2d9a4eb355
BUG= R=mvstanton@chromium.org Review URL: https://codereview.chromium.org/137783023 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18709 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
11063 lines
382 KiB
C++
11063 lines
382 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "hydrogen.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "v8.h"
|
|
#include "allocation-site-scopes.h"
|
|
#include "codegen.h"
|
|
#include "full-codegen.h"
|
|
#include "hashmap.h"
|
|
#include "hydrogen-bce.h"
|
|
#include "hydrogen-bch.h"
|
|
#include "hydrogen-canonicalize.h"
|
|
#include "hydrogen-check-elimination.h"
|
|
#include "hydrogen-dce.h"
|
|
#include "hydrogen-dehoist.h"
|
|
#include "hydrogen-environment-liveness.h"
|
|
#include "hydrogen-escape-analysis.h"
|
|
#include "hydrogen-infer-representation.h"
|
|
#include "hydrogen-infer-types.h"
|
|
#include "hydrogen-load-elimination.h"
|
|
#include "hydrogen-gvn.h"
|
|
#include "hydrogen-mark-deoptimize.h"
|
|
#include "hydrogen-mark-unreachable.h"
|
|
#include "hydrogen-minus-zero.h"
|
|
#include "hydrogen-osr.h"
|
|
#include "hydrogen-range-analysis.h"
|
|
#include "hydrogen-redundant-phi.h"
|
|
#include "hydrogen-removable-simulates.h"
|
|
#include "hydrogen-representation-changes.h"
|
|
#include "hydrogen-sce.h"
|
|
#include "hydrogen-uint32-analysis.h"
|
|
#include "lithium-allocator.h"
|
|
#include "parser.h"
|
|
#include "runtime.h"
|
|
#include "scopeinfo.h"
|
|
#include "scopes.h"
|
|
#include "stub-cache.h"
|
|
#include "typing.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "ia32/lithium-codegen-ia32.h"
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "x64/lithium-codegen-x64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/lithium-codegen-arm.h"
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "mips/lithium-codegen-mips.h"
|
|
#else
|
|
#error Unsupported target architecture.
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
HBasicBlock::HBasicBlock(HGraph* graph)
|
|
: block_id_(graph->GetNextBlockID()),
|
|
graph_(graph),
|
|
phis_(4, graph->zone()),
|
|
first_(NULL),
|
|
last_(NULL),
|
|
end_(NULL),
|
|
loop_information_(NULL),
|
|
predecessors_(2, graph->zone()),
|
|
dominator_(NULL),
|
|
dominated_blocks_(4, graph->zone()),
|
|
last_environment_(NULL),
|
|
argument_count_(-1),
|
|
first_instruction_index_(-1),
|
|
last_instruction_index_(-1),
|
|
deleted_phis_(4, graph->zone()),
|
|
parent_loop_header_(NULL),
|
|
inlined_entry_block_(NULL),
|
|
is_inline_return_target_(false),
|
|
is_reachable_(true),
|
|
dominates_loop_successors_(false),
|
|
is_osr_entry_(false) { }
|
|
|
|
|
|
Isolate* HBasicBlock::isolate() const {
|
|
return graph_->isolate();
|
|
}
|
|
|
|
|
|
void HBasicBlock::MarkUnreachable() {
|
|
is_reachable_ = false;
|
|
}
|
|
|
|
|
|
void HBasicBlock::AttachLoopInformation() {
|
|
ASSERT(!IsLoopHeader());
|
|
loop_information_ = new(zone()) HLoopInformation(this, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::DetachLoopInformation() {
|
|
ASSERT(IsLoopHeader());
|
|
loop_information_ = NULL;
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddPhi(HPhi* phi) {
|
|
ASSERT(!IsStartBlock());
|
|
phis_.Add(phi, zone());
|
|
phi->SetBlock(this);
|
|
}
|
|
|
|
|
|
void HBasicBlock::RemovePhi(HPhi* phi) {
|
|
ASSERT(phi->block() == this);
|
|
ASSERT(phis_.Contains(phi));
|
|
phi->Kill();
|
|
phis_.RemoveElement(phi);
|
|
phi->SetBlock(NULL);
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddInstruction(HInstruction* instr, int position) {
|
|
ASSERT(!IsStartBlock() || !IsFinished());
|
|
ASSERT(!instr->IsLinked());
|
|
ASSERT(!IsFinished());
|
|
|
|
if (position != RelocInfo::kNoPosition) {
|
|
instr->set_position(position);
|
|
}
|
|
if (first_ == NULL) {
|
|
ASSERT(last_environment() != NULL);
|
|
ASSERT(!last_environment()->ast_id().IsNone());
|
|
HBlockEntry* entry = new(zone()) HBlockEntry();
|
|
entry->InitializeAsFirst(this);
|
|
if (position != RelocInfo::kNoPosition) {
|
|
entry->set_position(position);
|
|
} else {
|
|
ASSERT(!FLAG_emit_opt_code_positions ||
|
|
!graph()->info()->IsOptimizing());
|
|
}
|
|
first_ = last_ = entry;
|
|
}
|
|
instr->InsertAfter(last_);
|
|
}
|
|
|
|
|
|
HPhi* HBasicBlock::AddNewPhi(int merged_index) {
|
|
if (graph()->IsInsideNoSideEffectsScope()) {
|
|
merged_index = HPhi::kInvalidMergedIndex;
|
|
}
|
|
HPhi* phi = new(zone()) HPhi(merged_index, zone());
|
|
AddPhi(phi);
|
|
return phi;
|
|
}
|
|
|
|
|
|
HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
|
|
RemovableSimulate removable) {
|
|
ASSERT(HasEnvironment());
|
|
HEnvironment* environment = last_environment();
|
|
ASSERT(ast_id.IsNone() ||
|
|
ast_id == BailoutId::StubEntry() ||
|
|
environment->closure()->shared()->VerifyBailoutId(ast_id));
|
|
|
|
int push_count = environment->push_count();
|
|
int pop_count = environment->pop_count();
|
|
|
|
HSimulate* instr =
|
|
new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
|
|
#ifdef DEBUG
|
|
instr->set_closure(environment->closure());
|
|
#endif
|
|
// Order of pushed values: newest (top of stack) first. This allows
|
|
// HSimulate::MergeWith() to easily append additional pushed values
|
|
// that are older (from further down the stack).
|
|
for (int i = 0; i < push_count; ++i) {
|
|
instr->AddPushedValue(environment->ExpressionStackAt(i));
|
|
}
|
|
for (GrowableBitVector::Iterator it(environment->assigned_variables(),
|
|
zone());
|
|
!it.Done();
|
|
it.Advance()) {
|
|
int index = it.Current();
|
|
instr->AddAssignedValue(index, environment->Lookup(index));
|
|
}
|
|
environment->ClearHistory();
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HBasicBlock::Finish(HControlInstruction* end, int position) {
|
|
ASSERT(!IsFinished());
|
|
AddInstruction(end, position);
|
|
end_ = end;
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
it.Current()->RegisterPredecessor(this);
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::Goto(HBasicBlock* block,
|
|
int position,
|
|
FunctionState* state,
|
|
bool add_simulate) {
|
|
bool drop_extra = state != NULL &&
|
|
state->inlining_kind() == DROP_EXTRA_ON_RETURN;
|
|
|
|
if (block->IsInlineReturnTarget()) {
|
|
HEnvironment* env = last_environment();
|
|
int argument_count = env->arguments_environment()->parameter_count();
|
|
AddInstruction(new(zone())
|
|
HLeaveInlined(state->entry(), argument_count),
|
|
position);
|
|
UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
|
|
}
|
|
|
|
if (add_simulate) AddNewSimulate(BailoutId::None(), position);
|
|
HGoto* instr = new(zone()) HGoto(block);
|
|
Finish(instr, position);
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddLeaveInlined(HValue* return_value,
|
|
FunctionState* state,
|
|
int position) {
|
|
HBasicBlock* target = state->function_return();
|
|
bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
|
|
|
|
ASSERT(target->IsInlineReturnTarget());
|
|
ASSERT(return_value != NULL);
|
|
HEnvironment* env = last_environment();
|
|
int argument_count = env->arguments_environment()->parameter_count();
|
|
AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
|
|
position);
|
|
UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
|
|
last_environment()->Push(return_value);
|
|
AddNewSimulate(BailoutId::None(), position);
|
|
HGoto* instr = new(zone()) HGoto(target);
|
|
Finish(instr, position);
|
|
}
|
|
|
|
|
|
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
|
|
ASSERT(!HasEnvironment());
|
|
ASSERT(first() == NULL);
|
|
UpdateEnvironment(env);
|
|
}
|
|
|
|
|
|
void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
|
|
last_environment_ = env;
|
|
graph()->update_maximum_environment_size(env->first_expression_index());
|
|
}
|
|
|
|
|
|
void HBasicBlock::SetJoinId(BailoutId ast_id) {
|
|
int length = predecessors_.length();
|
|
ASSERT(length > 0);
|
|
for (int i = 0; i < length; i++) {
|
|
HBasicBlock* predecessor = predecessors_[i];
|
|
ASSERT(predecessor->end()->IsGoto());
|
|
HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
|
|
ASSERT(i != 0 ||
|
|
(predecessor->last_environment()->closure().is_null() ||
|
|
predecessor->last_environment()->closure()->shared()
|
|
->VerifyBailoutId(ast_id)));
|
|
simulate->set_ast_id(ast_id);
|
|
predecessor->last_environment()->set_ast_id(ast_id);
|
|
}
|
|
}
|
|
|
|
|
|
bool HBasicBlock::Dominates(HBasicBlock* other) const {
|
|
HBasicBlock* current = other->dominator();
|
|
while (current != NULL) {
|
|
if (current == this) return true;
|
|
current = current->dominator();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
int HBasicBlock::LoopNestingDepth() const {
|
|
const HBasicBlock* current = this;
|
|
int result = (current->IsLoopHeader()) ? 1 : 0;
|
|
while (current->parent_loop_header() != NULL) {
|
|
current = current->parent_loop_header();
|
|
result++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
|
|
ASSERT(IsLoopHeader());
|
|
|
|
SetJoinId(stmt->EntryId());
|
|
if (predecessors()->length() == 1) {
|
|
// This is a degenerated loop.
|
|
DetachLoopInformation();
|
|
return;
|
|
}
|
|
|
|
// Only the first entry into the loop is from outside the loop. All other
|
|
// entries must be back edges.
|
|
for (int i = 1; i < predecessors()->length(); ++i) {
|
|
loop_information()->RegisterBackEdge(predecessors()->at(i));
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
|
|
if (HasPredecessor()) {
|
|
// Only loop header blocks can have a predecessor added after
|
|
// instructions have been added to the block (they have phis for all
|
|
// values in the environment, these phis may be eliminated later).
|
|
ASSERT(IsLoopHeader() || first_ == NULL);
|
|
HEnvironment* incoming_env = pred->last_environment();
|
|
if (IsLoopHeader()) {
|
|
ASSERT(phis()->length() == incoming_env->length());
|
|
for (int i = 0; i < phis_.length(); ++i) {
|
|
phis_[i]->AddInput(incoming_env->values()->at(i));
|
|
}
|
|
} else {
|
|
last_environment()->AddIncomingEdge(this, pred->last_environment());
|
|
}
|
|
} else if (!HasEnvironment() && !IsFinished()) {
|
|
ASSERT(!IsLoopHeader());
|
|
SetInitialEnvironment(pred->last_environment()->Copy());
|
|
}
|
|
|
|
predecessors_.Add(pred, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
|
|
ASSERT(!dominated_blocks_.Contains(block));
|
|
// Keep the list of dominated blocks sorted such that if there is two
|
|
// succeeding block in this list, the predecessor is before the successor.
|
|
int index = 0;
|
|
while (index < dominated_blocks_.length() &&
|
|
dominated_blocks_[index]->block_id() < block->block_id()) {
|
|
++index;
|
|
}
|
|
dominated_blocks_.InsertAt(index, block, zone());
|
|
}
|
|
|
|
|
|
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
|
|
if (dominator_ == NULL) {
|
|
dominator_ = other;
|
|
other->AddDominatedBlock(this);
|
|
} else if (other->dominator() != NULL) {
|
|
HBasicBlock* first = dominator_;
|
|
HBasicBlock* second = other;
|
|
|
|
while (first != second) {
|
|
if (first->block_id() > second->block_id()) {
|
|
first = first->dominator();
|
|
} else {
|
|
second = second->dominator();
|
|
}
|
|
ASSERT(first != NULL && second != NULL);
|
|
}
|
|
|
|
if (dominator_ != first) {
|
|
ASSERT(dominator_->dominated_blocks_.Contains(this));
|
|
dominator_->dominated_blocks_.RemoveElement(this);
|
|
dominator_ = first;
|
|
first->AddDominatedBlock(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HBasicBlock::AssignLoopSuccessorDominators() {
|
|
// Mark blocks that dominate all subsequent reachable blocks inside their
|
|
// loop. Exploit the fact that blocks are sorted in reverse post order. When
|
|
// the loop is visited in increasing block id order, if the number of
|
|
// non-loop-exiting successor edges at the dominator_candidate block doesn't
|
|
// exceed the number of previously encountered predecessor edges, there is no
|
|
// path from the loop header to any block with higher id that doesn't go
|
|
// through the dominator_candidate block. In this case, the
|
|
// dominator_candidate block is guaranteed to dominate all blocks reachable
|
|
// from it with higher ids.
|
|
HBasicBlock* last = loop_information()->GetLastBackEdge();
|
|
int outstanding_successors = 1; // one edge from the pre-header
|
|
// Header always dominates everything.
|
|
MarkAsLoopSuccessorDominator();
|
|
for (int j = block_id(); j <= last->block_id(); ++j) {
|
|
HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
|
|
for (HPredecessorIterator it(dominator_candidate); !it.Done();
|
|
it.Advance()) {
|
|
HBasicBlock* predecessor = it.Current();
|
|
// Don't count back edges.
|
|
if (predecessor->block_id() < dominator_candidate->block_id()) {
|
|
outstanding_successors--;
|
|
}
|
|
}
|
|
|
|
// If more successors than predecessors have been seen in the loop up to
|
|
// now, it's not possible to guarantee that the current block dominates
|
|
// all of the blocks with higher IDs. In this case, assume conservatively
|
|
// that those paths through loop that don't go through the current block
|
|
// contain all of the loop's dependencies. Also be careful to record
|
|
// dominator information about the current loop that's being processed,
|
|
// and not nested loops, which will be processed when
|
|
// AssignLoopSuccessorDominators gets called on their header.
|
|
ASSERT(outstanding_successors >= 0);
|
|
HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
|
|
if (outstanding_successors == 0 &&
|
|
(parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
|
|
dominator_candidate->MarkAsLoopSuccessorDominator();
|
|
}
|
|
HControlInstruction* end = dominator_candidate->end();
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
HBasicBlock* successor = it.Current();
|
|
// Only count successors that remain inside the loop and don't loop back
|
|
// to a loop header.
|
|
if (successor->block_id() > dominator_candidate->block_id() &&
|
|
successor->block_id() <= last->block_id()) {
|
|
// Backwards edges must land on loop headers.
|
|
ASSERT(successor->block_id() > dominator_candidate->block_id() ||
|
|
successor->IsLoopHeader());
|
|
outstanding_successors++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
|
|
for (int i = 0; i < predecessors_.length(); ++i) {
|
|
if (predecessors_[i] == predecessor) return i;
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void HBasicBlock::Verify() {
|
|
// Check that every block is finished.
|
|
ASSERT(IsFinished());
|
|
ASSERT(block_id() >= 0);
|
|
|
|
// Check that the incoming edges are in edge split form.
|
|
if (predecessors_.length() > 1) {
|
|
for (int i = 0; i < predecessors_.length(); ++i) {
|
|
ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
|
|
this->back_edges_.Add(block, block->zone());
|
|
AddBlock(block);
|
|
}
|
|
|
|
|
|
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
|
|
int max_id = -1;
|
|
HBasicBlock* result = NULL;
|
|
for (int i = 0; i < back_edges_.length(); ++i) {
|
|
HBasicBlock* cur = back_edges_[i];
|
|
if (cur->block_id() > max_id) {
|
|
max_id = cur->block_id();
|
|
result = cur;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void HLoopInformation::AddBlock(HBasicBlock* block) {
|
|
if (block == loop_header()) return;
|
|
if (block->parent_loop_header() == loop_header()) return;
|
|
if (block->parent_loop_header() != NULL) {
|
|
AddBlock(block->parent_loop_header());
|
|
} else {
|
|
block->set_parent_loop_header(loop_header());
|
|
blocks_.Add(block, block->zone());
|
|
for (int i = 0; i < block->predecessors()->length(); ++i) {
|
|
AddBlock(block->predecessors()->at(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
// Checks reachability of the blocks in this graph and stores a bit in
|
|
// the BitVector "reachable()" for every block that can be reached
|
|
// from the start block of the graph. If "dont_visit" is non-null, the given
|
|
// block is treated as if it would not be part of the graph. "visited_count()"
|
|
// returns the number of reachable blocks.
|
|
class ReachabilityAnalyzer BASE_EMBEDDED {
|
|
public:
|
|
ReachabilityAnalyzer(HBasicBlock* entry_block,
|
|
int block_count,
|
|
HBasicBlock* dont_visit)
|
|
: visited_count_(0),
|
|
stack_(16, entry_block->zone()),
|
|
reachable_(block_count, entry_block->zone()),
|
|
dont_visit_(dont_visit) {
|
|
PushBlock(entry_block);
|
|
Analyze();
|
|
}
|
|
|
|
int visited_count() const { return visited_count_; }
|
|
const BitVector* reachable() const { return &reachable_; }
|
|
|
|
private:
|
|
void PushBlock(HBasicBlock* block) {
|
|
if (block != NULL && block != dont_visit_ &&
|
|
!reachable_.Contains(block->block_id())) {
|
|
reachable_.Add(block->block_id());
|
|
stack_.Add(block, block->zone());
|
|
visited_count_++;
|
|
}
|
|
}
|
|
|
|
void Analyze() {
|
|
while (!stack_.is_empty()) {
|
|
HControlInstruction* end = stack_.RemoveLast()->end();
|
|
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
|
|
PushBlock(it.Current());
|
|
}
|
|
}
|
|
}
|
|
|
|
int visited_count_;
|
|
ZoneList<HBasicBlock*> stack_;
|
|
BitVector reachable_;
|
|
HBasicBlock* dont_visit_;
|
|
};
|
|
|
|
|
|
void HGraph::Verify(bool do_full_verify) const {
|
|
Heap::RelocationLock relocation_lock(isolate()->heap());
|
|
AllowHandleDereference allow_deref;
|
|
AllowDeferredHandleDereference allow_deferred_deref;
|
|
for (int i = 0; i < blocks_.length(); i++) {
|
|
HBasicBlock* block = blocks_.at(i);
|
|
|
|
block->Verify();
|
|
|
|
// Check that every block contains at least one node and that only the last
|
|
// node is a control instruction.
|
|
HInstruction* current = block->first();
|
|
ASSERT(current != NULL && current->IsBlockEntry());
|
|
while (current != NULL) {
|
|
ASSERT((current->next() == NULL) == current->IsControlInstruction());
|
|
ASSERT(current->block() == block);
|
|
current->Verify();
|
|
current = current->next();
|
|
}
|
|
|
|
// Check that successors are correctly set.
|
|
HBasicBlock* first = block->end()->FirstSuccessor();
|
|
HBasicBlock* second = block->end()->SecondSuccessor();
|
|
ASSERT(second == NULL || first != NULL);
|
|
|
|
// Check that the predecessor array is correct.
|
|
if (first != NULL) {
|
|
ASSERT(first->predecessors()->Contains(block));
|
|
if (second != NULL) {
|
|
ASSERT(second->predecessors()->Contains(block));
|
|
}
|
|
}
|
|
|
|
// Check that phis have correct arguments.
|
|
for (int j = 0; j < block->phis()->length(); j++) {
|
|
HPhi* phi = block->phis()->at(j);
|
|
phi->Verify();
|
|
}
|
|
|
|
// Check that all join blocks have predecessors that end with an
|
|
// unconditional goto and agree on their environment node id.
|
|
if (block->predecessors()->length() >= 2) {
|
|
BailoutId id =
|
|
block->predecessors()->first()->last_environment()->ast_id();
|
|
for (int k = 0; k < block->predecessors()->length(); k++) {
|
|
HBasicBlock* predecessor = block->predecessors()->at(k);
|
|
ASSERT(predecessor->end()->IsGoto() ||
|
|
predecessor->end()->IsDeoptimize());
|
|
ASSERT(predecessor->last_environment()->ast_id() == id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check special property of first block to have no predecessors.
|
|
ASSERT(blocks_.at(0)->predecessors()->is_empty());
|
|
|
|
if (do_full_verify) {
|
|
// Check that the graph is fully connected.
|
|
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
|
|
ASSERT(analyzer.visited_count() == blocks_.length());
|
|
|
|
// Check that entry block dominator is NULL.
|
|
ASSERT(entry_block_->dominator() == NULL);
|
|
|
|
// Check dominators.
