticalSection(&cs_); }
|
|
|
|
int Lock() {
|
|
EnterCriticalSection(&cs_);
|
|
return 0;
|
|
}
|
|
|
|
int Unlock() {
|
|
LeaveCriticalSection(&cs_);
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
CRITICAL_SECTION cs_; // Critical section used for mutex
|
|
};
|
|
|
|
|
|
Mutex* OS::CreateMutex() {
|
|
return new Win32Mutex();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 semaphore support.
|
|
//
|
|
// On Win32 semaphores are implemented using Win32 Semaphore objects. The
|
|
// semaphores are anonymous. Also, the semaphores are initialized to have
|
|
// no upper limit on count.
|
|
|
|
|
|
class Win32Semaphore : public Semaphore {
|
|
public:
|
|
explicit Win32Semaphore(int count) {
|
|
sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
|
|
}
|
|
|
|
~Win32Semaphore() {
|
|
CloseHandle(sem);
|
|
}
|
|
|
|
void Wait() {
|
|
WaitForSingleObject(sem, INFINITE);
|
|
}
|
|
|
|
bool Wait(int timeout) {
|
|
// Timeout in Windows API is in milliseconds.
|
|
DWORD millis_timeout = timeout / 1000;
|
|
return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
|
|
}
|
|
|
|
void Signal() {
|
|
LONG dummy;
|
|
ReleaseSemaphore(sem, 1, &dummy);
|
|
}
|
|
|
|
private:
|
|
HANDLE sem;
|
|
};
|
|
|
|
|
|
Semaphore* OS::CreateSemaphore(int count) {
|
|
return new Win32Semaphore(count);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 socket support.
|
|
//
|
|
|
|
class Win32Socket : public Socket {
|
|
public:
|
|
explicit Win32Socket() {
|
|
// Create the socket.
|
|
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
|
|
}
|
|
explicit Win32Socket(SOCKET socket): socket_(socket) { }
|
|
virtual ~Win32Socket() { Shutdown(); }
|
|
|
|
// Server initialization.
|
|
bool Bind(const int port);
|
|
bool Listen(int backlog) const;
|
|
Socket* Accept() const;
|
|
|
|
// Client initialization.
|
|
bool Connect(const char* host, const char* port);
|
|
|
|
// Shutdown socket for both read and write.
|
|
bool Shutdown();
|
|
|
|
// Data Transimission
|
|
int Send(const char* data, int len) const;
|
|
int Receive(char* data, int len) const;
|
|
|
|
bool SetReuseAddress(bool reuse_address);
|
|
|
|
bool IsValid() const { return socket_ != INVALID_SOCKET; }
|
|
|
|
private:
|
|
SOCKET socket_;
|
|
};
|
|
|
|
|
|
bool Win32Socket::Bind(const int port) {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
sockaddr_in addr;
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sin_family = AF_INET;
|
|
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
addr.sin_port = htons(port);
|
|
int status = bind(socket_,
|
|
reinterpret_cast<struct sockaddr *>(&addr),
|
|
sizeof(addr));
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
bool Win32Socket::Listen(int backlog) const {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
int status = listen(socket_, backlog);
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
Socket* Win32Socket::Accept() const {
|
|
if (!IsValid()) {
|
|
return NULL;
|
|
}
|
|
|
|
SOCKET socket = accept(socket_, NULL, NULL);
|
|
if (socket == INVALID_SOCKET) {
|
|
return NULL;
|
|
} else {
|
|
return new Win32Socket(socket);
|
|
}
|
|
}
|
|
|
|
|
|
bool Win32Socket::Connect(const char* host, const char* port) {
|
|
if (!IsValid()) {
|
|
return false;
|
|
}
|
|
|
|
// Lookup host and port.
|
|
struct addrinfo *result = NULL;
|
|
struct addrinfo hints;
|
|
memset(&hints, 0, sizeof(addrinfo));
|
|
hints.ai_family = AF_INET;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = IPPROTO_TCP;
|
|
int status = getaddrinfo(host, port, &hints, &result);
|
|
if (status != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Connect.
|
|
status = connect(socket_, result->ai_addr, result->ai_addrlen);
|
|
freeaddrinfo(result);
|
|
return status == 0;
|
|
}
|
|
|
|
|
|
bool Win32Socket::Shutdown() {
|
|
if (IsValid()) {
|
|
// Shutdown socket for both read and write.