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
HBasicBlock* block = blocks_.at(i);
|
|
if (block->dominator() == NULL) {
|
|
// Only start block may have no dominator assigned to.
|
|
ASSERT(i == 0);
|
|
} else {
|
|
// Assert that block is unreachable if dominator must not be visited.
|
|
ReachabilityAnalyzer dominator_analyzer(entry_block_,
|
|
blocks_.length(),
|
|
block->dominator());
|
|
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
|
|
int32_t value) {
|
|
if (!pointer->is_set()) {
|
|
// Can't pass GetInvalidContext() to HConstant::New, because that will
|
|
// recursively call GetConstant
|
|
HConstant* constant = HConstant::New(zone(), NULL, value);
|
|
constant->InsertAfter(entry_block()->first());
|
|
pointer->set(constant);
|
|
return constant;
|
|
}
|
|
return ReinsertConstantIfNecessary(pointer->get());
|
|
}
|
|
|
|
|
|
HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
|
|
if (!constant->IsLinked()) {
|
|
// The constant was removed from the graph. Reinsert.
|
|
constant->ClearFlag(HValue::kIsDead);
|
|
constant->InsertAfter(entry_block()->first());
|
|
}
|
|
return constant;
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstant0() {
|
|
return GetConstant(&constant_0_, 0);
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstant1() {
|
|
return GetConstant(&constant_1_, 1);
|
|
}
|
|
|
|
|
|
HConstant* HGraph::GetConstantMinus1() {
|
|
return GetConstant(&constant_minus1_, -1);
|
|
}
|
|
|
|
|
|
#define DEFINE_GET_CONSTANT(Name, name, htype, boolean_value) \
|
|
HConstant* HGraph::GetConstant##Name() { \
|
|
if (!constant_##name##_.is_set()) { \
|
|
HConstant* constant = new(zone()) HConstant( \
|
|
Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
|
|
Representation::Tagged(), \
|
|
htype, \
|
|
false, \
|
|
true, \
|
|
false, \
|
|
boolean_value); \
|
|
constant->InsertAfter(entry_block()->first()); \
|
|
constant_##name##_.set(constant); \
|
|
} \
|
|
return ReinsertConstantIfNecessary(constant_##name##_.get()); \
|
|
}
|
|
|
|
|
|
DEFINE_GET_CONSTANT(Undefined, undefined, HType::Tagged(), false)
|
|
DEFINE_GET_CONSTANT(True, true, HType::Boolean(), true)
|
|
DEFINE_GET_CONSTANT(False, false, HType::Boolean(), false)
|
|
DEFINE_GET_CONSTANT(Hole, the_hole, HType::Tagged(), false)
|
|
DEFINE_GET_CONSTANT(Null, null, HType::Tagged(), false)
|
|
|
|
|
|
#undef DEFINE_GET_CONSTANT
|
|
|
|
#define DEFINE_IS_CONSTANT(Name, name) \
|
|
bool HGraph::IsConstant##Name(HConstant* constant) { \
|
|
return constant_##name##_.is_set() && constant == constant_##name##_.get(); \
|
|
}
|
|
DEFINE_IS_CONSTANT(Undefined, undefined)
|
|
DEFINE_IS_CONSTANT(0, 0)
|
|
DEFINE_IS_CONSTANT(1, 1)
|
|
DEFINE_IS_CONSTANT(Minus1, minus1)
|
|
DEFINE_IS_CONSTANT(True, true)
|
|
DEFINE_IS_CONSTANT(False, false)
|
|
DEFINE_IS_CONSTANT(Hole, the_hole)
|
|
DEFINE_IS_CONSTANT(Null, null)
|
|
|
|
#undef DEFINE_IS_CONSTANT
|
|
|
|
|
|
HConstant* HGraph::GetInvalidContext() {
|
|
return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
|
|
}
|
|
|
|
|
|
bool HGraph::IsStandardConstant(HConstant* constant) {
|
|
if (IsConstantUndefined(constant)) return true;
|
|
if (IsConstant0(constant)) return true;
|
|
if (IsConstant1(constant)) return true;
|
|
if (IsConstantMinus1(constant)) return true;
|
|
if (IsConstantTrue(constant)) return true;
|
|
if (IsConstantFalse(constant)) return true;
|
|
if (IsConstantHole(constant)) return true;
|
|
if (IsConstantNull(constant)) return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
|
|
: builder_(builder),
|
|
finished_(false),
|
|
did_then_(false),
|
|
did_else_(false),
|
|
did_else_if_(false),
|
|
did_and_(false),
|
|
did_or_(false),
|
|
captured_(false),
|
|
needs_compare_(true),
|
|
pending_merge_block_(false),
|
|
split_edge_merge_block_(NULL),
|
|
merge_at_join_blocks_(NULL),
|
|
normal_merge_at_join_block_count_(0),
|
|
deopt_merge_at_join_block_count_(0) {
|
|
HEnvironment* env = builder->environment();
|
|
first_true_block_ = builder->CreateBasicBlock(env->Copy());
|
|
first_false_block_ = builder->CreateBasicBlock(env->Copy());
|
|
}
|
|
|
|
|
|
HGraphBuilder::IfBuilder::IfBuilder(
|
|
HGraphBuilder* builder,
|
|
HIfContinuation* continuation)
|
|
: builder_(builder),
|
|
finished_(false),
|
|
did_then_(false),
|
|
did_else_(false),
|
|
did_else_if_(false),
|
|
did_and_(false),
|
|
did_or_(false),
|
|
captured_(false),
|
|
needs_compare_(false),
|
|
pending_merge_block_(false),
|
|
first_true_block_(NULL),
|
|
first_false_block_(NULL),
|
|
split_edge_merge_block_(NULL),
|
|
merge_at_join_blocks_(NULL),
|
|
normal_merge_at_join_block_count_(0),
|
|
deopt_merge_at_join_block_count_(0) {
|
|
continuation->Continue(&first_true_block_,
|
|
&first_false_block_);
|
|
}
|
|
|
|
|
|
HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
|
|
HControlInstruction* compare) {
|
|
ASSERT(did_then_ == did_else_);
|
|
if (did_else_) {
|
|
// Handle if-then-elseif
|
|
did_else_if_ = true;
|
|
did_else_ = false;
|
|
did_then_ = false;
|
|
did_and_ = false;
|
|
did_or_ = false;
|
|
pending_merge_block_ = false;
|
|
split_edge_merge_block_ = NULL;
|
|
HEnvironment* env = builder_->environment();
|
|
first_true_block_ = builder_->CreateBasicBlock(env->Copy());
|
|
first_false_block_ = builder_->CreateBasicBlock(env->Copy());
|
|
}
|
|
if (split_edge_merge_block_ != NULL) {
|
|
HEnvironment* env = first_false_block_->last_environment();
|
|
HBasicBlock* split_edge =
|
|
builder_->CreateBasicBlock(env->Copy());
|
|
if (did_or_) {
|
|
compare->SetSuccessorAt(0, split_edge);
|
|
compare->SetSuccessorAt(1, first_false_block_);
|
|
} else {
|
|
compare->SetSuccessorAt(0, first_true_block_);
|
|
compare->SetSuccessorAt(1, split_edge);
|
|
}
|
|
builder_->GotoNoSimulate(split_edge, split_edge_merge_block_);
|
|
} else {
|
|
compare->SetSuccessorAt(0, first_true_block_);
|
|
compare->SetSuccessorAt(1, first_false_block_);
|
|
}
|
|
builder_->FinishCurrentBlock(compare);
|
|
needs_compare_ = false;
|
|
return compare;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Or() {
|
|
ASSERT(!needs_compare_);
|
|
ASSERT(!did_and_);
|
|
did_or_ = true;
|
|
HEnvironment* env = first_false_block_->last_environment();
|
|
if (split_edge_merge_block_ == NULL) {
|
|
split_edge_merge_block_ =
|
|
builder_->CreateBasicBlock(env->Copy());
|
|
builder_->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
|
|
first_true_block_ = split_edge_merge_block_;
|
|
}
|
|
builder_->set_current_block(first_false_block_);
|
|
first_false_block_ = builder_->CreateBasicBlock(env->Copy());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::And() {
|
|
ASSERT(!needs_compare_);
|
|
ASSERT(!did_or_);
|
|
did_and_ = true;
|
|
HEnvironment* env = first_false_block_->last_environment();
|
|
if (split_edge_merge_block_ == NULL) {
|
|
split_edge_merge_block_ = builder_->CreateBasicBlock(env->Copy());
|
|
builder_->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
|
|
first_false_block_ = split_edge_merge_block_;
|
|
}
|
|
builder_->set_current_block(first_true_block_);
|
|
first_true_block_ = builder_->CreateBasicBlock(env->Copy());
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::CaptureContinuation(
|
|
HIfContinuation* continuation) {
|
|
ASSERT(!did_else_if_);
|
|
ASSERT(!finished_);
|
|
ASSERT(!captured_);
|
|
|
|
HBasicBlock* true_block = NULL;
|
|
HBasicBlock* false_block = NULL;
|
|
Finish(&true_block, &false_block);
|
|
ASSERT(true_block != NULL);
|
|
ASSERT(false_block != NULL);
|
|
continuation->Capture(true_block, false_block);
|
|
captured_ = true;
|
|
builder_->set_current_block(NULL);
|
|
End();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
|
|
ASSERT(!did_else_if_);
|
|
ASSERT(!finished_);
|
|
ASSERT(!captured_);
|
|
HBasicBlock* true_block = NULL;
|
|
HBasicBlock* false_block = NULL;
|
|
Finish(&true_block, &false_block);
|
|
merge_at_join_blocks_ = NULL;
|
|
if (true_block != NULL && !true_block->IsFinished()) {
|
|
ASSERT(continuation->IsTrueReachable());
|
|
builder_->GotoNoSimulate(true_block, continuation->true_branch());
|
|
}
|
|
if (false_block != NULL && !false_block->IsFinished()) {
|
|
ASSERT(continuation->IsFalseReachable());
|
|
builder_->GotoNoSimulate(false_block, continuation->false_branch());
|
|
}
|
|
captured_ = true;
|
|
End();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Then() {
|
|
ASSERT(!captured_);
|
|
ASSERT(!finished_);
|
|
did_then_ = true;
|
|
if (needs_compare_) {
|
|
// Handle if's without any expressions, they jump directly to the "else"
|
|
// branch. However, we must pretend that the "then" branch is reachable,
|
|
// so that the graph builder visits it and sees any live range extending
|
|
// constructs within it.
|
|
HConstant* constant_false = builder_->graph()->GetConstantFalse();
|
|
ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
|
|
boolean_type.Add(ToBooleanStub::BOOLEAN);
|
|
HBranch* branch = builder()->New<HBranch>(
|
|
constant_false, boolean_type, first_true_block_, first_false_block_);
|
|
builder_->FinishCurrentBlock(branch);
|
|
}
|
|
builder_->set_current_block(first_true_block_);
|
|
pending_merge_block_ = true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Else() {
|
|
ASSERT(did_then_);
|
|
ASSERT(!captured_);
|
|
ASSERT(!finished_);
|
|
AddMergeAtJoinBlock(false);
|
|
builder_->set_current_block(first_false_block_);
|
|
pending_merge_block_ = true;
|
|
did_else_ = true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Deopt(const char* reason) {
|
|
ASSERT(did_then_);
|
|
builder_->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
|
|
AddMergeAtJoinBlock(true);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Return(HValue* value) {
|
|
HValue* parameter_count = builder_->graph()->GetConstantMinus1();
|
|
builder_->FinishExitCurrentBlock(
|
|
builder_->New<HReturn>(value, parameter_count));
|
|
AddMergeAtJoinBlock(false);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
|
|
if (!pending_merge_block_) return;
|
|
HBasicBlock* block = builder_->current_block();
|
|
ASSERT(block == NULL || !block->IsFinished());
|
|
MergeAtJoinBlock* record =
|
|
new(builder_->zone()) MergeAtJoinBlock(block, deopt,
|
|
merge_at_join_blocks_);
|
|
merge_at_join_blocks_ = record;
|
|
if (block != NULL) {
|
|
ASSERT(block->end() == NULL);
|
|
if (deopt) {
|
|
normal_merge_at_join_block_count_++;
|
|
} else {
|
|
deopt_merge_at_join_block_count_++;
|
|
}
|
|
}
|
|
builder_->set_current_block(NULL);
|
|
pending_merge_block_ = false;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Finish() {
|
|
ASSERT(!finished_);
|
|
if (!did_then_) {
|
|
Then();
|
|
}
|
|
AddMergeAtJoinBlock(false);
|
|
if (!did_else_) {
|
|
Else();
|
|
AddMergeAtJoinBlock(false);
|
|
}
|
|
finished_ = true;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
|
|
HBasicBlock** else_continuation) {
|
|
Finish();
|
|
|
|
MergeAtJoinBlock* else_record = merge_at_join_blocks_;
|
|
if (else_continuation != NULL) {
|
|
*else_continuation = else_record->block_;
|
|
}
|
|
MergeAtJoinBlock* then_record = else_record->next_;
|
|
if (then_continuation != NULL) {
|
|
*then_continuation = then_record->block_;
|
|
}
|
|
ASSERT(then_record->next_ == NULL);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::IfBuilder::End() {
|
|
if (captured_) return;
|
|
Finish();
|
|
|
|
int total_merged_blocks = normal_merge_at_join_block_count_ +
|
|
deopt_merge_at_join_block_count_;
|
|
ASSERT(total_merged_blocks >= 1);
|
|
HBasicBlock* merge_block = total_merged_blocks == 1
|
|
? NULL : builder_->graph()->CreateBasicBlock();
|
|
|
|
// Merge non-deopt blocks first to ensure environment has right size for
|
|
// padding.
|
|
MergeAtJoinBlock* current = merge_at_join_blocks_;
|
|
while (current != NULL) {
|
|
if (!current->deopt_ && current->block_ != NULL) {
|
|
// If there is only one block that makes it through to the end of the
|
|
// if, then just set it as the current block and continue rather then
|
|
// creating an unnecessary merge block.
|
|
if (total_merged_blocks == 1) {
|
|
builder_->set_current_block(current->block_);
|
|
return;
|
|
}
|
|
builder_->GotoNoSimulate(current->block_, merge_block);
|
|
}
|
|
current = current->next_;
|
|
}
|
|
|
|
// Merge deopt blocks, padding when necessary.
|
|
current = merge_at_join_blocks_;
|
|
while (current != NULL) {
|
|
if (current->deopt_ && current->block_ != NULL) {
|
|
builder_->PadEnvironmentForContinuation(current->block_,
|
|
merge_block);
|
|
builder_->GotoNoSimulate(current->block_, merge_block);
|
|
}
|
|
current = current->next_;
|
|
}
|
|
builder_->set_current_block(merge_block);
|
|
}
|
|
|
|
|
|
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
|
|
HValue* context,
|
|
LoopBuilder::Direction direction)
|
|
: builder_(builder),
|
|
context_(context),
|
|
direction_(direction),
|
|
finished_(false) {
|
|
header_block_ = builder->CreateLoopHeaderBlock();
|
|
body_block_ = NULL;
|
|
exit_block_ = NULL;
|
|
exit_trampoline_block_ = NULL;
|
|
increment_amount_ = builder_->graph()->GetConstant1();
|
|
}
|
|
|
|
|
|
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
|
|
HValue* context,
|
|
LoopBuilder::Direction direction,
|
|
HValue* increment_amount)
|
|
: builder_(builder),
|
|
context_(context),
|
|
direction_(direction),
|
|
finished_(false) {
|
|
header_block_ = builder->CreateLoopHeaderBlock();
|
|
body_block_ = NULL;
|
|
exit_block_ = NULL;
|
|
exit_trampoline_block_ = NULL;
|
|
increment_amount_ = increment_amount;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::LoopBuilder::BeginBody(
|
|
HValue* initial,
|
|
HValue* terminating,
|
|
Token::Value token) {
|
|
HEnvironment* env = builder_->environment();
|
|
phi_ = header_block_->AddNewPhi(env->values()->length());
|
|
phi_->AddInput(initial);
|
|
env->Push(initial);
|
|
builder_->GotoNoSimulate(header_block_);
|
|
|
|
HEnvironment* body_env = env->Copy();
|
|
HEnvironment* exit_env = env->Copy();
|
|
// Remove the phi from the expression stack
|
|
body_env->Pop();
|
|
exit_env->Pop();
|
|
body_block_ = builder_->CreateBasicBlock(body_env);
|
|
exit_block_ = builder_->CreateBasicBlock(exit_env);
|
|
|
|
builder_->set_current_block(header_block_);
|
|
env->Pop();
|
|
builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
|
|
phi_, terminating, token, body_block_, exit_block_));
|
|
|
|
builder_->set_current_block(body_block_);
|
|
if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
|
|
HValue* one = builder_->graph()->GetConstant1();
|
|
if (direction_ == kPreIncrement) {
|
|
increment_ = HAdd::New(zone(), context_, phi_, one);
|
|
} else {
|
|
increment_ = HSub::New(zone(), context_, phi_, one);
|
|
}
|
|
increment_->ClearFlag(HValue::kCanOverflow);
|
|
builder_->AddInstruction(increment_);
|
|
return increment_;
|
|
} else {
|
|
return phi_;
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::LoopBuilder::Break() {
|
|
if (exit_trampoline_block_ == NULL) {
|
|
// Its the first time we saw a break.
|
|
HEnvironment* env = exit_block_->last_environment()->Copy();
|
|
exit_trampoline_block_ = builder_->CreateBasicBlock(env);
|
|
builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
|
|
}
|
|
|
|
builder_->GotoNoSimulate(exit_trampoline_block_);
|
|
builder_->set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::LoopBuilder::EndBody() {
|
|
ASSERT(!finished_);
|
|
|
|
if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
|
|
if (direction_ == kPostIncrement) {
|
|
increment_ = HAdd::New(zone(), context_, phi_, increment_amount_);
|
|
} else {
|
|
increment_ = HSub::New(zone(), context_, phi_, increment_amount_);
|
|
}
|
|
increment_->ClearFlag(HValue::kCanOverflow);
|
|
builder_->AddInstruction(increment_);
|
|
}
|
|
|
|
// Push the new increment value on the expression stack to merge into the phi.
|
|
builder_->environment()->Push(increment_);
|
|
HBasicBlock* last_block = builder_->current_block();
|
|
builder_->GotoNoSimulate(last_block, header_block_);
|
|
header_block_->loop_information()->RegisterBackEdge(last_block);
|
|
|
|
if (exit_trampoline_block_ != NULL) {
|
|
builder_->set_current_block(exit_trampoline_block_);
|
|
} else {
|
|
builder_->set_current_block(exit_block_);
|
|
}
|
|
finished_ = true;
|
|
}
|
|
|
|
|
|
HGraph* HGraphBuilder::CreateGraph() {
|
|
graph_ = new(zone()) HGraph(info_);
|
|
if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
|
|
CompilationPhase phase("H_Block building", info_);
|
|
set_current_block(graph()->entry_block());
|
|
if (!BuildGraph()) return NULL;
|
|
graph()->FinalizeUniqueness();
|
|
return graph_;
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(!FLAG_emit_opt_code_positions ||
|
|
position_ != RelocInfo::kNoPosition || !info_->IsOptimizing());
|
|
current_block()->AddInstruction(instr, position_);
|
|
if (graph()->IsInsideNoSideEffectsScope()) {
|
|
instr->SetFlag(HValue::kHasNoObservableSideEffects);
|
|
}
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
|
|
ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
|
|
position_ != RelocInfo::kNoPosition);
|
|
current_block()->Finish(last, position_);
|
|
if (last->IsReturn() || last->IsAbnormalExit()) {
|
|
set_current_block(NULL);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
|
|
ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
|
|
position_ != RelocInfo::kNoPosition);
|
|
current_block()->FinishExit(instruction, position_);
|
|
if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
|
|
set_current_block(NULL);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
HValue* reference = Add<HConstant>(ExternalReference(counter));
|
|
HValue* old_value = Add<HLoadNamedField>(reference,
|
|
HObjectAccess::ForCounter());
|
|
HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
|
|
new_value->ClearFlag(HValue::kCanOverflow); // Ignore counter overflow
|
|
Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
|
|
new_value);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::AddSimulate(BailoutId id,
|
|
RemovableSimulate removable) {
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(!graph()->IsInsideNoSideEffectsScope());
|
|
current_block()->AddNewSimulate(id, removable);
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
|
|
HBasicBlock* b = graph()->CreateBasicBlock();
|
|
b->SetInitialEnvironment(env);
|
|
return b;
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
|
|
HBasicBlock* header = graph()->CreateBasicBlock();
|
|
HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
|
|
header->SetInitialEnvironment(entry_env);
|
|
header->AttachLoopInformation();
|
|
return header;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
|
|
if (obj->type().IsHeapObject()) return obj;
|
|
return Add<HCheckHeapObject>(obj);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::FinishExitWithHardDeoptimization(
|
|
const char* reason, HBasicBlock* continuation) {
|
|
PadEnvironmentForContinuation(current_block(), continuation);
|
|
Add<HDeoptimize>(reason, Deoptimizer::EAGER);
|
|
if (graph()->IsInsideNoSideEffectsScope()) {
|
|
GotoNoSimulate(continuation);
|
|
} else {
|
|
Goto(continuation);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::PadEnvironmentForContinuation(
|
|
HBasicBlock* from,
|
|
HBasicBlock* continuation) {
|
|
if (continuation->last_environment() != NULL) {
|
|
// When merging from a deopt block to a continuation, resolve differences in
|
|
// environment by pushing constant 0 and popping extra values so that the
|
|
// environments match during the join. Push 0 since it has the most specific
|
|
// representation, and will not influence representation inference of the
|
|
// phi.
|
|
int continuation_env_length = continuation->last_environment()->length();
|
|
while (continuation_env_length != from->last_environment()->length()) {
|
|
if (continuation_env_length > from->last_environment()->length()) {
|
|
from->last_environment()->Push(graph()->GetConstant0());
|
|
} else {
|
|
from->last_environment()->Pop();
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(continuation->predecessors()->length() == 0);
|
|
}
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCheckMap(HValue* obj, Handle<Map> map) {
|
|
return Add<HCheckMaps>(obj, map, top_info());
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCheckString(HValue* string) {
|
|
if (!string->type().IsString()) {
|
|
ASSERT(!string->IsConstant() ||
|
|
!HConstant::cast(string)->HasStringValue());
|
|
BuildCheckHeapObject(string);
|
|
return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
|
|
}
|
|
return string;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
|
|
if (object->type().IsJSObject()) return object;
|
|
return Add<HWrapReceiver>(object, function);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCheckForCapacityGrow(HValue* object,
|
|
HValue* elements,
|
|
ElementsKind kind,
|
|
HValue* length,
|
|
HValue* key,
|
|
bool is_js_array,
|
|
bool is_store) {
|
|
IfBuilder length_checker(this);
|
|
|
|
Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
|
|
length_checker.If<HCompareNumericAndBranch>(key, length, token);
|
|
|
|
length_checker.Then();
|
|
|
|
HValue* current_capacity = AddLoadFixedArrayLength(elements);
|
|
|
|
IfBuilder capacity_checker(this);
|
|
|
|
capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
|
|
Token::GTE);
|
|
capacity_checker.Then();
|
|
|
|
HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
|
|
HValue* max_capacity = AddUncasted<HAdd>(current_capacity, max_gap);
|
|
IfBuilder key_checker(this);
|
|
key_checker.If<HCompareNumericAndBranch>(key, max_capacity, Token::LT);
|
|
key_checker.Then();
|
|
key_checker.ElseDeopt("Key out of capacity range");
|
|
key_checker.End();
|
|
|
|
HValue* new_capacity = BuildNewElementsCapacity(key);
|
|
HValue* new_elements = BuildGrowElementsCapacity(object, elements,
|
|
kind, kind, length,
|
|
new_capacity);
|
|
|
|
environment()->Push(new_elements);
|
|
capacity_checker.Else();
|
|
|
|
environment()->Push(elements);
|
|
capacity_checker.End();
|
|
|
|
if (is_js_array) {
|
|
HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
|
|
new_length->ClearFlag(HValue::kCanOverflow);
|
|
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
|
|
new_length);
|
|
}
|
|
|
|
if (is_store && kind == FAST_SMI_ELEMENTS) {
|
|
HValue* checked_elements = environment()->Top();
|
|
|
|
// Write zero to ensure that the new element is initialized with some smi.
|
|
Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
|
|
}
|
|
|
|
length_checker.Else();
|
|
Add<HBoundsCheck>(key, length);
|
|
|
|
environment()->Push(elements);
|
|
length_checker.End();
|
|
|
|
return environment()->Pop();
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
|
|
HValue* elements,
|
|
ElementsKind kind,
|
|
HValue* length) {
|
|
Factory* factory = isolate()->factory();
|
|
|
|
IfBuilder cow_checker(this);
|
|
|
|
cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
|
|
cow_checker.Then();
|
|
|
|
HValue* capacity = AddLoadFixedArrayLength(elements);
|
|
|
|
HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
|
|
kind, length, capacity);
|
|
|
|
environment()->Push(new_elements);
|
|
|
|
cow_checker.Else();
|
|
|
|
environment()->Push(elements);
|
|
|
|
cow_checker.End();
|
|
|
|
return environment()->Pop();
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
|
|
HValue* map,
|
|
ElementsKind from_kind,
|
|
ElementsKind to_kind,
|
|
bool is_jsarray) {
|
|
ASSERT(!IsFastHoleyElementsKind(from_kind) ||
|
|
IsFastHoleyElementsKind(to_kind));
|
|
|
|
if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
|
|
Add<HTrapAllocationMemento>(object);
|
|
}
|
|
|
|
if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
|
|
HInstruction* elements = AddLoadElements(object);
|
|
|
|
HInstruction* empty_fixed_array = Add<HConstant>(
|
|
isolate()->factory()->empty_fixed_array());
|
|
|
|
IfBuilder if_builder(this);
|
|
|
|
if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
|
|
|
|
if_builder.Then();
|
|
|
|
HInstruction* elements_length = AddLoadFixedArrayLength(elements);
|
|
|
|
HInstruction* array_length = is_jsarray
|
|
? Add<HLoadNamedField>(object, HObjectAccess::ForArrayLength(from_kind))
|
|
: elements_length;
|
|
|
|
BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
|
|
array_length, elements_length);
|
|
|
|
if_builder.End();
|
|
}
|
|
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoadHelper(
|
|
HValue* elements,
|
|
HValue* key,
|
|
HValue* hash,
|
|
HValue* mask,
|
|
int current_probe) {
|
|
if (current_probe == kNumberDictionaryProbes) {
|
|
return NULL;
|
|
}
|
|
|
|
int32_t offset = SeededNumberDictionary::GetProbeOffset(current_probe);
|
|
HValue* raw_index = (current_probe == 0)
|
|
? hash
|
|
: AddUncasted<HAdd>(hash, Add<HConstant>(offset));
|
|
raw_index = AddUncasted<HBitwise>(Token::BIT_AND, raw_index, mask);
|
|
int32_t entry_size = SeededNumberDictionary::kEntrySize;
|
|
raw_index = AddUncasted<HMul>(raw_index, Add<HConstant>(entry_size));
|
|
raw_index->ClearFlag(HValue::kCanOverflow);
|
|
|
|
int32_t base_offset = SeededNumberDictionary::kElementsStartIndex;
|
|
HValue* key_index = AddUncasted<HAdd>(raw_index, Add<HConstant>(base_offset));
|
|
key_index->ClearFlag(HValue::kCanOverflow);
|
|
|
|
HValue* candidate_key = Add<HLoadKeyed>(elements, key_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_SMI_ELEMENTS);
|
|
|
|
IfBuilder key_compare(this);
|
|
key_compare.IfNot<HCompareObjectEqAndBranch>(key, candidate_key);
|
|
key_compare.Then();
|
|
{
|
|
// Key at the current probe doesn't match, try at the next probe.
|
|
HValue* result = BuildUncheckedDictionaryElementLoadHelper(
|
|
elements, key, hash, mask, current_probe + 1);
|
|
if (result == NULL) {
|
|
key_compare.Deopt("probes exhausted in keyed load dictionary lookup");
|
|
result = graph()->GetConstantUndefined();
|
|
} else {
|
|
Push(result);
|
|
}
|
|
}
|
|
key_compare.Else();
|
|
{
|
|
// Key at current probe matches. Details must be zero, otherwise the
|
|
// dictionary element requires special handling.
|
|
HValue* details_index = AddUncasted<HAdd>(
|
|
raw_index, Add<HConstant>(base_offset + 2));
|
|
details_index->ClearFlag(HValue::kCanOverflow);
|
|
|
|
HValue* details = Add<HLoadKeyed>(elements, details_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_SMI_ELEMENTS);
|
|
IfBuilder details_compare(this);
|
|
details_compare.If<HCompareNumericAndBranch>(details,
|
|
graph()->GetConstant0(),
|
|
Token::NE);
|
|
details_compare.ThenDeopt("keyed load dictionary element not fast case");
|
|
|
|
details_compare.Else();
|
|
{
|
|
// Key matches and details are zero --> fast case. Load and return the
|
|
// value.
|
|
HValue* result_index = AddUncasted<HAdd>(
|
|
raw_index, Add<HConstant>(base_offset + 1));
|
|
result_index->ClearFlag(HValue::kCanOverflow);
|
|
|
|
Push(Add<HLoadKeyed>(elements, result_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_ELEMENTS));
|
|
}
|
|
details_compare.End();
|
|
}
|
|
key_compare.End();
|
|
|
|
return Pop();
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
|
|
int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
|
|
HValue* seed = Add<HConstant>(seed_value);
|
|
HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
|
|
|
|
// hash = ~hash + (hash << 15);
|
|
HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
|
|
HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
|
|
graph()->GetConstantMinus1());
|
|
hash = AddUncasted<HAdd>(shifted_hash, not_hash);
|
|
|
|
// hash = hash ^ (hash >> 12);
|
|
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
|
|
hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
|
|
|
|
// hash = hash + (hash << 2);
|
|
shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
|
|
hash = AddUncasted<HAdd>(hash, shifted_hash);
|
|
|
|
// hash = hash ^ (hash >> 4);
|
|
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
|
|
hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
|
|
|
|
// hash = hash * 2057;
|
|
hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
|
|
hash->ClearFlag(HValue::kCanOverflow);
|
|
|
|
// hash = hash ^ (hash >> 16);
|
|
shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
|
|
return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(HValue* receiver,
|
|
HValue* key) {
|
|
HValue* elements = AddLoadElements(receiver);
|
|
|
|
HValue* hash = BuildElementIndexHash(key);
|
|
|
|
HValue* capacity = Add<HLoadKeyed>(
|
|
elements,
|
|
Add<HConstant>(NameDictionary::kCapacityIndex),
|
|
static_cast<HValue*>(NULL),
|
|
FAST_SMI_ELEMENTS);
|
|
|
|
HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
|
|
mask->ChangeRepresentation(Representation::Integer32());
|
|
mask->ClearFlag(HValue::kCanOverflow);
|
|
|
|
return BuildUncheckedDictionaryElementLoadHelper(elements, key,
|
|
hash, mask, 0);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildNumberToString(HValue* object,
|
|
Handle<Type> type) {
|
|
NoObservableSideEffectsScope scope(this);
|
|
|
|
// Convert constant numbers at compile time.
|
|
if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
|
|
Handle<Object> number = HConstant::cast(object)->handle(isolate());
|
|
Handle<String> result = isolate()->factory()->NumberToString(number);
|
|
return Add<HConstant>(result);
|
|
}
|
|
|
|
// Create a joinable continuation.
|
|
HIfContinuation found(graph()->CreateBasicBlock(),
|
|
graph()->CreateBasicBlock());
|
|
|
|
// Load the number string cache.
|
|
HValue* number_string_cache =
|
|
Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
|
|
|
|
// Make the hash mask from the length of the number string cache. It
|
|
// contains two elements (number and string) for each cache entry.
|
|
HValue* mask = AddLoadFixedArrayLength(number_string_cache);
|
|
mask->set_type(HType::Smi());
|
|
mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
|
|
mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
|
|
|
|
// Check whether object is a smi.
|
|
IfBuilder if_objectissmi(this);
|
|
if_objectissmi.If<HIsSmiAndBranch>(object);
|
|
if_objectissmi.Then();
|
|
{
|
|
// Compute hash for smi similar to smi_get_hash().
|
|
HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
|
|
|
|
// Load the key.
|
|
HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
|
|
HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_ELEMENTS, ALLOW_RETURN_HOLE);
|
|
|
|
// Check if object == key.
|
|
IfBuilder if_objectiskey(this);
|
|
if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
|
|
if_objectiskey.Then();
|
|
{
|
|
// Make the key_index available.
|
|
Push(key_index);
|
|
}
|
|
if_objectiskey.JoinContinuation(&found);
|
|
}
|
|
if_objectissmi.Else();
|
|
{
|
|
if (type->Is(Type::Smi())) {
|
|
if_objectissmi.Deopt("Expected smi");
|
|
} else {
|
|
// Check if the object is a heap number.
|
|
IfBuilder if_objectisnumber(this);
|
|
if_objectisnumber.If<HCompareMap>(
|
|
object, isolate()->factory()->heap_number_map());
|
|
if_objectisnumber.Then();
|
|
{
|
|
// Compute hash for heap number similar to double_get_hash().
|
|
HValue* low = Add<HLoadNamedField>(
|
|
object, HObjectAccess::ForHeapNumberValueLowestBits());
|
|
HValue* high = Add<HLoadNamedField>(
|
|
object, HObjectAccess::ForHeapNumberValueHighestBits());
|
|
HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
|
|
hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
|
|
|
|
// Load the key.
|
|
HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
|
|
HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_ELEMENTS, ALLOW_RETURN_HOLE);
|
|
|
|
// Check if key is a heap number (the number string cache contains only
|
|
// SMIs and heap number, so it is sufficient to do a SMI check here).
|
|
IfBuilder if_keyisnotsmi(this);
|
|
if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
|
|
if_keyisnotsmi.Then();
|
|
{
|
|
// Check if values of key and object match.
|
|
IfBuilder if_keyeqobject(this);
|
|
if_keyeqobject.If<HCompareNumericAndBranch>(
|
|
Add<HLoadNamedField>(key, HObjectAccess::ForHeapNumberValue()),
|
|
Add<HLoadNamedField>(object, HObjectAccess::ForHeapNumberValue()),
|
|
Token::EQ);
|
|
if_keyeqobject.Then();
|
|
{
|
|
// Make the key_index available.
|
|
Push(key_index);
|
|
}
|
|
if_keyeqobject.JoinContinuation(&found);
|
|
}
|
|
if_keyisnotsmi.JoinContinuation(&found);
|
|
}
|
|
if_objectisnumber.Else();
|
|
{
|
|
if (type->Is(Type::Number())) {
|
|
if_objectisnumber.Deopt("Expected heap number");
|
|
}
|
|
}
|
|
if_objectisnumber.JoinContinuation(&found);
|
|
}
|
|
}
|
|
if_objectissmi.JoinContinuation(&found);
|
|
|
|
// Check for cache hit.
|
|
IfBuilder if_found(this, &found);
|
|
if_found.Then();
|
|
{
|
|
// Count number to string operation in native code.
|
|
AddIncrementCounter(isolate()->counters()->number_to_string_native());
|
|
|
|
// Load the value in case of cache hit.
|
|
HValue* key_index = Pop();
|
|
HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
|
|
Push(Add<HLoadKeyed>(number_string_cache, value_index,
|
|
static_cast<HValue*>(NULL),
|
|
FAST_ELEMENTS, ALLOW_RETURN_HOLE));
|
|
}
|
|
if_found.Else();
|
|
{
|
|
// Cache miss, fallback to runtime.
|
|
Add<HPushArgument>(object);
|
|
Push(Add<HCallRuntime>(
|
|
isolate()->factory()->empty_string(),
|
|
Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
|
|
1));
|
|
}
|
|
if_found.End();
|
|
|
|
return Pop();
|
|
}
|
|
|
|
|
|
HAllocate* HGraphBuilder::BuildAllocate(
|
|
HValue* object_size,
|
|
HType type,
|
|
InstanceType instance_type,
|
|
HAllocationMode allocation_mode) {
|
|
// Compute the effective allocation size.
|
|
HValue* size = object_size;
|
|
if (allocation_mode.CreateAllocationMementos()) {
|
|
size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
|
|
size->ClearFlag(HValue::kCanOverflow);
|
|
}
|
|
|
|
// Perform the actual allocation.
|
|
HAllocate* object = Add<HAllocate>(
|
|
size, type, allocation_mode.GetPretenureMode(),
|
|
instance_type, allocation_mode.feedback_site());
|
|
|
|
// Setup the allocation memento.
|
|
if (allocation_mode.CreateAllocationMementos()) {
|
|
BuildCreateAllocationMemento(
|
|
object, object_size, allocation_mode.current_site());
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
|
|
HValue* right_length) {
|
|
// Compute the combined string length. If the result is larger than the max
|
|
// supported string length, we bailout to the runtime. This is done implicitly
|
|
// when converting the result back to a smi in case the max string length
|
|
// equals the max smi value. Otherwise, for platforms with 32-bit smis, we do
|
|
HValue* length = AddUncasted<HAdd>(left_length, right_length);
|
|
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
|
|
if (String::kMaxLength != Smi::kMaxValue) {
|
|
IfBuilder if_nooverflow(this);
|
|
if_nooverflow.If<HCompareNumericAndBranch>(
|
|
length, Add<HConstant>(String::kMaxLength), Token::LTE);
|
|
if_nooverflow.Then();
|
|
if_nooverflow.ElseDeopt("String length exceeds limit");
|
|
}
|
|
return length;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCreateConsString(
|
|
HValue* length,
|
|
HValue* left,
|
|
HValue* right,
|
|
HAllocationMode allocation_mode) {
|
|
// Determine the string instance types.
|
|
HInstruction* left_instance_type = AddLoadStringInstanceType(left);
|
|
HInstruction* right_instance_type = AddLoadStringInstanceType(right);
|
|
|
|
// Allocate the cons string object. HAllocate does not care whether we
|
|
// pass CONS_STRING_TYPE or CONS_ASCII_STRING_TYPE here, so we just use
|
|
// CONS_STRING_TYPE here. Below we decide whether the cons string is
|
|
// one-byte or two-byte and set the appropriate map.
|
|
ASSERT(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
|
|
CONS_ASCII_STRING_TYPE));
|
|
HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
|
|
HType::String(), CONS_STRING_TYPE,
|
|
allocation_mode);
|
|
|
|
// Compute intersection and difference of instance types.
|
|
HValue* anded_instance_types = AddUncasted<HBitwise>(
|
|
Token::BIT_AND, left_instance_type, right_instance_type);
|
|
HValue* xored_instance_types = AddUncasted<HBitwise>(
|
|
Token::BIT_XOR, left_instance_type, right_instance_type);
|
|
|
|
// We create a one-byte cons string if
|
|
// 1. both strings are one-byte, or
|
|
// 2. at least one of the strings is two-byte, but happens to contain only
|
|
// one-byte characters.
|
|
// To do this, we check
|
|
// 1. if both strings are one-byte, or if the one-byte data hint is set in
|
|
// both strings, or
|
|
// 2. if one of the strings has the one-byte data hint set and the other
|
|
// string is one-byte.
|
|
IfBuilder if_onebyte(this);
|
|
STATIC_ASSERT(kOneByteStringTag != 0);
|
|
STATIC_ASSERT(kOneByteDataHintMask != 0);
|
|
if_onebyte.If<HCompareNumericAndBranch>(
|
|
AddUncasted<HBitwise>(
|
|
Token::BIT_AND, anded_instance_types,
|
|
Add<HConstant>(static_cast<int32_t>(
|
|
kStringEncodingMask | kOneByteDataHintMask))),
|
|
graph()->GetConstant0(), Token::NE);
|
|
if_onebyte.Or();
|
|
STATIC_ASSERT(kOneByteStringTag != 0 &&
|
|
kOneByteDataHintTag != 0 &&
|
|
kOneByteDataHintTag != kOneByteStringTag);
|
|
if_onebyte.If<HCompareNumericAndBranch>(
|
|
AddUncasted<HBitwise>(
|
|
Token::BIT_AND, xored_instance_types,
|
|
Add<HConstant>(static_cast<int32_t>(
|
|
kOneByteStringTag | kOneByteDataHintTag))),
|
|
Add<HConstant>(static_cast<int32_t>(
|
|
kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
|
|
if_onebyte.Then();
|
|
{
|
|
// We can safely skip the write barrier for storing the map here.
|
|
Handle<Map> map = isolate()->factory()->cons_ascii_string_map();
|
|
AddStoreMapConstantNoWriteBarrier(result, map);
|
|
}
|
|
if_onebyte.Else();
|
|
{
|
|
// We can safely skip the write barrier for storing the map here.
|
|
Handle<Map> map = isolate()->factory()->cons_string_map();
|
|
AddStoreMapConstantNoWriteBarrier(result, map);
|
|
}
|
|
if_onebyte.End();
|
|
|
|
// Initialize the cons string fields.