|
|
int status = shutdown(socket_, SD_BOTH);
|
|
closesocket(socket_);
|
|
socket_ = INVALID_SOCKET;
|
|
return status == SOCKET_ERROR;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int Win32Socket::Send(const char* data, int len) const {
|
|
int status = send(socket_, data, len, 0);
|
|
return status;
|
|
}
|
|
|
|
|
|
int Win32Socket::Receive(char* data, int len) const {
|
|
int status = recv(socket_, data, len, 0);
|
|
return status;
|
|
}
|
|
|
|
|
|
bool Win32Socket::SetReuseAddress(bool reuse_address) {
|
|
BOOL on = reuse_address ? TRUE : FALSE;
|
|
int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
|
|
reinterpret_cast<char*>(&on), sizeof(on));
|
|
return status == SOCKET_ERROR;
|
|
}
|
|
|
|
|
|
bool Socket::Setup() {
|
|
// Initialize Winsock32
|
|
int err;
|
|
WSADATA winsock_data;
|
|
WORD version_requested = MAKEWORD(1, 0);
|
|
err = WSAStartup(version_requested, &winsock_data);
|
|
if (err != 0) {
|
|
PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
|
|
}
|
|
|
|
return err == 0;
|
|
}
|
|
|
|
|
|
int Socket::LastError() {
|
|
return WSAGetLastError();
|
|
}
|
|
|
|
|
|
uint16_t Socket::HToN(uint16_t value) {
|
|
return htons(value);
|
|
}
|
|
|
|
|
|
uint16_t Socket::NToH(uint16_t value) {
|
|
return ntohs(value);
|
|
}
|
|
|
|
|
|
uint32_t Socket::HToN(uint32_t value) {
|
|
return htonl(value);
|
|
}
|
|
|
|
|
|
uint32_t Socket::NToH(uint32_t value) {
|
|
return ntohl(value);
|
|
}
|
|
|
|
|
|
Socket* OS::CreateSocket() {
|
|
return new Win32Socket();
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Win32 profiler support.
|
|
//
|
|
// On win32 we use a sampler thread with high priority to sample the program
|
|
// counter for the profiled thread.
|
|
|
|
class Sampler::PlatformData : public Malloced {
|
|
public:
|
|
explicit PlatformData(Sampler* sampler) {
|
|
sampler_ = sampler;
|
|
sampler_thread_ = INVALID_HANDLE_VALUE;
|
|
profiled_thread_ = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
Sampler* sampler_;
|
|
HANDLE sampler_thread_;
|
|
HANDLE profiled_thread_;
|
|
|
|
// Sampler thread handler.
|
|
void Runner() {
|
|
// Context used for sampling the register state of the profiled thread.
|
|
CONTEXT context;
|
|
memset(&context, 0, sizeof(context));
|
|
// Loop until the sampler is disengaged.
|
|
while (sampler_->IsActive()) {
|
|
TickSample sample;
|
|
|
|
// If profiling, we record the pc and sp of the profiled thread.
|
|
if (sampler_->IsProfiling()) {
|
|
// Pause the profiled thread and get its context.
|
|
SuspendThread(profiled_thread_);
|
|
context.ContextFlags = CONTEXT_FULL;
|
|
GetThreadContext(profiled_thread_, &context);
|
|
// Invoke tick handler with program counter and stack pointer.
|
|
sample.pc = context.Eip;
|
|
sample.sp = context.Esp;
|
|
sample.fp = context.Ebp;
|
|
}
|
|
|
|
// We always sample the VM state.
|
|
sample.state = Logger::state();
|
|
sampler_->Tick(&sample);
|
|
|
|
if (sampler_->IsProfiling()) {
|
|
ResumeThread(profiled_thread_);
|
|
}
|
|
|
|
// Wait until next sampling.
|
|
Sleep(sampler_->interval_);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// Entry point for sampler thread.
|
|
static unsigned int __stdcall SamplerEntry(void* arg) {
|
|
Sampler::PlatformData* data =
|
|
reinterpret_cast<Sampler::PlatformData*>(arg);
|
|
data->Runner();
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Initialize a profile sampler.
|
|
Sampler::Sampler(int interval, bool profiling)
|
|
: interval_(interval), profiling_(profiling), active_(false) {
|
|
data_ = new PlatformData(this);
|
|
}
|
|
|
|
|
|
Sampler::~Sampler() {
|
|
delete data_;
|
|
}
|
|
|
|
|
|
// Start profiling.
|
|
void Sampler::Start() {
|
|
// If we are profiling, we need to be able to access the calling
|
|
// thread.
|
|
if (IsProfiling()) {
|
|
// Get a handle to the calling thread. This is the thread that we are
|
|
// going to profile. We need to make a copy of the handle because we are
|
|
// going to use it in the sampler thread. Using GetThreadHandle() will
|
|
// not work in this case. We're using OpenThread because DuplicateHandle
|
|
// for some reason doesn't work in Chrome's sandbox.
|
|
data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
|
|
THREAD_SUSPEND_RESUME |
|
|
THREAD_QUERY_INFORMATION,
|
|
FALSE,
|
|
GetCurrentThreadId());
|
|
BOOL ok = data_->profiled_thread_ != NULL;
|
|
if (!ok) return;
|
|
}
|
|
|
|
// Start sampler thread.
|
|
unsigned int tid;
|
|
active_ = true;
|
|
data_->sampler_thread_ = reinterpret_cast<HANDLE>(
|
|
_beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
|
|
// Set thread to high priority to increase sampling accuracy.
|
|
SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
|
|
}
|
|
|
|
|
|
// Stop profiling.
|
|
void Sampler::Stop() {
|
|
// Seting active to false triggers termination of the sampler
|
|
// thread.
|
|
active_ = false;
|
|
|
|
// Wait for sampler thread to terminate.
|
|
WaitForSingleObject(data_->sampler_thread_, INFINITE);
|
|
|
|
// Release the thread handles
|
|
CloseHandle(data_->sampler_thread_);
|
|
CloseHandle(data_->profiled_thread_);
|
|
}
|
|
|
|
|
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
|
|
|
} } // namespace v8::internal
|