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
|
|
Add<HConstant>(String::kEmptyHashField));
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
|
|
|
|
// Count the native string addition.
|
|
AddIncrementCounter(isolate()->counters()->string_add_native());
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
|
|
HValue* src_offset,
|
|
String::Encoding src_encoding,
|
|
HValue* dst,
|
|
HValue* dst_offset,
|
|
String::Encoding dst_encoding,
|
|
HValue* length) {
|
|
ASSERT(dst_encoding != String::ONE_BYTE_ENCODING ||
|
|
src_encoding == String::ONE_BYTE_ENCODING);
|
|
LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
|
|
HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
|
|
{
|
|
HValue* src_index = AddUncasted<HAdd>(src_offset, index);
|
|
HValue* value =
|
|
AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
|
|
HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
|
|
Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
|
|
}
|
|
loop.EndBody();
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildUncheckedStringAdd(
|
|
HValue* left,
|
|
HValue* right,
|
|
HAllocationMode allocation_mode) {
|
|
// Determine the string lengths.
|
|
HValue* left_length = AddLoadStringLength(left);
|
|
HValue* right_length = AddLoadStringLength(right);
|
|
|
|
// Compute the combined string length.
|
|
HValue* length = BuildAddStringLengths(left_length, right_length);
|
|
|
|
// Do some manual constant folding here.
|
|
if (left_length->IsConstant()) {
|
|
HConstant* c_left_length = HConstant::cast(left_length);
|
|
ASSERT_NE(0, c_left_length->Integer32Value());
|
|
if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
|
|
// The right string contains at least one character.
|
|
return BuildCreateConsString(length, left, right, allocation_mode);
|
|
}
|
|
} else if (right_length->IsConstant()) {
|
|
HConstant* c_right_length = HConstant::cast(right_length);
|
|
ASSERT_NE(0, c_right_length->Integer32Value());
|
|
if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
|
|
// The left string contains at least one character.
|
|
return BuildCreateConsString(length, left, right, allocation_mode);
|
|
}
|
|
}
|
|
|
|
// Check if we should create a cons string.
|
|
IfBuilder if_createcons(this);
|
|
if_createcons.If<HCompareNumericAndBranch>(
|
|
length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
|
|
if_createcons.Then();
|
|
{
|
|
// Create a cons string.
|
|
Push(BuildCreateConsString(length, left, right, allocation_mode));
|
|
}
|
|
if_createcons.Else();
|
|
{
|
|
// Determine the string instance types.
|
|
HValue* left_instance_type = AddLoadStringInstanceType(left);
|
|
HValue* right_instance_type = AddLoadStringInstanceType(right);
|
|
|
|
// Compute union and difference of instance types.
|
|
HValue* ored_instance_types = AddUncasted<HBitwise>(
|
|
Token::BIT_OR, left_instance_type, right_instance_type);
|
|
HValue* xored_instance_types = AddUncasted<HBitwise>(
|
|
Token::BIT_XOR, left_instance_type, right_instance_type);
|
|
|
|
// Check if both strings have the same encoding and both are
|
|
// sequential.
|
|
IfBuilder if_sameencodingandsequential(this);
|
|
if_sameencodingandsequential.If<HCompareNumericAndBranch>(
|
|
AddUncasted<HBitwise>(
|
|
Token::BIT_AND, xored_instance_types,
|
|
Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
|
|
graph()->GetConstant0(), Token::EQ);
|
|
if_sameencodingandsequential.And();
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
if_sameencodingandsequential.If<HCompareNumericAndBranch>(
|
|
AddUncasted<HBitwise>(
|
|
Token::BIT_AND, ored_instance_types,
|
|
Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
|
|
graph()->GetConstant0(), Token::EQ);
|
|
if_sameencodingandsequential.Then();
|
|
{
|
|
HConstant* string_map =
|
|
Add<HConstant>(isolate()->factory()->string_map());
|
|
HConstant* ascii_string_map =
|
|
Add<HConstant>(isolate()->factory()->ascii_string_map());
|
|
|
|
// Determine map and size depending on whether result is one-byte string.
|
|
IfBuilder if_onebyte(this);
|
|
STATIC_ASSERT(kOneByteStringTag != 0);
|
|
if_onebyte.If<HCompareNumericAndBranch>(
|
|
AddUncasted<HBitwise>(
|
|
Token::BIT_AND, ored_instance_types,
|
|
Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
|
|
graph()->GetConstant0(), Token::NE);
|
|
if_onebyte.Then();
|
|
{
|
|
// Allocate sequential one-byte string object.
|
|
Push(length);
|
|
Push(ascii_string_map);
|
|
}
|
|
if_onebyte.Else();
|
|
{
|
|
// Allocate sequential two-byte string object.
|
|
HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
|
|
size->ClearFlag(HValue::kCanOverflow);
|
|
size->SetFlag(HValue::kUint32);
|
|
Push(size);
|
|
Push(string_map);
|
|
}
|
|
if_onebyte.End();
|
|
HValue* map = Pop();
|
|
|
|
// Calculate the number of bytes needed for the characters in the
|
|
// string while observing object alignment.
|
|
STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
HValue* size = Pop();
|
|
size = AddUncasted<HAdd>(size, Add<HConstant>(static_cast<int32_t>(
|
|
SeqString::kHeaderSize + kObjectAlignmentMask)));
|
|
size->ClearFlag(HValue::kCanOverflow);
|
|
size = AddUncasted<HBitwise>(
|
|
Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
|
|
~kObjectAlignmentMask)));
|
|
|
|
// Allocate the string object. HAllocate does not care whether we pass
|
|
// STRING_TYPE or ASCII_STRING_TYPE here, so we just use STRING_TYPE here.
|
|
HAllocate* result = BuildAllocate(
|
|
size, HType::String(), STRING_TYPE, allocation_mode);
|
|
|
|
// We can safely skip the write barrier for storing map here.
|
|
AddStoreMapNoWriteBarrier(result, map);
|
|
|
|
// Initialize the string fields.
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
|
|
Add<HConstant>(String::kEmptyHashField));
|
|
Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
|
|
|
|
// Copy characters to the result string.
|
|
IfBuilder if_twobyte(this);
|
|
if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
|
|
if_twobyte.Then();
|
|
{
|
|
// Copy characters from the left string.
|
|
BuildCopySeqStringChars(
|
|
left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
|
|
result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
|
|
left_length);
|
|
|
|
// Copy characters from the right string.
|
|
BuildCopySeqStringChars(
|
|
right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
|
|
result, left_length, String::TWO_BYTE_ENCODING,
|
|
right_length);
|
|
}
|
|
if_twobyte.Else();
|
|
{
|
|
// Copy characters from the left string.
|
|
BuildCopySeqStringChars(
|
|
left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
|
|
result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
|
|
left_length);
|
|
|
|
// Copy characters from the right string.
|
|
BuildCopySeqStringChars(
|
|
right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
|
|
result, left_length, String::ONE_BYTE_ENCODING,
|
|
right_length);
|
|
}
|
|
if_twobyte.End();
|
|
|
|
// Count the native string addition.
|
|
AddIncrementCounter(isolate()->counters()->string_add_native());
|
|
|
|
// Return the sequential string.
|
|
Push(result);
|
|
}
|
|
if_sameencodingandsequential.Else();
|
|
{
|
|
// Fallback to the runtime to add the two strings.
|
|
Add<HPushArgument>(left);
|
|
Add<HPushArgument>(right);
|
|
Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
|
|
Runtime::FunctionForId(Runtime::kStringAdd),
|
|
2));
|
|
}
|
|
if_sameencodingandsequential.End();
|
|
}
|
|
if_createcons.End();
|
|
|
|
return Pop();
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildStringAdd(
|
|
HValue* left,
|
|
HValue* right,
|
|
HAllocationMode allocation_mode) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
|
|
// Determine string lengths.
|
|
HValue* left_length = AddLoadStringLength(left);
|
|
HValue* right_length = AddLoadStringLength(right);
|
|
|
|
// Check if left string is empty.
|
|
IfBuilder if_leftempty(this);
|
|
if_leftempty.If<HCompareNumericAndBranch>(
|
|
left_length, graph()->GetConstant0(), Token::EQ);
|
|
if_leftempty.Then();
|
|
{
|
|
// Count the native string addition.
|
|
AddIncrementCounter(isolate()->counters()->string_add_native());
|
|
|
|
// Just return the right string.
|
|
Push(right);
|
|
}
|
|
if_leftempty.Else();
|
|
{
|
|
// Check if right string is empty.
|
|
IfBuilder if_rightempty(this);
|
|
if_rightempty.If<HCompareNumericAndBranch>(
|
|
right_length, graph()->GetConstant0(), Token::EQ);
|
|
if_rightempty.Then();
|
|
{
|
|
// Count the native string addition.
|
|
AddIncrementCounter(isolate()->counters()->string_add_native());
|
|
|
|
// Just return the left string.
|
|
Push(left);
|
|
}
|
|
if_rightempty.Else();
|
|
{
|
|
// Add the two non-empty strings.
|
|
Push(BuildUncheckedStringAdd(left, right, allocation_mode));
|
|
}
|
|
if_rightempty.End();
|
|
}
|
|
if_leftempty.End();
|
|
|
|
return Pop();
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
|
|
HValue* checked_object,
|
|
HValue* key,
|
|
HValue* val,
|
|
bool is_js_array,
|
|
ElementsKind elements_kind,
|
|
bool is_store,
|
|
LoadKeyedHoleMode load_mode,
|
|
KeyedAccessStoreMode store_mode) {
|
|
ASSERT((!IsExternalArrayElementsKind(elements_kind) &&
|
|
!IsFixedTypedArrayElementsKind(elements_kind)) ||
|
|
!is_js_array);
|
|
// No GVNFlag is necessary for ElementsKind if there is an explicit dependency
|
|
// on a HElementsTransition instruction. The flag can also be removed if the
|
|
// map to check has FAST_HOLEY_ELEMENTS, since there can be no further
|
|
// ElementsKind transitions. Finally, the dependency can be removed for stores
|
|
// for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
|
|
// generated store code.
|
|
if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
|
|
(elements_kind == FAST_ELEMENTS && is_store)) {
|
|
checked_object->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
|
|
bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
|
|
bool fast_elements = IsFastObjectElementsKind(elements_kind);
|
|
HValue* elements = AddLoadElements(checked_object);
|
|
if (is_store && (fast_elements || fast_smi_only_elements) &&
|
|
store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
|
|
HCheckMaps* check_cow_map = Add<HCheckMaps>(
|
|
elements, isolate()->factory()->fixed_array_map(), top_info());
|
|
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
HInstruction* length = NULL;
|
|
if (is_js_array) {
|
|
length = Add<HLoadNamedField>(
|
|
checked_object, HObjectAccess::ForArrayLength(elements_kind));
|
|
} else {
|
|
length = AddLoadFixedArrayLength(elements);
|
|
}
|
|
length->set_type(HType::Smi());
|
|
HValue* checked_key = NULL;
|
|
if (IsExternalArrayElementsKind(elements_kind) ||
|
|
IsFixedTypedArrayElementsKind(elements_kind)) {
|
|
HValue* backing_store;
|
|
if (IsExternalArrayElementsKind(elements_kind)) {
|
|
backing_store =
|
|
Add<HLoadExternalArrayPointer>(elements);
|
|
} else {
|
|
backing_store = elements;
|
|
}
|
|
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
IfBuilder length_checker(this);
|
|
length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
|
|
length_checker.Then();
|
|
IfBuilder negative_checker(this);
|
|
HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
|
|
key, graph()->GetConstant0(), Token::GTE);
|
|
negative_checker.Then();
|
|
HInstruction* result = AddElementAccess(
|
|
backing_store, key, val, bounds_check, elements_kind, is_store);
|
|
negative_checker.ElseDeopt("Negative key encountered");
|
|
negative_checker.End();
|
|
length_checker.End();
|
|
return result;
|
|
} else {
|
|
ASSERT(store_mode == STANDARD_STORE);
|
|
checked_key = Add<HBoundsCheck>(key, length);
|
|
return AddElementAccess(
|
|
backing_store, checked_key, val,
|
|
checked_object, elements_kind, is_store);
|
|
}
|
|
}
|
|
ASSERT(fast_smi_only_elements ||
|
|
fast_elements ||
|
|
IsFastDoubleElementsKind(elements_kind));
|
|
|
|
// In case val is stored into a fast smi array, assure that the value is a smi
|
|
// before manipulating the backing store. Otherwise the actual store may
|
|
// deopt, leaving the backing store in an invalid state.
|
|
if (is_store && IsFastSmiElementsKind(elements_kind) &&
|
|
!val->type().IsSmi()) {
|
|
val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
|
|
}
|
|
|
|
if (IsGrowStoreMode(store_mode)) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
elements = BuildCheckForCapacityGrow(checked_object, elements,
|
|
elements_kind, length, key,
|
|
is_js_array, is_store);
|
|
checked_key = key;
|
|
} else {
|
|
checked_key = Add<HBoundsCheck>(key, length);
|
|
|
|
if (is_store && (fast_elements || fast_smi_only_elements)) {
|
|
if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
elements = BuildCopyElementsOnWrite(checked_object, elements,
|
|
elements_kind, length);
|
|
} else {
|
|
HCheckMaps* check_cow_map = Add<HCheckMaps>(
|
|
elements, isolate()->factory()->fixed_array_map(), top_info());
|
|
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
}
|
|
}
|
|
return AddElementAccess(elements, checked_key, val, checked_object,
|
|
elements_kind, is_store, load_mode);
|
|
}
|
|
|
|
|
|
|
|
HValue* HGraphBuilder::BuildAllocateArrayFromLength(
|
|
JSArrayBuilder* array_builder,
|
|
HValue* length_argument) {
|
|
if (length_argument->IsConstant() &&
|
|
HConstant::cast(length_argument)->HasSmiValue()) {
|
|
int array_length = HConstant::cast(length_argument)->Integer32Value();
|
|
HValue* new_object = array_length == 0
|
|
? array_builder->AllocateEmptyArray()
|
|
: array_builder->AllocateArray(length_argument, length_argument);
|
|
return new_object;
|
|
}
|
|
|
|
HValue* constant_zero = graph()->GetConstant0();
|
|
HConstant* max_alloc_length =
|
|
Add<HConstant>(JSObject::kInitialMaxFastElementArray);
|
|
HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
|
|
max_alloc_length);
|
|
IfBuilder if_builder(this);
|
|
if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
|
|
Token::EQ);
|
|
if_builder.Then();
|
|
const int initial_capacity = JSArray::kPreallocatedArrayElements;
|
|
HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
|
|
Push(initial_capacity_node); // capacity
|
|
Push(constant_zero); // length
|
|
if_builder.Else();
|
|
if (!(top_info()->IsStub()) &&
|
|
IsFastPackedElementsKind(array_builder->kind())) {
|
|
// We'll come back later with better (holey) feedback.
|
|
if_builder.Deopt("Holey array despite packed elements_kind feedback");
|
|
} else {
|
|
Push(checked_length); // capacity
|
|
Push(checked_length); // length
|
|
}
|
|
if_builder.End();
|
|
|
|
// Figure out total size
|
|
HValue* length = Pop();
|
|
HValue* capacity = Pop();
|
|
return array_builder->AllocateArray(capacity, length);
|
|
}
|
|
|
|
HValue* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
|
|
HValue* capacity) {
|
|
int elements_size;
|
|
InstanceType instance_type;
|
|
|
|
if (IsFastDoubleElementsKind(kind)) {
|
|
elements_size = kDoubleSize;
|
|
instance_type = FIXED_DOUBLE_ARRAY_TYPE;
|
|
} else {
|
|
elements_size = kPointerSize;
|
|
instance_type = FIXED_ARRAY_TYPE;
|
|
}
|
|
|
|
HConstant* elements_size_value = Add<HConstant>(elements_size);
|
|
HValue* mul = AddUncasted<HMul>(capacity, elements_size_value);
|
|
mul->ClearFlag(HValue::kCanOverflow);
|
|
|
|
HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
|
|
HValue* total_size = AddUncasted<HAdd>(mul, header_size);
|
|
total_size->ClearFlag(HValue::kCanOverflow);
|
|
|
|
return Add<HAllocate>(total_size, HType::JSArray(),
|
|
isolate()->heap()->GetPretenureMode(), instance_type);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
|
|
ElementsKind kind,
|
|
HValue* capacity) {
|
|
Factory* factory = isolate()->factory();
|
|
Handle<Map> map = IsFastDoubleElementsKind(kind)
|
|
? factory->fixed_double_array_map()
|
|
: factory->fixed_array_map();
|
|
|
|
AddStoreMapConstant(elements, map);
|
|
Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
|
|
capacity);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildAllocateElementsAndInitializeElementsHeader(
|
|
ElementsKind kind,
|
|
HValue* capacity) {
|
|
// The HForceRepresentation is to prevent possible deopt on int-smi
|
|
// conversion after allocation but before the new object fields are set.
|
|
capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
|
|
HValue* new_elements = BuildAllocateElements(kind, capacity);
|
|
BuildInitializeElementsHeader(new_elements, kind, capacity);
|
|
return new_elements;
|
|
}
|
|
|
|
|
|
HInnerAllocatedObject* HGraphBuilder::BuildJSArrayHeader(HValue* array,
|
|
HValue* array_map,
|
|
AllocationSiteMode mode,
|
|
ElementsKind elements_kind,
|
|
HValue* allocation_site_payload,
|
|
HValue* length_field) {
|
|
|
|
Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
|
|
|
|
HConstant* empty_fixed_array =
|
|
Add<HConstant>(isolate()->factory()->empty_fixed_array());
|
|
|
|
HObjectAccess access = HObjectAccess::ForPropertiesPointer();
|
|
Add<HStoreNamedField>(array, access, empty_fixed_array);
|
|
Add<HStoreNamedField>(array, HObjectAccess::ForArrayLength(elements_kind),
|
|
length_field);
|
|
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
BuildCreateAllocationMemento(
|
|
array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
|
|
}
|
|
|
|
int elements_location = JSArray::kSize;
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
elements_location += AllocationMemento::kSize;
|
|
}
|
|
|
|
HInnerAllocatedObject* elements = Add<HInnerAllocatedObject>(
|
|
array, Add<HConstant>(elements_location));
|
|
Add<HStoreNamedField>(array, HObjectAccess::ForElementsPointer(), elements);
|
|
return elements;
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddElementAccess(
|
|
HValue* elements,
|
|
HValue* checked_key,
|
|
HValue* val,
|
|
HValue* dependency,
|
|
ElementsKind elements_kind,
|
|
bool is_store,
|
|
LoadKeyedHoleMode load_mode) {
|
|
if (is_store) {
|
|
ASSERT(val != NULL);
|
|
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS ||
|
|
elements_kind == UINT8_CLAMPED_ELEMENTS) {
|
|
val = Add<HClampToUint8>(val);
|
|
}
|
|
return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
|
|
elements_kind == FAST_SMI_ELEMENTS
|
|
? STORE_TO_INITIALIZED_ENTRY
|
|
: INITIALIZING_STORE);
|
|
}
|
|
|
|
ASSERT(!is_store);
|
|
ASSERT(val == NULL);
|
|
HLoadKeyed* load = Add<HLoadKeyed>(
|
|
elements, checked_key, dependency, elements_kind, load_mode);
|
|
if (FLAG_opt_safe_uint32_operations &&
|
|
(elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS ||
|
|
elements_kind == UINT32_ELEMENTS)) {
|
|
graph()->RecordUint32Instruction(load);
|
|
}
|
|
return load;
|
|
}
|
|
|
|
|
|
HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object) {
|
|
return Add<HLoadNamedField>(object, HObjectAccess::ForElementsPointer());
|
|
}
|
|
|
|
|
|
HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(HValue* object) {
|
|
return Add<HLoadNamedField>(object,
|
|
HObjectAccess::ForFixedArrayLength());
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
|
|
HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
|
|
graph_->GetConstant1());
|
|
|
|
HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
|
|
new_capacity->ClearFlag(HValue::kCanOverflow);
|
|
|
|
HValue* min_growth = Add<HConstant>(16);
|
|
|
|
new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
|
|
new_capacity->ClearFlag(HValue::kCanOverflow);
|
|
|
|
return new_capacity;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildNewSpaceArrayCheck(HValue* length, ElementsKind kind) {
|
|
Heap* heap = isolate()->heap();
|
|
int element_size = IsFastDoubleElementsKind(kind) ? kDoubleSize
|
|
: kPointerSize;
|
|
int max_size = heap->MaxRegularSpaceAllocationSize() / element_size;
|
|
max_size -= JSArray::kSize / element_size;
|
|
HConstant* max_size_constant = Add<HConstant>(max_size);
|
|
Add<HBoundsCheck>(length, max_size_constant);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
|
|
HValue* elements,
|
|
ElementsKind kind,
|
|
ElementsKind new_kind,
|
|
HValue* length,
|
|
HValue* new_capacity) {
|
|
BuildNewSpaceArrayCheck(new_capacity, new_kind);
|
|
|
|
HValue* new_elements = BuildAllocateElementsAndInitializeElementsHeader(
|
|
new_kind, new_capacity);
|
|
|
|
BuildCopyElements(elements, kind,
|
|
new_elements, new_kind,
|
|
length, new_capacity);
|
|
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
|
|
new_elements);
|
|
|
|
return new_elements;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
|
|
ElementsKind elements_kind,
|
|
HValue* from,
|
|
HValue* to) {
|
|
// Fast elements kinds need to be initialized in case statements below cause
|
|
// a garbage collection.
|
|
Factory* factory = isolate()->factory();
|
|
|
|
double nan_double = FixedDoubleArray::hole_nan_as_double();
|
|
HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
|
|
? Add<HConstant>(factory->the_hole_value())
|
|
: Add<HConstant>(nan_double);
|
|
|
|
// Special loop unfolding case
|
|
static const int kLoopUnfoldLimit = 8;
|
|
STATIC_ASSERT(JSArray::kPreallocatedArrayElements <= kLoopUnfoldLimit);
|
|
int initial_capacity = -1;
|
|
if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
|
|
int constant_from = from->GetInteger32Constant();
|
|
int constant_to = to->GetInteger32Constant();
|
|
|
|
if (constant_from == 0 && constant_to <= kLoopUnfoldLimit) {
|
|
initial_capacity = constant_to;
|
|
}
|
|
}
|
|
|
|
// Since we're about to store a hole value, the store instruction below must
|
|
// assume an elements kind that supports heap object values.
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
|
|
elements_kind = FAST_HOLEY_ELEMENTS;
|
|
}
|
|
|
|
if (initial_capacity >= 0) {
|
|
for (int i = 0; i < initial_capacity; i++) {
|
|
HInstruction* key = Add<HConstant>(i);
|
|
Add<HStoreKeyed>(elements, key, hole, elements_kind);
|
|
}
|
|
} else {
|
|
LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
|
|
|
|
HValue* key = builder.BeginBody(from, to, Token::LT);
|
|
|
|
Add<HStoreKeyed>(elements, key, hole, elements_kind);
|
|
|
|
builder.EndBody();
|
|
}
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildCopyElements(HValue* from_elements,
|
|
ElementsKind from_elements_kind,
|
|
HValue* to_elements,
|
|
ElementsKind to_elements_kind,
|
|
HValue* length,
|
|
HValue* capacity) {
|
|
bool pre_fill_with_holes =
|
|
IsFastDoubleElementsKind(from_elements_kind) &&
|
|
IsFastObjectElementsKind(to_elements_kind);
|
|
|
|
if (pre_fill_with_holes) {
|
|
// If the copy might trigger a GC, make sure that the FixedArray is
|
|
// pre-initialized with holes to make sure that it's always in a consistent
|
|
// state.
|
|
BuildFillElementsWithHole(to_elements, to_elements_kind,
|
|
graph()->GetConstant0(), capacity);
|
|
}
|
|
|
|
LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
|
|
|
|
HValue* key = builder.BeginBody(graph()->GetConstant0(), length, Token::LT);
|
|
|
|
HValue* element = Add<HLoadKeyed>(from_elements, key,
|
|
static_cast<HValue*>(NULL),
|
|
from_elements_kind,
|
|
ALLOW_RETURN_HOLE);
|
|
|
|
ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
|
|
IsFastSmiElementsKind(to_elements_kind))
|
|
? FAST_HOLEY_ELEMENTS : to_elements_kind;
|
|
|
|
if (IsHoleyElementsKind(from_elements_kind) &&
|
|
from_elements_kind != to_elements_kind) {
|
|
IfBuilder if_hole(this);
|
|
if_hole.If<HCompareHoleAndBranch>(element);
|
|
if_hole.Then();
|
|
HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
|
|
? Add<HConstant>(FixedDoubleArray::hole_nan_as_double())
|
|
: graph()->GetConstantHole();
|
|
Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
|
|
if_hole.Else();
|
|
HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
|
|
store->SetFlag(HValue::kAllowUndefinedAsNaN);
|
|
if_hole.End();
|
|
} else {
|
|
HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
|
|
store->SetFlag(HValue::kAllowUndefinedAsNaN);
|
|
}
|
|
|
|
builder.EndBody();
|
|
|
|
if (!pre_fill_with_holes && length != capacity) {
|
|
// Fill unused capacity with the hole.
|
|
BuildFillElementsWithHole(to_elements, to_elements_kind,
|
|
key, capacity);
|
|
}
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildCloneShallowArray(HValue* boilerplate,
|
|
HValue* allocation_site,
|
|
AllocationSiteMode mode,
|
|
ElementsKind kind,
|
|
int length) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
|
|
// All sizes here are multiples of kPointerSize.
|
|
int size = JSArray::kSize;
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
size += AllocationMemento::kSize;
|
|
}
|
|
|
|
HValue* size_in_bytes = Add<HConstant>(size);
|
|
HInstruction* object = Add<HAllocate>(size_in_bytes,
|
|
HType::JSObject(),
|
|
NOT_TENURED,
|
|
JS_OBJECT_TYPE);
|
|
|
|
// Copy the JS array part.
|
|
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
|
|
if ((i != JSArray::kElementsOffset) || (length == 0)) {
|
|
HObjectAccess access = HObjectAccess::ForJSArrayOffset(i);
|
|
Add<HStoreNamedField>(object, access,
|
|
Add<HLoadNamedField>(boilerplate, access));
|
|
}
|
|
}
|
|
|
|
// Create an allocation site info if requested.
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
BuildCreateAllocationMemento(
|
|
object, Add<HConstant>(JSArray::kSize), allocation_site);
|
|
}
|
|
|
|
if (length > 0) {
|
|
HValue* boilerplate_elements = AddLoadElements(boilerplate);
|
|
HValue* object_elements;
|
|
if (IsFastDoubleElementsKind(kind)) {
|
|
HValue* elems_size = Add<HConstant>(FixedDoubleArray::SizeFor(length));
|
|
object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
|
|
NOT_TENURED, FIXED_DOUBLE_ARRAY_TYPE);
|
|
} else {
|
|
HValue* elems_size = Add<HConstant>(FixedArray::SizeFor(length));
|
|
object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
|
|
NOT_TENURED, FIXED_ARRAY_TYPE);
|
|
}
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
|
|
object_elements);
|
|
|
|
// Copy the elements array header.
|
|
for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
|
|
HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
|
|
Add<HStoreNamedField>(object_elements, access,
|
|
Add<HLoadNamedField>(boilerplate_elements, access));
|
|
}
|
|
|
|
// Copy the elements array contents.
|
|
// TODO(mstarzinger): Teach HGraphBuilder::BuildCopyElements to unfold
|
|
// copying loops with constant length up to a given boundary and use this
|
|
// helper here instead.
|
|
for (int i = 0; i < length; i++) {
|
|
HValue* key_constant = Add<HConstant>(i);
|
|
HInstruction* value = Add<HLoadKeyed>(boilerplate_elements, key_constant,
|
|
static_cast<HValue*>(NULL), kind);
|
|
Add<HStoreKeyed>(object_elements, key_constant, value, kind);
|
|
}
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildCompareNil(
|
|
HValue* value,
|
|
Handle<Type> type,
|
|
HIfContinuation* continuation) {
|
|
IfBuilder if_nil(this);
|
|
bool some_case_handled = false;
|
|
bool some_case_missing = false;
|
|
|
|
if (type->Maybe(Type::Null())) {
|
|
if (some_case_handled) if_nil.Or();
|
|
if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
|
|
some_case_handled = true;
|
|
} else {
|
|
some_case_missing = true;
|
|
}
|
|
|
|
if (type->Maybe(Type::Undefined())) {
|
|
if (some_case_handled) if_nil.Or();
|
|
if_nil.If<HCompareObjectEqAndBranch>(value,
|
|
graph()->GetConstantUndefined());
|
|
some_case_handled = true;
|
|
} else {
|
|
some_case_missing = true;
|
|
}
|
|
|
|
if (type->Maybe(Type::Undetectable())) {
|
|
if (some_case_handled) if_nil.Or();
|
|
if_nil.If<HIsUndetectableAndBranch>(value);
|
|
some_case_handled = true;
|
|
} else {
|
|
some_case_missing = true;
|
|
}
|
|
|
|
if (some_case_missing) {
|
|
if_nil.Then();
|
|
if_nil.Else();
|
|
if (type->NumClasses() == 1) {
|
|
BuildCheckHeapObject(value);
|
|
// For ICs, the map checked below is a sentinel map that gets replaced by
|
|
// the monomorphic map when the code is used as a template to generate a
|
|
// new IC. For optimized functions, there is no sentinel map, the map
|
|
// emitted below is the actual monomorphic map.
|
|
BuildCheckMap(value, type->Classes().Current());
|
|
} else {
|
|
if_nil.Deopt("Too many undetectable types");
|
|
}
|
|
}
|
|
|
|
if_nil.CaptureContinuation(continuation);
|
|
}
|
|
|
|
|
|
void HGraphBuilder::BuildCreateAllocationMemento(
|
|
HValue* previous_object,
|
|
HValue* previous_object_size,
|
|
HValue* allocation_site) {
|
|
ASSERT(allocation_site != NULL);
|
|
HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
|
|
previous_object, previous_object_size);
|
|
AddStoreMapConstant(
|
|
allocation_memento, isolate()->factory()->allocation_memento_map());
|
|
Add<HStoreNamedField>(
|
|
allocation_memento,
|
|
HObjectAccess::ForAllocationMementoSite(),
|
|
allocation_site);
|
|
if (FLAG_allocation_site_pretenuring) {
|
|
HValue* memento_create_count = Add<HLoadNamedField>(
|
|
allocation_site, HObjectAccess::ForAllocationSiteOffset(
|
|
AllocationSite::kPretenureCreateCountOffset));
|
|
memento_create_count = AddUncasted<HAdd>(
|
|
memento_create_count, graph()->GetConstant1());
|
|
// This smi value is reset to zero after every gc, overflow isn't a problem
|
|
// since the counter is bounded by the new space size.
|
|
memento_create_count->ClearFlag(HValue::kCanOverflow);
|
|
HStoreNamedField* store = Add<HStoreNamedField>(
|
|
allocation_site, HObjectAccess::ForAllocationSiteOffset(
|
|
AllocationSite::kPretenureCreateCountOffset), memento_create_count);
|
|
// No write barrier needed to store a smi.
|
|
store->SkipWriteBarrier();
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
|
|
// Get the global context, then the native context
|
|
HInstruction* context =
|
|
Add<HLoadNamedField>(closure, HObjectAccess::ForFunctionContextPointer());
|
|
HInstruction* global_object = Add<HLoadNamedField>(context,
|
|
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
|
|
HObjectAccess access = HObjectAccess::ForJSObjectOffset(
|
|
GlobalObject::kNativeContextOffset);
|
|
return Add<HLoadNamedField>(global_object, access);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildGetNativeContext() {
|
|
// Get the global context, then the native context
|
|
HInstruction* global_object = Add<HGlobalObject>();
|
|
HObjectAccess access = HObjectAccess::ForJSObjectOffset(
|
|
GlobalObject::kNativeContextOffset);
|
|
return Add<HLoadNamedField>(global_object, access);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildGetArrayFunction() {
|
|
HInstruction* native_context = BuildGetNativeContext();
|
|
HInstruction* index =
|
|
Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
|
|
return Add<HLoadKeyed>(
|
|
native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
|
|
}
|
|
|
|
|
|
HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
|
|
ElementsKind kind,
|
|
HValue* allocation_site_payload,
|
|
HValue* constructor_function,
|
|
AllocationSiteOverrideMode override_mode) :
|
|
builder_(builder),
|
|
kind_(kind),
|
|
allocation_site_payload_(allocation_site_payload),
|
|
constructor_function_(constructor_function) {
|
|
ASSERT(!allocation_site_payload->IsConstant() ||
|
|
HConstant::cast(allocation_site_payload)->handle(
|
|
builder_->isolate())->IsAllocationSite());
|
|
mode_ = override_mode == DISABLE_ALLOCATION_SITES
|
|
? DONT_TRACK_ALLOCATION_SITE
|
|
: AllocationSite::GetMode(kind);
|
|
}
|
|
|
|
|
|
HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
|
|
ElementsKind kind,
|
|
HValue* constructor_function) :
|
|
builder_(builder),
|
|
kind_(kind),
|
|
mode_(DONT_TRACK_ALLOCATION_SITE),
|
|
allocation_site_payload_(NULL),
|
|
constructor_function_(constructor_function) {
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
|
|
if (!builder()->top_info()->IsStub()) {
|
|
// A constant map is fine.
|
|
Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
|
|
builder()->isolate());
|
|
return builder()->Add<HConstant>(map);
|
|
}
|
|
|
|
if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
|
|
// No need for a context lookup if the kind_ matches the initial
|
|
// map, because we can just load the map in that case.
|
|
HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
|
|
return builder()->AddLoadNamedField(constructor_function_, access);
|
|
}
|
|
|
|
// TODO(mvstanton): we should always have a constructor function if we
|
|
// are creating a stub.
|
|
HInstruction* native_context = constructor_function_ != NULL
|
|
? builder()->BuildGetNativeContext(constructor_function_)
|
|
: builder()->BuildGetNativeContext();
|
|
|
|
HInstruction* index = builder()->Add<HConstant>(
|
|
static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
|
|
|
|
HInstruction* map_array = builder()->Add<HLoadKeyed>(
|
|
native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
|
|
|
|
HInstruction* kind_index = builder()->Add<HConstant>(kind_);
|
|
|
|
return builder()->Add<HLoadKeyed>(
|
|
map_array, kind_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
|
|
// Find the map near the constructor function
|
|
HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
|
|
return builder()->AddLoadNamedField(constructor_function_, access);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::EstablishAllocationSize(
|
|
HValue* length_node) {
|
|
ASSERT(length_node != NULL);
|
|
|
|
int base_size = JSArray::kSize;
|
|
if (mode_ == TRACK_ALLOCATION_SITE) {
|
|
base_size += AllocationMemento::kSize;
|
|
}
|
|
|
|
STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
|
|
base_size += FixedArray::kHeaderSize;
|
|
|
|
HInstruction* elements_size_value =
|
|
builder()->Add<HConstant>(elements_size());
|
|
HInstruction* mul = HMul::NewImul(builder()->zone(), builder()->context(),
|
|
length_node, elements_size_value);
|
|
builder()->AddInstruction(mul);
|
|
HInstruction* base = builder()->Add<HConstant>(base_size);
|
|
HInstruction* total_size = HAdd::New(builder()->zone(), builder()->context(),
|
|
base, mul);
|
|
total_size->ClearFlag(HValue::kCanOverflow);
|
|
builder()->AddInstruction(total_size);
|
|
return total_size;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::EstablishEmptyArrayAllocationSize() {
|
|
int base_size = JSArray::kSize;
|
|
if (mode_ == TRACK_ALLOCATION_SITE) {
|
|
base_size += AllocationMemento::kSize;
|
|
}
|
|
|
|
base_size += IsFastDoubleElementsKind(kind_)
|
|
? FixedDoubleArray::SizeFor(initial_capacity())
|
|
: FixedArray::SizeFor(initial_capacity());
|
|
|
|
return builder()->Add<HConstant>(base_size);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
|
|
HValue* size_in_bytes = EstablishEmptyArrayAllocationSize();
|
|
HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
|
|
return AllocateArray(size_in_bytes,
|
|
capacity,
|
|
builder()->graph()->GetConstant0());
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* capacity,
|
|
HValue* length_field,
|
|
FillMode fill_mode) {
|
|
HValue* size_in_bytes = EstablishAllocationSize(capacity);
|
|
return AllocateArray(size_in_bytes, capacity, length_field, fill_mode);
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* size_in_bytes,
|
|
HValue* capacity,
|
|
HValue* length_field,
|
|
FillMode fill_mode) {
|
|
// These HForceRepresentations are because we store these as fields in the
|
|
// objects we construct, and an int32-to-smi HChange could deopt. Accept
|
|
// the deopt possibility now, before allocation occurs.
|
|
capacity =
|
|
builder()->AddUncasted<HForceRepresentation>(capacity,
|
|
Representation::Smi());
|
|
length_field =
|
|
builder()->AddUncasted<HForceRepresentation>(length_field,
|
|
Representation::Smi());
|
|
// Allocate (dealing with failure appropriately)
|
|
HAllocate* new_object = builder()->Add<HAllocate>(size_in_bytes,
|
|
HType::JSArray(), NOT_TENURED, JS_ARRAY_TYPE);
|
|
|
|
// Folded array allocation should be aligned if it has fast double elements.
|
|
if (IsFastDoubleElementsKind(kind_)) {
|
|
new_object->MakeDoubleAligned();
|
|
}
|
|
|
|
// Fill in the fields: map, properties, length
|
|
HValue* map;
|
|
if (allocation_site_payload_ == NULL) {
|
|
map = EmitInternalMapCode();
|
|
} else {
|
|
map = EmitMapCode();
|
|
}
|
|
elements_location_ = builder()->BuildJSArrayHeader(new_object,
|
|
map,
|
|
mode_,
|
|
kind_,
|
|
allocation_site_payload_,
|
|
length_field);
|
|
|
|
// Initialize the elements
|
|
builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
|
|
|
|
if (fill_mode == FILL_WITH_HOLE) {
|
|
builder()->BuildFillElementsWithHole(elements_location_, kind_,
|
|
graph()->GetConstant0(), capacity);
|
|
}
|
|
|
|
return new_object;
|
|
}
|
|
|
|
|
|
HStoreNamedField* HGraphBuilder::AddStoreMapConstant(HValue *object,
|
|
Handle<Map> map) {
|
|
return Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
|
|
Add<HConstant>(map));
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
|
|
HGlobalObject* global_object = Add<HGlobalObject>();
|
|
HObjectAccess access = HObjectAccess::ForJSObjectOffset(
|
|
GlobalObject::kBuiltinsOffset);
|
|
HValue* builtins = Add<HLoadNamedField>(global_object, access);
|
|
HObjectAccess function_access = HObjectAccess::ForJSObjectOffset(
|
|
JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
|
|
return Add<HLoadNamedField>(builtins, function_access);
|
|
}
|
|
|
|
|
|
HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
|
|
: HGraphBuilder(info),
|
|
function_state_(NULL),
|
|
initial_function_state_(this, info, NORMAL_RETURN),
|
|
ast_context_(NULL),
|
|
break_scope_(NULL),
|
|
inlined_count_(0),
|
|
globals_(10, info->zone()),
|
|
inline_bailout_(false),
|
|
osr_(new(info->zone()) HOsrBuilder(this)) {
|
|
// This is not initialized in the initializer list because the
|
|
// constructor for the initial state relies on function_state_ == NULL
|
|
// to know it's the initial state.
|
|
function_state_= &initial_function_state_;
|
|
InitializeAstVisitor(info->isolate());
|
|
if (FLAG_emit_opt_code_positions) {
|
|
SetSourcePosition(info->shared_info()->start_position());
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
|
|
HBasicBlock* second,
|
|
BailoutId join_id) {
|
|
if (first == NULL) {
|
|
return second;
|
|
} else if (second == NULL) {
|
|
return first;
|
|
} else {
|
|
HBasicBlock* join_block = graph()->CreateBasicBlock();
|
|
Goto(first, join_block);
|
|
Goto(second, join_block);
|
|
join_block->SetJoinId(join_id);
|
|
return join_block;
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
|
|
HBasicBlock* exit_block,
|
|
HBasicBlock* continue_block) {
|
|
if (continue_block != NULL) {
|
|
if (exit_block != NULL) Goto(exit_block, continue_block);
|
|
continue_block->SetJoinId(statement->ContinueId());
|
|
return continue_block;
|
|
}
|
|
return exit_block;
|
|
}
|
|
|
|
|
|
HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
|
|
HBasicBlock* loop_entry,
|
|
HBasicBlock* body_exit,
|
|
HBasicBlock* loop_successor,
|
|
HBasicBlock* break_block) {
|
|
if (body_exit != NULL) Goto(body_exit, loop_entry);
|
|
loop_entry->PostProcessLoopHeader(statement);
|
|
if (break_block != NULL) {
|
|
if (loop_successor != NULL) Goto(loop_successor, break_block);
|
|
break_block->SetJoinId(statement->ExitId());
|
|
return break_block;
|
|
}
|
|
return loop_successor;
|
|
}
|
|
|
|
|
|
// Build a new loop header block and set it as the current block.
|
|
HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
|
|
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
|
|
Goto(loop_entry);
|
|
set_current_block(loop_entry);
|
|
return loop_entry;
|
|
}
|
|
|
|
|
|
HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
|
|
IterationStatement* statement) {
|
|
HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
|
|
? osr()->BuildOsrLoopEntry(statement)
|
|
: BuildLoopEntry();
|
|
return loop_entry;
|
|
}
|
|
|
|
|
|
void HBasicBlock::FinishExit(HControlInstruction* instruction, int position) {
|
|
Finish(instruction, position);
|
|
ClearEnvironment();
|
|
}
|
|
|
|
|
|
HGraph::HGraph(CompilationInfo* info)
|
|
: isolate_(info->isolate()),
|
|
next_block_id_(0),
|
|
entry_block_(NULL),
|
|
blocks_(8, info->zone()),
|
|
values_(16, info->zone()),
|
|
phi_list_(NULL),
|
|
uint32_instructions_(NULL),
|
|
osr_(NULL),
|
|
info_(info),
|
|
zone_(info->zone()),
|
|
is_recursive_(false),
|
|
use_optimistic_licm_(false),
|
|
depends_on_empty_array_proto_elements_(false),
|
|
type_change_checksum_(0),
|
|
maximum_environment_size_(0),
|
|
no_side_effects_scope_count_(0),
|
|
disallow_adding_new_values_(false) {
|
|
if (info->IsStub()) {
|
|
HydrogenCodeStub* stub = info->code_stub();
|
|
CodeStubInterfaceDescriptor* descriptor =
|
|
stub->GetInterfaceDescriptor(isolate_);
|
|
start_environment_ =
|
|
new(zone_) HEnvironment(zone_, descriptor->environment_length());
|
|
} else {
|
|
start_environment_ =
|
|
new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
|
|
}
|
|
start_environment_->set_ast_id(BailoutId::FunctionEntry());
|
|
entry_block_ = CreateBasicBlock();
|
|
entry_block_->SetInitialEnvironment(start_environment_);
|
|
}
|
|
|
|
|
|
HBasicBlock* HGraph::CreateBasicBlock() {
|
|
HBasicBlock* result = new(zone()) HBasicBlock(this);
|
|
blocks_.Add(result, zone());
|
|
return result;
|
|
}
|
|
|
|
|
|
void HGraph::FinalizeUniqueness() {
|
|
DisallowHeapAllocation no_gc;
|
|
ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
|
|
for (int i = 0; i < blocks()->length(); ++i) {
|
|
for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
|
|
it.Current()->FinalizeUniqueness();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Block ordering was implemented with two mutually recursive methods,
|
|
// HGraph::Postorder and HGraph::PostorderLoopBlocks.
|
|
// The recursion could lead to stack overflow so the algorithm has been
|
|
// implemented iteratively.
|
|
// At a high level the algorithm looks like this:
|
|
//
|
|
// Postorder(block, loop_header) : {
|
|
// if (block has already been visited or is of another loop) return;
|
|
// mark block as visited;
|
|
// if (block is a loop header) {
|
|
// VisitLoopMembers(block, loop_header);
|
|
// VisitSuccessorsOfLoopHeader(block);
|
|
// } else {
|
|
// VisitSuccessors(block)
|
|
// }
|
|
// put block in result list;
|
|
// }
|
|
//
|
|
// VisitLoopMembers(block, outer_loop_header) {
|
|
// foreach (block b in block loop members) {
|
|
// VisitSuccessorsOfLoopMember(b, outer_loop_header);
|
|
// if (b is loop header) VisitLoopMembers(b);
|
|
// }
|
|
// }
|
|
//
|
|
// VisitSuccessorsOfLoopMember(block, outer_loop_header) {
|
|
// foreach (block b in block successors) Postorder(b, outer_loop_header)
|
|
// }
|
|
//
|
|
// VisitSuccessorsOfLoopHeader(block) {
|
|
// foreach (block b in block successors) Postorder(b, block)
|
|
// }
|
|
//
|
|
// VisitSuccessors(block, loop_header) {
|
|
// foreach (block b in block successors) Postorder(b, loop_header)
|
|
// }
|
|
//
|
|
// The ordering is started calling Postorder(entry, NULL).
|
|
//
|
|
// Each instance of PostorderProcessor represents the "stack frame" of the
|
|
// recursion, and particularly keeps the state of the loop (iteration) of the
|
|
// "Visit..." function it represents.
|
|
// To recycle memory we keep all the frames in a double linked list but
|
|
// this means that we cannot use constructors to initialize the frames.
|
|
//
|
|
class PostorderProcessor : public ZoneObject {
|
|
public:
|
|
// Back link (towards the stack bottom).
|
|
PostorderProcessor* parent() {return father_; }
|
|
// Forward link (towards the stack top).
|
|
PostorderProcessor* child() {return child_; }
|
|
HBasicBlock* block() { return block_; }
|
|
HLoopInformation* loop() { return loop_; }
|
|
HBasicBlock* loop_header() { return loop_header_; }
|
|
|
|
static PostorderProcessor* CreateEntryProcessor(Zone* zone,
|
|
HBasicBlock* block,
|
|
BitVector* visited) {
|
|
PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
|
|
return result->SetupSuccessors(zone, block, NULL, visited);
|
|
}
|
|
|
|
PostorderProcessor* PerformStep(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
PostorderProcessor* next =
|
|
PerformNonBacktrackingStep(zone, visited, order);
|
|
if (next != NULL) {
|
|
return next;
|
|
} else {
|
|
return Backtrack(zone, visited, order);
|
|
}
|
|
}
|
|
|
|
private:
|
|
explicit PostorderProcessor(PostorderProcessor* father)
|
|
: father_(father), child_(NULL), successor_iterator(NULL) { }
|
|
|
|
// Each enum value states the cycle whose state is kept by this instance.
|
|
enum LoopKind {
|
|
NONE,
|
|
SUCCESSORS,
|
|
SUCCESSORS_OF_LOOP_HEADER,
|
|
LOOP_MEMBERS,
|
|
SUCCESSORS_OF_LOOP_MEMBER
|
|
};
|
|
|
|
// Each "Setup..." method is like a constructor for a cycle state.
|
|
PostorderProcessor* SetupSuccessors(Zone* zone,
|
|
HBasicBlock* block,
|
|
HBasicBlock* loop_header,
|
|
BitVector* visited) {
|
|
if (block == NULL || visited->Contains(block->block_id()) ||
|
|
block->parent_loop_header() != loop_header) {
|
|
kind_ = NONE;
|
|
block_ = NULL;
|
|
loop_ = NULL;
|
|
loop_header_ = NULL;
|
|
return this;
|
|
} else {
|
|
block_ = block;
|
|
loop_ = NULL;
|
|
visited->Add(block->block_id());
|
|
|
|
if (block->IsLoopHeader()) {
|
|
kind_ = SUCCESSORS_OF_LOOP_HEADER;
|
|
loop_header_ = block;
|
|
InitializeSuccessors();
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupLoopMembers(zone, block, block->loop_information(),
|
|
loop_header);
|
|
} else {
|
|
ASSERT(block->IsFinished());
|
|
kind_ = SUCCESSORS;
|
|
loop_header_ = loop_header;
|
|
InitializeSuccessors();
|
|
return this;
|
|
}
|
|
}
|
|
}
|
|
|
|
PostorderProcessor* SetupLoopMembers(Zone* zone,
|
|
HBasicBlock* block,
|
|
HLoopInformation* loop,
|
|
HBasicBlock* loop_header) {
|
|
kind_ = LOOP_MEMBERS;
|
|
block_ = block;
|
|
loop_ = loop;
|
|
loop_header_ = loop_header;
|
|
InitializeLoopMembers();
|
|
return this;
|
|
}
|
|
|
|
PostorderProcessor* SetupSuccessorsOfLoopMember(
|
|
HBasicBlock* block,
|
|
HLoopInformation* loop,
|
|
HBasicBlock* loop_header) {
|
|
kind_ = SUCCESSORS_OF_LOOP_MEMBER;
|
|
block_ = block;
|
|
loop_ = loop;
|
|
loop_header_ = loop_header;
|
|
InitializeSuccessors();
|
|
return this;
|
|
}
|
|
|
|
// This method "allocates" a new stack frame.
|
|
PostorderProcessor* Push(Zone* zone) {
|
|
if (child_ == NULL) {
|
|
child_ = new(zone) PostorderProcessor(this);
|
|
}
|
|
return child_;
|
|
}
|
|
|
|
void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
|
|
ASSERT(block_->end()->FirstSuccessor() == NULL ||
|
|
order->Contains(block_->end()->FirstSuccessor()) ||
|
|
block_->end()->FirstSuccessor()->IsLoopHeader());
|
|
ASSERT(block_->end()->SecondSuccessor() == NULL ||
|
|
order->Contains(block_->end()->SecondSuccessor()) ||
|
|
block_->end()->SecondSuccessor()->IsLoopHeader());
|
|
order->Add(block_, zone);
|
|
}
|
|
|
|
// This method is the basic block to walk up the stack.
|
|
PostorderProcessor* Pop(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
switch (kind_) {
|
|
case SUCCESSORS:
|
|
case SUCCESSORS_OF_LOOP_HEADER:
|
|
ClosePostorder(order, zone);
|
|
return father_;
|
|
case LOOP_MEMBERS:
|
|
return father_;
|
|
case SUCCESSORS_OF_LOOP_MEMBER:
|
|
if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
|
|
// In this case we need to perform a LOOP_MEMBERS cycle so we
|
|
// initialize it and return this instead of father.
|
|
return SetupLoopMembers(zone, block(),
|
|
block()->loop_information(), loop_header_);
|
|
} else {
|
|
return father_;
|
|
}
|
|
case NONE:
|
|
return father_;
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
// Walks up the stack.
|
|
PostorderProcessor* Backtrack(Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
PostorderProcessor* parent = Pop(zone, visited, order);
|
|
while (parent != NULL) {
|
|
PostorderProcessor* next =
|
|
parent->PerformNonBacktrackingStep(zone, visited, order);
|
|
if (next != NULL) {
|
|
return next;
|
|
} else {
|
|
parent = parent->Pop(zone, visited, order);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
PostorderProcessor* PerformNonBacktrackingStep(
|
|
Zone* zone,
|
|
BitVector* visited,
|
|
ZoneList<HBasicBlock*>* order) {
|
|
HBasicBlock* next_block;
|
|
switch (kind_) {
|
|
case SUCCESSORS:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
loop_header_, visited);
|
|
}
|
|
break;
|
|
case SUCCESSORS_OF_LOOP_HEADER:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
block(), visited);
|
|
}
|
|
break;
|
|
case LOOP_MEMBERS:
|
|
next_block = AdvanceLoopMembers();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessorsOfLoopMember(next_block,
|
|
loop_, loop_header_);
|
|
}
|
|
break;
|
|
case SUCCESSORS_OF_LOOP_MEMBER:
|
|
next_block = AdvanceSuccessors();
|
|
if (next_block != NULL) {
|
|
PostorderProcessor* result = Push(zone);
|
|
return result->SetupSuccessors(zone, next_block,
|
|
loop_header_, visited);
|
|
}
|
|
break;
|
|
case NONE:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// The following two methods implement a "foreach b in successors" cycle.
|
|
void InitializeSuccessors() {
|
|
loop_index = 0;
|
|
loop_length = 0;
|
|
successor_iterator = HSuccessorIterator(block_->end());
|
|
}
|
|
|
|
HBasicBlock* AdvanceSuccessors() {
|
|
if (!successor_iterator.Done()) {
|
|
HBasicBlock* result = successor_iterator.Current();
|
|
successor_iterator.Advance();
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// The following two methods implement a "foreach b in loop members" cycle.
|
|
void InitializeLoopMembers() {
|
|
loop_index = 0;
|
|
loop_length = loop_->blocks()->length();
|
|
}
|
|
|
|
HBasicBlock* AdvanceLoopMembers() {
|
|
if (loop_index < loop_length) {
|
|
HBasicBlock* result = loop_->blocks()->at(loop_index);
|
|
loop_index++;
|
|
return result;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
LoopKind kind_;
|
|
PostorderProcessor* father_;
|
|
PostorderProcessor* child_;
|
|
HLoopInformation* loop_;
|
|
HBasicBlock* block_;
|
|
HBasicBlock* loop_header_;
|
|
int loop_index;
|
|
int loop_length;
|
|
HSuccessorIterator successor_iterator;
|
|
};
|
|
|
|
|
|
void HGraph::OrderBlocks() {
|
|
CompilationPhase phase("H_Block ordering", info());
|
|
BitVector visited(blocks_.length(), zone());
|
|
|
|
ZoneList<HBasicBlock*> reverse_result(8, zone());
|
|
HBasicBlock* start = blocks_[0];
|
|
PostorderProcessor* postorder =
|
|
PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
|
|
while (postorder != NULL) {
|
|
postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
|
|
}
|
|
blocks_.Rewind(0);
|
|
int index = 0;
|
|
for (int i = reverse_result.length() - 1; i >= 0; --i) {
|
|
HBasicBlock* b = reverse_result[i];
|
|
blocks_.Add(b, zone());
|
|
b->set_block_id(index++);
|
|
}
|
|
}
|
|
|
|
|
|
void HGraph::AssignDominators() {
|
|
HPhase phase("H_Assign dominators", this);
|
|
for (int i = 0; i < blocks_.length(); ++i) {
|
|
HBasicBlock* block = blocks_[i];
|
|
if (block->IsLoopHeader()) {
|
|
// Only the first predecessor of a loop header is from outside the loop.
|
|
// All others are back edges, and thus cannot dominate the loop header.
|
|
block->AssignCommonDominator(block->predecessors()->first());
|
|
block->AssignLoopSuccessorDominators();
|
|
} else {
|
|
for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
|
|
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool HGraph::CheckArgumentsPhiUses() {
|
|
int block_count = blocks_.length();
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
// We don't support phi uses of arguments for now.
|
|
if (phi->CheckFlag(HValue::kIsArguments)) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HGraph::CheckConstPhiUses() {
|
|
int block_count = blocks_.length();
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
// Check for the hole value (from an uninitialized const).
|
|
for (int k = 0; k < phi->OperandCount(); k++) {
|
|
if (phi->OperandAt(k) == GetConstantHole()) return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraph::CollectPhis() {
|
|
int block_count = blocks_.length();
|
|
phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
|
|
for (int i = 0; i < block_count; ++i) {
|
|
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
|
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
|
phi_list_->Add(phi, zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Implementation of utility class to encapsulate the translation state for
|
|
// a (possibly inlined) function.
|
|
FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
|
|
CompilationInfo* info,
|
|
InliningKind inlining_kind)
|
|
: owner_(owner),
|
|
compilation_info_(info),
|
|
call_context_(NULL),
|
|
inlining_kind_(inlining_kind),
|
|
function_return_(NULL),
|
|
test_context_(NULL),
|
|
entry_(NULL),
|
|
arguments_object_(NULL),
|
|
arguments_elements_(NULL),
|
|
outer_(owner->function_state()) {
|
|
if (outer_ != NULL) {
|
|
// State for an inline function.
|
|
if (owner->ast_context()->IsTest()) {
|
|
HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
|
|
if_true->MarkAsInlineReturnTarget(owner->current_block());
|
|
if_false->MarkAsInlineReturnTarget(owner->current_block());
|
|
TestContext* outer_test_context = TestContext::cast(owner->ast_context());
|
|
Expression* cond = outer_test_context->condition();
|
|
// The AstContext constructor pushed on the context stack. This newed
|
|
// instance is the reason that AstContext can't be BASE_EMBEDDED.
|
|
test_context_ = new TestContext(owner, cond, if_true, if_false);
|
|
} else {
|
|
function_return_ = owner->graph()->CreateBasicBlock();
|
|
function_return()->MarkAsInlineReturnTarget(owner->current_block());
|
|
}
|
|
// Set this after possibly allocating a new TestContext above.
|
|
call_context_ = owner->ast_context();
|
|
}
|
|
|
|
// Push on the state stack.
|
|
owner->set_function_state(this);
|
|
}
|
|
|
|
|
|
FunctionState::~FunctionState() {
|
|
delete test_context_;
|
|
owner_->set_function_state(outer_);
|
|
}
|
|
|
|
|
|
// Implementation of utility classes to represent an expression's context in
|
|
// the AST.
|
|
AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
|
|
: owner_(owner),
|
|
kind_(kind),
|
|
outer_(owner->ast_context()),
|
|
for_typeof_(false) {
|
|
owner->set_ast_context(this); // Push.
|
|
#ifdef DEBUG
|
|
ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
|
|
original_length_ = owner->environment()->length();
|
|
#endif
|
|
}
|
|
|
|
|
|
AstContext::~AstContext() {
|
|
owner_->set_ast_context(outer_); // Pop.
|
|
}
|
|
|
|
|
|
EffectContext::~EffectContext() {
|
|
ASSERT(owner()->HasStackOverflow() ||
|
|
owner()->current_block() == NULL ||
|
|
(owner()->environment()->length() == original_length_ &&
|
|
owner()->environment()->frame_type() == JS_FUNCTION));
|
|
}
|
|
|
|
|
|
ValueContext::~ValueContext() {
|
|
ASSERT(owner()->HasStackOverflow() ||
|
|
owner()->current_block() == NULL ||
|
|
(owner()->environment()->length() == original_length_ + 1 &&
|
|
owner()->environment()->frame_type() == JS_FUNCTION));
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnValue(HValue* value) {
|
|
// The value is simply ignored.
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnValue(HValue* value) {
|
|
// The value is tracked in the bailout environment, and communicated
|
|
// through the environment as the result of the expression.
|
|
if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
|
|
owner()->Bailout(kBadValueContextForArgumentsValue);
|
|
}
|
|
owner()->Push(value);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnValue(HValue* value) {
|
|
BuildBranch(value);
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
owner()->AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
}
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnControl(HControlInstruction* instr,
|
|
BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, empty_true);
|
|
instr->SetSuccessorAt(1, empty_false);
|
|
owner()->FinishCurrentBlock(instr);
|
|
HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
|
|
|
|
void EffectContext::ReturnContinuation(HIfContinuation* continuation,
|
|
BailoutId ast_id) {
|
|
HBasicBlock* true_branch = NULL;
|
|
HBasicBlock* false_branch = NULL;
|
|
continuation->Continue(&true_branch, &false_branch);
|
|
if (!continuation->IsTrueReachable()) {
|
|
owner()->set_current_block(false_branch);
|
|
} else if (!continuation->IsFalseReachable()) {
|
|
owner()->set_current_block(true_branch);
|
|
} else {
|
|
HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
|
|
return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
|
|
}
|
|
owner()->AddInstruction(instr);
|
|
owner()->Push(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
}
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
|
|
return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
|
|
}
|
|
HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, materialize_true);
|
|
instr->SetSuccessorAt(1, materialize_false);
|
|
owner()->FinishCurrentBlock(instr);
|
|
owner()->set_current_block(materialize_true);
|
|
owner()->Push(owner()->graph()->GetConstantTrue());
|
|
owner()->set_current_block(materialize_false);
|
|
owner()->Push(owner()->graph()->GetConstantFalse());
|
|
HBasicBlock* join =
|
|
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
|
|
|
|
void ValueContext::ReturnContinuation(HIfContinuation* continuation,
|
|
BailoutId ast_id) {
|
|
HBasicBlock* materialize_true = NULL;
|
|
HBasicBlock* materialize_false = NULL;
|
|
continuation->Continue(&materialize_true, &materialize_false);
|
|
if (continuation->IsTrueReachable()) {
|
|
owner()->set_current_block(materialize_true);
|
|
owner()->Push(owner()->graph()->GetConstantTrue());
|
|
owner()->set_current_block(materialize_true);
|
|
}
|
|
if (continuation->IsFalseReachable()) {
|
|
owner()->set_current_block(materialize_false);
|
|
owner()->Push(owner()->graph()->GetConstantFalse());
|
|
owner()->set_current_block(materialize_false);
|
|
}
|
|
if (continuation->TrueAndFalseReachable()) {
|
|
HBasicBlock* join =
|
|
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
|
|
owner()->set_current_block(join);
|
|
}
|
|
}
|
|
|
|
|
|
void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->IsControlInstruction());
|
|
HOptimizedGraphBuilder* builder = owner();
|
|
builder->AddInstruction(instr);
|
|
// We expect a simulate after every expression with side effects, though
|
|
// this one isn't actually needed (and wouldn't work if it were targeted).
|
|
if (instr->HasObservableSideEffects()) {
|
|
builder->Push(instr);
|
|
builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
builder->Pop();
|
|
}
|
|
BuildBranch(instr);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
|
|
ASSERT(!instr->HasObservableSideEffects());
|
|
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
|
|
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
|
|
instr->SetSuccessorAt(0, empty_true);
|
|
instr->SetSuccessorAt(1, empty_false);
|
|
owner()->FinishCurrentBlock(instr);
|
|
owner()->Goto(empty_true, if_true(), owner()->function_state());
|
|
owner()->Goto(empty_false, if_false(), owner()->function_state());
|
|
owner()->set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void TestContext::ReturnContinuation(HIfContinuation* continuation,
|
|
BailoutId ast_id) {
|
|
HBasicBlock* true_branch = NULL;
|
|
HBasicBlock* false_branch = NULL;
|
|
continuation->Continue(&true_branch, &false_branch);
|
|
if (continuation->IsTrueReachable()) {
|
|
owner()->Goto(true_branch, if_true(), owner()->function_state());
|
|
}
|
|
if (continuation->IsFalseReachable()) {
|
|
owner()->Goto(false_branch, if_false(), owner()->function_state());
|
|
}
|
|
owner()->set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void TestContext::BuildBranch(HValue* value) {
|
|
// We expect the graph to be in edge-split form: there is no edge that
|
|
// connects a branch node to a join node. We conservatively ensure that
|
|
// property by always adding an empty block on the outgoing edges of this
|
|
// branch.
|
|
HOptimizedGraphBuilder* builder = owner();
|
|
if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
|
|
builder->Bailout(kArgumentsObjectValueInATestContext);
|
|
}
|
|
ToBooleanStub::Types expected(condition()->to_boolean_types());
|
|
ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
|
|
}
|
|
|
|
|
|
// HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
|
|
#define CHECK_BAILOUT(call) \
|
|
do { \
|
|
call; \
|
|
if (HasStackOverflow()) return; \
|
|
} while (false)
|
|
|
|
|
|
#define CHECK_ALIVE(call) \
|
|
do { \
|
|
call; \
|
|
if (HasStackOverflow() || current_block() == NULL) return; \
|
|
} while (false)
|
|
|
|
|
|
#define CHECK_ALIVE_OR_RETURN(call, value) \
|
|
do { \
|
|
call; \
|
|
if (HasStackOverflow() || current_block() == NULL) return value; \
|
|
} while (false)
|
|
|
|
|
|
void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
|
|
current_info()->set_bailout_reason(reason);
|
|
SetStackOverflow();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
|
|
EffectContext for_effect(this);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
|
|
ArgumentsAllowedFlag flag) {
|
|
ValueContext for_value(this, flag);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
|
|
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
|
|
for_value.set_for_typeof(true);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
|
|
HBasicBlock* true_block,
|
|
HBasicBlock* false_block) {
|
|
TestContext for_test(this, expr, true_block, false_block);
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitArgument(Expression* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr));
|
|
Push(Add<HPushArgument>(Pop()));
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitArgumentList(
|
|
ZoneList<Expression*>* arguments) {
|
|
for (int i = 0; i < arguments->length(); i++) {
|
|
CHECK_ALIVE(VisitArgument(arguments->at(i)));
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitExpressions(
|
|
ZoneList<Expression*>* exprs) {
|
|
for (int i = 0; i < exprs->length(); ++i) {
|
|
CHECK_ALIVE(VisitForValue(exprs->at(i)));
|
|
}
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::BuildGraph() {
|
|
if (current_info()->function()->is_generator()) {
|
|
Bailout(kFunctionIsAGenerator);
|
|
return false;
|
|
}
|
|
Scope* scope = current_info()->scope();
|
|
if (scope->HasIllegalRedeclaration()) {
|
|
Bailout(kFunctionWithIllegalRedeclaration);
|
|
return false;
|
|
}
|
|
if (scope->calls_eval()) {
|
|
Bailout(kFunctionCallsEval);
|
|
return false;
|
|
}
|
|
SetUpScope(scope);
|
|
|
|
// Add an edge to the body entry. This is warty: the graph's start
|
|
// environment will be used by the Lithium translation as the initial
|
|
// environment on graph entry, but it has now been mutated by the
|
|
// Hydrogen translation of the instructions in the start block. This
|
|
// environment uses values which have not been defined yet. These
|
|
// Hydrogen instructions will then be replayed by the Lithium
|
|
// translation, so they cannot have an environment effect. The edge to
|
|
// the body's entry block (along with some special logic for the start
|
|
// block in HInstruction::InsertAfter) seals the start block from
|
|
// getting unwanted instructions inserted.
|
|
//
|
|
// TODO(kmillikin): Fix this. Stop mutating the initial environment.
|
|
// Make the Hydrogen instructions in the initial block into Hydrogen
|
|
// values (but not instructions), present in the initial environment and
|
|
// not replayed by the Lithium translation.
|
|
HEnvironment* initial_env = environment()->CopyWithoutHistory();
|
|
HBasicBlock* body_entry = CreateBasicBlock(initial_env);
|
|
Goto(body_entry);
|
|
body_entry->SetJoinId(BailoutId::FunctionEntry());
|
|
set_current_block(body_entry);
|
|
|
|
// Handle implicit declaration of the function name in named function
|
|
// expressions before other declarations.
|
|
if (scope->is_function_scope() && scope->function() != NULL) {
|
|
VisitVariableDeclaration(scope->function());
|
|
}
|
|
VisitDeclarations(scope->declarations());
|
|
Add<HSimulate>(BailoutId::Declarations());
|
|
|
|
Add<HStackCheck>(HStackCheck::kFunctionEntry);
|
|
|
|
VisitStatements(current_info()->function()->body());
|
|
if (HasStackOverflow()) return false;
|
|
|
|
if (current_block() != NULL) {
|
|
Add<HReturn>(graph()->GetConstantUndefined());
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
// If the checksum of the number of type info changes is the same as the
|
|
// last time this function was compiled, then this recompile is likely not
|
|
// due to missing/inadequate type feedback, but rather too aggressive
|
|
// optimization. Disable optimistic LICM in that case.
|
|
Handle<Code> unoptimized_code(current_info()->shared_info()->code());
|
|
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
|
|
Handle<TypeFeedbackInfo> type_info(
|
|
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
|
|
int checksum = type_info->own_type_change_checksum();
|
|
int composite_checksum = graph()->update_type_change_checksum(checksum);
|
|
graph()->set_use_optimistic_licm(
|
|
!type_info->matches_inlined_type_change_checksum(composite_checksum));
|
|
type_info->set_inlined_type_change_checksum(composite_checksum);
|
|
|
|
// Perform any necessary OSR-specific cleanups or changes to the graph.
|
|
osr()->FinishGraph();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HGraph::Optimize(BailoutReason* bailout_reason) {
|
|
OrderBlocks();
|
|
AssignDominators();
|
|
|
|
// We need to create a HConstant "zero" now so that GVN will fold every
|
|
// zero-valued constant in the graph together.
|
|
// The constant is needed to make idef-based bounds check work: the pass
|
|
// evaluates relations with "zero" and that zero cannot be created after GVN.
|
|
GetConstant0();
|
|
|
|
#ifdef DEBUG
|
|
// Do a full verify after building the graph and computing dominators.
|
|
Verify(true);
|
|
#endif
|
|
|
|
if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
|
|
Run<HEnvironmentLivenessAnalysisPhase>();
|
|
}
|
|
|
|
if (!CheckConstPhiUses()) {
|
|
*bailout_reason = kUnsupportedPhiUseOfConstVariable;
|
|
return false;
|
|
}
|
|
Run<HRedundantPhiEliminationPhase>();
|
|
if (!CheckArgumentsPhiUses()) {
|
|
*bailout_reason = kUnsupportedPhiUseOfArguments;
|
|
return false;
|
|
}
|
|
|
|
// Find and mark unreachable code to simplify optimizations, especially gvn,
|
|
// where unreachable code could unnecessarily defeat LICM.
|
|
Run<HMarkUnreachableBlocksPhase>();
|
|
|
|
if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
|
|
if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
|
|
|
|
if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
|
|
|
|
CollectPhis();
|
|
|
|
if (has_osr()) osr()->FinishOsrValues();
|
|
|
|
Run<HInferRepresentationPhase>();
|
|
|
|
// Remove HSimulate instructions that have turned out not to be needed
|
|
// after all by folding them into the following HSimulate.
|
|
// This must happen after inferring representations.
|
|
Run<HMergeRemovableSimulatesPhase>();
|
|
|
|
Run<HMarkDeoptimizeOnUndefinedPhase>();
|
|
Run<HRepresentationChangesPhase>();
|
|
|
|
Run<HInferTypesPhase>();
|
|
|
|
// Must be performed before canonicalization to ensure that Canonicalize
|
|
// will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
|
|
// zero.
|
|
if (FLAG_opt_safe_uint32_operations) Run<HUint32AnalysisPhase>();
|
|
|
|
if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
|
|
|
|
if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
|
|
|
|
if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
|
|
|
|
if (FLAG_use_range) Run<HRangeAnalysisPhase>();
|
|
|
|
Run<HComputeChangeUndefinedToNaN>();
|
|
Run<HComputeMinusZeroChecksPhase>();
|
|
|
|
// Eliminate redundant stack checks on backwards branches.
|
|
Run<HStackCheckEliminationPhase>();
|
|
|
|
if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
|
|
if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
|
|
if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
|
|
if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
|
|
|
|
RestoreActualValues();
|
|
|
|
// Find unreachable code a second time, GVN and other optimizations may have
|
|
// made blocks unreachable that were previously reachable.
|
|
Run<HMarkUnreachableBlocksPhase>();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void HGraph::RestoreActualValues() {
|
|
HPhase phase("H_Restore actual values", this);
|
|
|
|
for (int block_index = 0; block_index < blocks()->length(); block_index++) {
|
|
HBasicBlock* block = blocks()->at(block_index);
|
|
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < block->phis()->length(); i++) {
|
|
HPhi* phi = block->phis()->at(i);
|
|
ASSERT(phi->ActualValue() == phi);
|
|
}
|
|
#endif
|
|
|
|
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
|
|
HInstruction* instruction = it.Current();
|
|
if (instruction->ActualValue() != instruction) {
|
|
ASSERT(instruction->IsInformativeDefinition());
|
|
if (instruction->IsPurelyInformativeDefinition()) {
|
|
instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
|
|
} else {
|
|
instruction->ReplaceAllUsesWith(instruction->ActualValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
|
|
ZoneList<HValue*> arguments(count, zone());
|
|
for (int i = 0; i < count; ++i) {
|
|
arguments.Add(Pop(), zone());
|
|
}
|
|
|
|
while (!arguments.is_empty()) {
|
|
Add<HPushArgument>(arguments.RemoveLast());
|
|
}
|
|
}
|
|
|
|
|
|
template <class Instruction>
|
|
HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
|
|
PushArgumentsFromEnvironment(call->argument_count());
|
|
return call;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
|
|
// First special is HContext.
|
|
HInstruction* context = Add<HContext>();
|
|
environment()->BindContext(context);
|
|
|
|
// Create an arguments object containing the initial parameters. Set the
|
|
// initial values of parameters including "this" having parameter index 0.
|
|
ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
|
|
HArgumentsObject* arguments_object =
|
|
New<HArgumentsObject>(environment()->parameter_count());
|
|
for (int i = 0; i < environment()->parameter_count(); ++i) {
|
|
HInstruction* parameter = Add<HParameter>(i);
|
|
arguments_object->AddArgument(parameter, zone());
|
|
environment()->Bind(i, parameter);
|
|
}
|
|
AddInstruction(arguments_object);
|
|
graph()->SetArgumentsObject(arguments_object);
|
|
|
|
HConstant* undefined_constant = graph()->GetConstantUndefined();
|
|
// Initialize specials and locals to undefined.
|
|
for (int i = environment()->parameter_count() + 1;
|
|
i < environment()->length();
|
|
++i) {
|
|
environment()->Bind(i, undefined_constant);
|
|
}
|
|
|
|
// Handle the arguments and arguments shadow variables specially (they do
|
|
// not have declarations).
|
|
if (scope->arguments() != NULL) {
|
|
if (!scope->arguments()->IsStackAllocated()) {
|
|
return Bailout(kContextAllocatedArguments);
|
|
}
|
|
|
|
environment()->Bind(scope->arguments(),
|
|
graph()->GetArgumentsObject());
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
Statement* stmt = statements->at(i);
|
|
CHECK_ALIVE(Visit(stmt));
|
|
if (stmt->IsJump()) break;
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->scope() != NULL) {
|
|
return Bailout(kScopedBlock);
|
|
}
|
|
BreakAndContinueInfo break_info(stmt);
|
|
{ BreakAndContinueScope push(&break_info, this);
|
|
CHECK_BAILOUT(VisitStatements(stmt->statements()));
|
|
}
|
|
HBasicBlock* break_block = break_info.break_block();
|
|
if (break_block != NULL) {
|
|
if (current_block() != NULL) Goto(break_block);
|
|
break_block->SetJoinId(stmt->ExitId());
|
|
set_current_block(break_block);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitExpressionStatement(
|
|
ExpressionStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
VisitForEffect(stmt->expression());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->condition()->ToBooleanIsTrue()) {
|
|
Add<HSimulate>(stmt->ThenId());
|
|
Visit(stmt->then_statement());
|
|
} else if (stmt->condition()->ToBooleanIsFalse()) {
|
|
Add<HSimulate>(stmt->ElseId());
|
|
Visit(stmt->else_statement());
|
|
} else {
|
|
HBasicBlock* cond_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* cond_false = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
|
|
|
|
if (cond_true->HasPredecessor()) {
|
|
cond_true->SetJoinId(stmt->ThenId());
|
|
set_current_block(cond_true);
|
|
CHECK_BAILOUT(Visit(stmt->then_statement()));
|
|
cond_true = current_block();
|
|
} else {
|
|
cond_true = NULL;
|
|
}
|
|
|
|
if (cond_false->HasPredecessor()) {
|
|
cond_false->SetJoinId(stmt->ElseId());
|
|
set_current_block(cond_false);
|
|
CHECK_BAILOUT(Visit(stmt->else_statement()));
|
|
cond_false = current_block();
|
|
} else {
|
|
cond_false = NULL;
|
|
}
|
|
|
|
HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
|
|
set_current_block(join);
|
|
}
|
|
}
|
|
|
|
|
|
HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
|
|
BreakableStatement* stmt,
|
|
BreakType type,
|
|
int* drop_extra) {
|
|
*drop_extra = 0;
|
|
BreakAndContinueScope* current = this;
|
|
while (current != NULL && current->info()->target() != stmt) {
|
|
*drop_extra += current->info()->drop_extra();
|
|
current = current->next();
|
|
}
|
|
ASSERT(current != NULL); // Always found (unless stack is malformed).
|
|
|
|
if (type == BREAK) {
|
|
*drop_extra += current->info()->drop_extra();
|
|
}
|
|
|
|
HBasicBlock* block = NULL;
|
|
switch (type) {
|
|
case BREAK:
|
|
block = current->info()->break_block();
|
|
if (block == NULL) {
|
|
block = current->owner()->graph()->CreateBasicBlock();
|
|
current->info()->set_break_block(block);
|
|
}
|
|
break;
|
|
|
|
case CONTINUE:
|
|
block = current->info()->continue_block();
|
|
if (block == NULL) {
|
|
block = current->owner()->graph()->CreateBasicBlock();
|
|
current->info()->set_continue_block(block);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitContinueStatement(
|
|
ContinueStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
int drop_extra = 0;
|
|
HBasicBlock* continue_block = break_scope()->Get(
|
|
stmt->target(), BreakAndContinueScope::CONTINUE, &drop_extra);
|
|
Drop(drop_extra);
|
|
Goto(continue_block);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
int drop_extra = 0;
|
|
HBasicBlock* break_block = break_scope()->Get(
|
|
stmt->target(), BreakAndContinueScope::BREAK, &drop_extra);
|
|
Drop(drop_extra);
|
|
Goto(break_block);
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
FunctionState* state = function_state();
|
|
AstContext* context = call_context();
|
|
if (context == NULL) {
|
|
// Not an inlined return, so an actual one.
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
HValue* result = environment()->Pop();
|
|
Add<HReturn>(result);
|
|
} else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
|
|
// Return from an inlined construct call. In a test context the return value
|
|
// will always evaluate to true, in a value context the return value needs
|
|
// to be a JSObject.
|
|
if (context->IsTest()) {
|
|
TestContext* test = TestContext::cast(context);
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
Goto(test->if_true(), state);
|
|
} else if (context->IsEffect()) {
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
HValue* return_value = Pop();
|
|
HValue* receiver = environment()->arguments_environment()->Lookup(0);
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
New<HHasInstanceTypeAndBranch>(return_value,
|
|
FIRST_SPEC_OBJECT_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE);
|
|
HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
|
|
HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_spec_object);
|
|
typecheck->SetSuccessorAt(1, not_spec_object);
|
|
FinishCurrentBlock(typecheck);
|
|
AddLeaveInlined(if_spec_object, return_value, state);
|
|
AddLeaveInlined(not_spec_object, receiver, state);
|
|
}
|
|
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
|
|
// Return from an inlined setter call. The returned value is never used, the
|
|
// value of an assignment is always the value of the RHS of the assignment.
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
if (context->IsTest()) {
|
|
HValue* rhs = environment()->arguments_environment()->Lookup(1);
|
|
context->ReturnValue(rhs);
|
|
} else if (context->IsEffect()) {
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
HValue* rhs = environment()->arguments_environment()->Lookup(1);
|
|
AddLeaveInlined(rhs, state);
|
|
}
|
|
} else {
|
|
// Return from a normal inlined function. Visit the subexpression in the
|
|
// expression context of the call.
|
|
if (context->IsTest()) {
|
|
TestContext* test = TestContext::cast(context);
|
|
VisitForControl(stmt->expression(), test->if_true(), test->if_false());
|
|
} else if (context->IsEffect()) {
|
|
CHECK_ALIVE(VisitForEffect(stmt->expression()));
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(context->IsValue());
|
|
CHECK_ALIVE(VisitForValue(stmt->expression()));
|
|
AddLeaveInlined(Pop(), state);
|
|
}
|
|
}
|
|
set_current_block(NULL);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kWithStatement);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
|
|
// We only optimize switch statements with a bounded number of clauses.
|
|
const int kCaseClauseLimit = 128;
|
|
ZoneList<CaseClause*>* clauses = stmt->cases();
|
|
int clause_count = clauses->length();
|
|
ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
|
|
if (clause_count > kCaseClauseLimit) {
|
|
return Bailout(kSwitchStatementTooManyClauses);
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(stmt->tag()));
|
|
Add<HSimulate>(stmt->EntryId());
|
|
HValue* tag_value = Top();
|
|
Handle<Type> tag_type = stmt->tag()->bounds().lower;
|
|
|
|
// 1. Build all the tests, with dangling true branches
|
|
BailoutId default_id = BailoutId::None();
|
|
for (int i = 0; i < clause_count; ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
if (clause->is_default()) {
|
|
body_blocks.Add(NULL, zone());
|
|
if (default_id.IsNone()) default_id = clause->EntryId();
|
|
continue;
|
|
}
|
|
|
|
// Generate a compare and branch.
|
|
CHECK_ALIVE(VisitForValue(clause->label()));
|
|
HValue* label_value = Pop();
|
|
|
|
Handle<Type> label_type = clause->label()->bounds().lower;
|
|
Handle<Type> combined_type = clause->compare_type();
|
|
HControlInstruction* compare = BuildCompareInstruction(
|
|
Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
|
|
combined_type, stmt->tag()->position(), clause->label()->position(),
|
|
clause->id());
|
|
|
|
HBasicBlock* next_test_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* body_block = graph()->CreateBasicBlock();
|
|
body_blocks.Add(body_block, zone());
|
|
compare->SetSuccessorAt(0, body_block);
|
|
compare->SetSuccessorAt(1, next_test_block);
|
|
FinishCurrentBlock(compare);
|
|
|
|
set_current_block(body_block);
|
|
Drop(1); // tag_value
|
|
|
|
set_current_block(next_test_block);
|
|
}
|
|
|
|
// Save the current block to use for the default or to join with the
|
|
// exit.
|
|
HBasicBlock* last_block = current_block();
|
|
Drop(1); // tag_value
|
|
|
|
// 2. Loop over the clauses and the linked list of tests in lockstep,
|
|
// translating the clause bodies.
|
|
HBasicBlock* fall_through_block = NULL;
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
{ BreakAndContinueScope push(&break_info, this);
|
|
for (int i = 0; i < clause_count; ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
|
|
// Identify the block where normal (non-fall-through) control flow
|
|
// goes to.
|
|
HBasicBlock* normal_block = NULL;
|
|
if (clause->is_default()) {
|
|
if (last_block == NULL) continue;
|
|
normal_block = last_block;
|
|
last_block = NULL; // Cleared to indicate we've handled it.
|
|
} else {
|
|
normal_block = body_blocks[i];
|
|
}
|
|
|
|
if (fall_through_block == NULL) {
|
|
set_current_block(normal_block);
|
|
} else {
|
|
HBasicBlock* join = CreateJoin(fall_through_block,
|
|
normal_block,
|
|
clause->EntryId());
|
|
set_current_block(join);
|
|
}
|
|
|
|
CHECK_BAILOUT(VisitStatements(clause->statements()));
|
|
fall_through_block = current_block();
|
|
}
|
|
}
|
|
|
|
// Create an up-to-3-way join. Use the break block if it exists since
|
|
// it's already a join block.
|
|
HBasicBlock* break_block = break_info.break_block();
|
|
if (break_block == NULL) {
|
|
set_current_block(CreateJoin(fall_through_block,
|
|
last_block,
|
|
stmt->ExitId()));
|
|
} else {
|
|
if (fall_through_block != NULL) Goto(fall_through_block, break_block);
|
|
if (last_block != NULL) Goto(last_block, break_block);
|
|
break_block->SetJoinId(stmt->ExitId());
|
|
set_current_block(break_block);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
|
|
HBasicBlock* loop_entry,
|
|
BreakAndContinueInfo* break_info) {
|
|
BreakAndContinueScope push(break_info, this);
|
|
Add<HSimulate>(stmt->StackCheckId());
|
|
HStackCheck* stack_check =
|
|
HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
|
|
ASSERT(loop_entry->IsLoopHeader());
|
|
loop_entry->loop_information()->set_stack_check(stack_check);
|
|
CHECK_BAILOUT(Visit(stmt->body()));
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ASSERT(current_block() != NULL);
|
|
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
|
|
set_current_block(body_exit);
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
if (stmt->cond()->ToBooleanIsFalse()) {
|
|
Goto(loop_successor);
|
|
body_exit = NULL;
|
|
} else {
|
|
// The block for a true condition, the actual predecessor block of the
|
|
// back edge.
|
|
body_exit = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
|
|
}
|
|
if (body_exit != NULL && body_exit->HasPredecessor()) {
|
|
body_exit->SetJoinId(stmt->BackEdgeId());
|
|
} else {
|
|
body_exit = NULL;
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ASSERT(current_block() != NULL);
|
|
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
|
|
|
|
// If the condition is constant true, do not generate a branch.
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (!stmt->cond()->ToBooleanIsTrue()) {
|
|
HBasicBlock* body_entry = graph()->CreateBasicBlock();
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
|
|
if (body_entry->HasPredecessor()) {
|
|
body_entry->SetJoinId(stmt->BodyId());
|
|
set_current_block(body_entry);
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
if (current_block() != NULL) {
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
}
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (stmt->init() != NULL) {
|
|
CHECK_ALIVE(Visit(stmt->init()));
|
|
}
|
|
ASSERT(current_block() != NULL);
|
|
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
|
|
|
|
HBasicBlock* loop_successor = NULL;
|
|
if (stmt->cond() != NULL) {
|
|
HBasicBlock* body_entry = graph()->CreateBasicBlock();
|
|
loop_successor = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
|
|
if (body_entry->HasPredecessor()) {
|
|
body_entry->SetJoinId(stmt->BodyId());
|
|
set_current_block(body_entry);
|
|
}
|
|
if (loop_successor->HasPredecessor()) {
|
|
loop_successor->SetJoinId(stmt->ExitId());
|
|
} else {
|
|
loop_successor = NULL;
|
|
}
|
|
}
|
|
|
|
BreakAndContinueInfo break_info(stmt);
|
|
if (current_block() != NULL) {
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
}
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
|
|
if (stmt->next() != NULL && body_exit != NULL) {
|
|
set_current_block(body_exit);
|
|
CHECK_BAILOUT(Visit(stmt->next()));
|
|
body_exit = current_block();
|
|
}
|
|
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
|
|
if (!FLAG_optimize_for_in) {
|
|
return Bailout(kForInStatementOptimizationIsDisabled);
|
|
}
|
|
|
|
if (stmt->for_in_type() != ForInStatement::FAST_FOR_IN) {
|
|
return Bailout(kForInStatementIsNotFastCase);
|
|
}
|
|
|
|
if (!stmt->each()->IsVariableProxy() ||
|
|
!stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
|
|
return Bailout(kForInStatementWithNonLocalEachVariable);
|
|
}
|
|
|
|
Variable* each_var = stmt->each()->AsVariableProxy()->var();
|
|
|
|
CHECK_ALIVE(VisitForValue(stmt->enumerable()));
|
|
HValue* enumerable = Top(); // Leave enumerable at the top.
|
|
|
|
HInstruction* map = Add<HForInPrepareMap>(enumerable);
|
|
Add<HSimulate>(stmt->PrepareId());
|
|
|
|
HInstruction* array = Add<HForInCacheArray>(
|
|
enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex);
|
|
|
|
HInstruction* enum_length = Add<HMapEnumLength>(map);
|
|
|
|
HInstruction* start_index = Add<HConstant>(0);
|
|
|
|
Push(map);
|
|
Push(array);
|
|
Push(enum_length);
|
|
Push(start_index);
|
|
|
|
HInstruction* index_cache = Add<HForInCacheArray>(
|
|
enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
|
|
HForInCacheArray::cast(array)->set_index_cache(
|
|
HForInCacheArray::cast(index_cache));
|
|
|
|
HBasicBlock* loop_entry = BuildLoopEntry(stmt);
|
|
|
|
HValue* index = environment()->ExpressionStackAt(0);
|
|
HValue* limit = environment()->ExpressionStackAt(1);
|
|
|
|
// Check that we still have more keys.
|
|
HCompareNumericAndBranch* compare_index =
|
|
New<HCompareNumericAndBranch>(index, limit, Token::LT);
|
|
compare_index->set_observed_input_representation(
|
|
Representation::Smi(), Representation::Smi());
|
|
|
|
HBasicBlock* loop_body = graph()->CreateBasicBlock();
|
|
HBasicBlock* loop_successor = graph()->CreateBasicBlock();
|
|
|
|
compare_index->SetSuccessorAt(0, loop_body);
|
|
compare_index->SetSuccessorAt(1, loop_successor);
|
|
FinishCurrentBlock(compare_index);
|
|
|
|
set_current_block(loop_successor);
|
|
Drop(5);
|
|
|
|
set_current_block(loop_body);
|
|
|
|
HValue* key = Add<HLoadKeyed>(
|
|
environment()->ExpressionStackAt(2), // Enum cache.
|
|
environment()->ExpressionStackAt(0), // Iteration index.
|
|
environment()->ExpressionStackAt(0),
|
|
FAST_ELEMENTS);
|
|
|
|
// Check if the expected map still matches that of the enumerable.
|
|
// If not just deoptimize.
|
|
Add<HCheckMapValue>(environment()->ExpressionStackAt(4),
|
|
environment()->ExpressionStackAt(3));
|
|
|
|
Bind(each_var, key);
|
|
|
|
BreakAndContinueInfo break_info(stmt, 5);
|
|
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
|
|
|
|
HBasicBlock* body_exit =
|
|
JoinContinue(stmt, current_block(), break_info.continue_block());
|
|
|
|
if (body_exit != NULL) {
|
|
set_current_block(body_exit);
|
|
|
|
HValue* current_index = Pop();
|
|
Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
|
|
body_exit = current_block();
|
|
}
|
|
|
|
HBasicBlock* loop_exit = CreateLoop(stmt,
|
|
loop_entry,
|
|
body_exit,
|
|
loop_successor,
|
|
break_info.break_block());
|
|
|
|
set_current_block(loop_exit);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kForOfStatement);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kTryCatchStatement);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitTryFinallyStatement(
|
|
TryFinallyStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kTryFinallyStatement);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kDebuggerStatement);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Handle<SharedFunctionInfo> shared_info = expr->shared_info();
|
|
if (shared_info.is_null()) {
|
|
shared_info = Compiler::BuildFunctionInfo(expr, current_info()->script());
|
|
}
|
|
// We also have a stack overflow if the recursive compilation did.
|
|
if (HasStackOverflow()) return;
|
|
HFunctionLiteral* instr =
|
|
New<HFunctionLiteral>(shared_info, expr->pretenure());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
|
|
NativeFunctionLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
return Bailout(kNativeFunctionLiteral);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HBasicBlock* cond_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* cond_false = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
|
|
|
|
// Visit the true and false subexpressions in the same AST context as the
|
|
// whole expression.
|
|
if (cond_true->HasPredecessor()) {
|
|
cond_true->SetJoinId(expr->ThenId());
|
|
set_current_block(cond_true);
|
|
CHECK_BAILOUT(Visit(expr->then_expression()));
|
|
cond_true = current_block();
|
|
} else {
|
|
cond_true = NULL;
|
|
}
|
|
|
|
if (cond_false->HasPredecessor()) {
|
|
cond_false->SetJoinId(expr->ElseId());
|
|
set_current_block(cond_false);
|
|
CHECK_BAILOUT(Visit(expr->else_expression()));
|
|
cond_false = current_block();
|
|
} else {
|
|
cond_false = NULL;
|
|
}
|
|
|
|
if (!ast_context()->IsTest()) {
|
|
HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
|
|
set_current_block(join);
|
|
if (join != NULL && !ast_context()->IsEffect()) {
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
HOptimizedGraphBuilder::GlobalPropertyAccess
|
|
HOptimizedGraphBuilder::LookupGlobalProperty(
|
|
Variable* var, LookupResult* lookup, bool is_store) {
|
|
if (var->is_this() || !current_info()->has_global_object()) {
|
|
return kUseGeneric;
|
|
}
|
|
Handle<GlobalObject> global(current_info()->global_object());
|
|
global->Lookup(*var->name(), lookup);
|
|
if (!lookup->IsNormal() ||
|
|
(is_store && lookup->IsReadOnly()) ||
|
|
lookup->holder() != *global) {
|
|
return kUseGeneric;
|
|
}
|
|
|
|
return kUseCell;
|
|
}
|
|
|
|
|
|
HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
|
|
ASSERT(var->IsContextSlot());
|
|
HValue* context = environment()->context();
|
|
int length = current_info()->scope()->ContextChainLength(var->scope());
|
|
while (length-- > 0) {
|
|
context = Add<HOuterContext>(context);
|
|
}
|
|
return context;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
|
|
if (expr->is_this()) {
|
|
current_info()->set_this_has_uses(true);
|
|
}
|
|
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Variable* variable = expr->var();
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED: {
|
|
if (IsLexicalVariableMode(variable->mode())) {
|
|
// TODO(rossberg): should this be an ASSERT?
|
|
return Bailout(kReferenceToGlobalLexicalVariable);
|
|
}
|
|
// Handle known global constants like 'undefined' specially to avoid a
|
|
// load from a global cell for them.
|
|
Handle<Object> constant_value =
|
|
isolate()->factory()->GlobalConstantFor(variable->name());
|
|
if (!constant_value.is_null()) {
|
|
HConstant* instr = New<HConstant>(constant_value);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type =
|
|
LookupGlobalProperty(variable, &lookup, false);
|
|
|
|
if (type == kUseCell &&
|
|
current_info()->global_object()->IsAccessCheckNeeded()) {
|
|
type = kUseGeneric;
|
|
}
|
|
|
|
if (type == kUseCell) {
|
|
Handle<GlobalObject> global(current_info()->global_object());
|
|
Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
|
|
if (cell->type()->IsConstant()) {
|
|
cell->AddDependentCompilationInfo(top_info());
|
|
Handle<Object> constant_object = cell->type()->AsConstant();
|
|
if (constant_object->IsConsString()) {
|
|
constant_object =
|
|
FlattenGetString(Handle<String>::cast(constant_object));
|
|
}
|
|
HConstant* constant = New<HConstant>(constant_object);
|
|
return ast_context()->ReturnInstruction(constant, expr->id());
|
|
} else {
|
|
HLoadGlobalCell* instr =
|
|
New<HLoadGlobalCell>(cell, lookup.GetPropertyDetails());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
} else {
|
|
HGlobalObject* global_object = Add<HGlobalObject>();
|
|
HLoadGlobalGeneric* instr =
|
|
New<HLoadGlobalGeneric>(global_object,
|
|
variable->name(),
|
|
ast_context()->is_for_typeof());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
}
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
HValue* value = LookupAndMakeLive(variable);
|
|
if (value == graph()->GetConstantHole()) {
|
|
ASSERT(IsDeclaredVariableMode(variable->mode()) &&
|
|
variable->mode() != VAR);
|
|
return Bailout(kReferenceToUninitializedVariable);
|
|
}
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
case Variable::CONTEXT: {
|
|
HValue* context = BuildContextChainWalk(variable);
|
|
HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HConstant* instr = New<HConstant>(expr->value());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
|
|
Handle<FixedArray> literals(closure->literals());
|
|
HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
|
|
expr->pattern(),
|
|
expr->flags(),
|
|
expr->literal_index());
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
static bool CanInlinePropertyAccess(Map* type) {
|
|
return type->IsJSObjectMap() &&
|
|
!type->is_dictionary_map() &&
|
|
!type->has_named_interceptor();
|
|
}
|
|
|
|
|
|
static void LookupInPrototypes(Handle<Map> map,
|
|
Handle<String> name,
|
|
LookupResult* lookup) {
|
|
while (map->prototype()->IsJSObject()) {
|
|
Handle<JSObject> holder(JSObject::cast(map->prototype()));
|
|
map = Handle<Map>(holder->map());
|
|
if (!CanInlinePropertyAccess(*map)) break;
|
|
map->LookupDescriptor(*holder, *name, lookup);
|
|
if (lookup->IsFound()) return;
|
|
}
|
|
lookup->NotFound();
|
|
}
|
|
|
|
|
|
// Tries to find a JavaScript accessor of the given name in the prototype chain
|
|
// starting at the given map. Return true iff there is one, including the
|
|
// corresponding AccessorPair plus its holder (which could be null when the
|
|
// accessor is found directly in the given map).
|
|
static bool LookupAccessorPair(Handle<Map> map,
|
|
Handle<String> name,
|
|
Handle<AccessorPair>* accessors,
|
|
Handle<JSObject>* holder) {
|
|
Isolate* isolate = map->GetIsolate();
|
|
LookupResult lookup(isolate);
|
|
|
|
// Check for a JavaScript accessor directly in the map.
|
|
map->LookupDescriptor(NULL, *name, &lookup);
|
|
if (lookup.IsPropertyCallbacks()) {
|
|
Handle<Object> callback(lookup.GetValueFromMap(*map), isolate);
|
|
if (!callback->IsAccessorPair()) return false;
|
|
*accessors = Handle<AccessorPair>::cast(callback);
|
|
*holder = Handle<JSObject>();
|
|
return true;
|
|
}
|
|
|
|
// Everything else, e.g. a field, can't be an accessor call.
|
|
if (lookup.IsFound()) return false;
|
|
|
|
// Check for a JavaScript accessor somewhere in the proto chain.
|
|
LookupInPrototypes(map, name, &lookup);
|
|
if (lookup.IsPropertyCallbacks()) {
|
|
Handle<Object> callback(lookup.GetValue(), isolate);
|
|
if (!callback->IsAccessorPair()) return false;
|
|
*accessors = Handle<AccessorPair>::cast(callback);
|
|
*holder = Handle<JSObject>(lookup.holder());
|
|
return true;
|
|
}
|
|
|
|
// We haven't found a JavaScript accessor anywhere.
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool LookupSetter(Handle<Map> map,
|
|
Handle<String> name,
|
|
Handle<JSFunction>* setter,
|
|
Handle<JSObject>* holder) {
|
|
Handle<AccessorPair> accessors;
|
|
if (LookupAccessorPair(map, name, &accessors, holder) &&
|
|
accessors->setter()->IsJSFunction()) {
|
|
Handle<JSFunction> func(JSFunction::cast(accessors->setter()));
|
|
CallOptimization call_optimization(func);
|
|
// TODO(dcarney): temporary hack unless crankshaft can handle api calls.
|
|
if (call_optimization.is_simple_api_call()) return false;
|
|
*setter = func;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Determines whether the given array or object literal boilerplate satisfies
|
|
// all limits to be considered for fast deep-copying and computes the total
|
|
// size of all objects that are part of the graph.
|
|
static bool IsFastLiteral(Handle<JSObject> boilerplate,
|
|
int max_depth,
|
|
int* max_properties) {
|
|
if (boilerplate->map()->is_deprecated()) {
|
|
Handle<Object> result = JSObject::TryMigrateInstance(boilerplate);
|
|
if (result.is_null()) return false;
|
|
}
|
|
|
|
ASSERT(max_depth >= 0 && *max_properties >= 0);
|
|
if (max_depth == 0) return false;
|
|
|
|
Isolate* isolate = boilerplate->GetIsolate();
|
|
Handle<FixedArrayBase> elements(boilerplate->elements());
|
|
if (elements->length() > 0 &&
|
|
elements->map() != isolate->heap()->fixed_cow_array_map()) {
|
|
if (boilerplate->HasFastObjectElements()) {
|
|
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
|
|
int length = elements->length();
|
|
for (int i = 0; i < length; i++) {
|
|
if ((*max_properties)-- == 0) return false;
|
|
Handle<Object> value(fast_elements->get(i), isolate);
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
if (!IsFastLiteral(value_object,
|
|
max_depth - 1,
|
|
max_properties)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else if (!boilerplate->HasFastDoubleElements()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Handle<FixedArray> properties(boilerplate->properties());
|
|
if (properties->length() > 0) {
|
|
return false;
|
|
} else {
|
|
Handle<DescriptorArray> descriptors(
|
|
boilerplate->map()->instance_descriptors());
|
|
int limit = boilerplate->map()->NumberOfOwnDescriptors();
|
|
for (int i = 0; i < limit; i++) {
|
|
PropertyDetails details = descriptors->GetDetails(i);
|
|
if (details.type() != FIELD) continue;
|
|
int index = descriptors->GetFieldIndex(i);
|
|
if ((*max_properties)-- == 0) return false;
|
|
Handle<Object> value(boilerplate->InObjectPropertyAt(index), isolate);
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
if (!IsFastLiteral(value_object,
|
|
max_depth - 1,
|
|
max_properties)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
expr->BuildConstantProperties(isolate());
|
|
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
|
|
HInstruction* literal;
|
|
|
|
// Check whether to use fast or slow deep-copying for boilerplate.
|
|
int max_properties = kMaxFastLiteralProperties;
|
|
Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
|
|
isolate());
|
|
Handle<AllocationSite> site;
|
|
Handle<JSObject> boilerplate;
|
|
if (!literals_cell->IsUndefined()) {
|
|
// Retrieve the boilerplate
|
|
site = Handle<AllocationSite>::cast(literals_cell);
|
|
boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
|
|
isolate());
|
|
}
|
|
|
|
if (!boilerplate.is_null() &&
|
|
IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
|
|
AllocationSiteUsageContext usage_context(isolate(), site, false);
|
|
usage_context.EnterNewScope();
|
|
literal = BuildFastLiteral(boilerplate, &usage_context);
|
|
usage_context.ExitScope(site, boilerplate);
|
|
} else {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
Handle<FixedArray> closure_literals(closure->literals(), isolate());
|
|
Handle<FixedArray> constant_properties = expr->constant_properties();
|
|
int literal_index = expr->literal_index();
|
|
int flags = expr->fast_elements()
|
|
? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags;
|
|
flags |= expr->has_function()
|
|
? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags;
|
|
|
|
Add<HPushArgument>(Add<HConstant>(closure_literals));
|
|
Add<HPushArgument>(Add<HConstant>(literal_index));
|
|
Add<HPushArgument>(Add<HConstant>(constant_properties));
|
|
Add<HPushArgument>(Add<HConstant>(flags));
|
|
|
|
// TODO(mvstanton): Add a flag to turn off creation of any
|
|
// AllocationMementos for this call: we are in crankshaft and should have
|
|
// learned enough about transition behavior to stop emitting mementos.
|
|
Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
|
|
literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
|
|
Runtime::FunctionForId(function_id),
|
|
4);
|
|
}
|
|
|
|
// The object is expected in the bailout environment during computation
|
|
// of the property values and is the value of the entire expression.
|
|
Push(literal);
|
|
|
|
expr->CalculateEmitStore(zone());
|
|
|
|
for (int i = 0; i < expr->properties()->length(); i++) {
|
|
ObjectLiteral::Property* property = expr->properties()->at(i);
|
|
if (property->IsCompileTimeValue()) continue;
|
|
|
|
Literal* key = property->key();
|
|
Expression* value = property->value();
|
|
|
|
switch (property->kind()) {
|
|
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
|
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
|
|
// Fall through.
|
|
case ObjectLiteral::Property::COMPUTED:
|
|
if (key->value()->IsInternalizedString()) {
|
|
if (property->emit_store()) {
|
|
CHECK_ALIVE(VisitForValue(value));
|
|
HValue* value = Pop();
|
|
Handle<Map> map = property->GetReceiverType();
|
|
Handle<String> name = property->key()->AsPropertyName();
|
|
HInstruction* store;
|
|
if (map.is_null()) {
|
|
// If we don't know the monomorphic type, do a generic store.
|
|
CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
|
|
} else {
|
|
#if DEBUG
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
ASSERT(!LookupSetter(map, name, &setter, &holder));
|
|
#endif
|
|
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
|
|
name,
|
|
value,
|
|
map));
|
|
}
|
|
AddInstruction(store);
|
|
if (store->HasObservableSideEffects()) {
|
|
Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
|
|
}
|
|
} else {
|
|
CHECK_ALIVE(VisitForEffect(value));
|
|
}
|
|
break;
|
|
}
|
|
// Fall through.
|
|
case ObjectLiteral::Property::PROTOTYPE:
|
|
case ObjectLiteral::Property::SETTER:
|
|
case ObjectLiteral::Property::GETTER:
|
|
return Bailout(kObjectLiteralWithComplexProperty);
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
if (expr->has_function()) {
|
|
// Return the result of the transformation to fast properties
|
|
// instead of the original since this operation changes the map
|
|
// of the object. This makes sure that the original object won't
|
|
// be used by other optimized code before it is transformed
|
|
// (e.g. because of code motion).
|
|
HToFastProperties* result = Add<HToFastProperties>(Pop());
|
|
return ast_context()->ReturnValue(result);
|
|
} else {
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
expr->BuildConstantElements(isolate());
|
|
ZoneList<Expression*>* subexprs = expr->values();
|
|
int length = subexprs->length();
|
|
HInstruction* literal;
|
|
|
|
Handle<AllocationSite> site;
|
|
Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
|
|
bool uninitialized = false;
|
|
Handle<Object> literals_cell(literals->get(expr->literal_index()),
|
|
isolate());
|
|
Handle<JSObject> boilerplate_object;
|
|
if (literals_cell->IsUndefined()) {
|
|
uninitialized = true;
|
|
Handle<Object> raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
|
|
isolate(), literals, expr->constant_elements());
|
|
if (raw_boilerplate.is_null()) {
|
|
return Bailout(kArrayBoilerplateCreationFailed);
|
|
}
|
|
|
|
boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
|
|
AllocationSiteCreationContext creation_context(isolate());
|
|
site = creation_context.EnterNewScope();
|
|
if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
|
|
return Bailout(kArrayBoilerplateCreationFailed);
|
|
}
|
|
creation_context.ExitScope(site, boilerplate_object);
|
|
literals->set(expr->literal_index(), *site);
|
|
|
|
if (boilerplate_object->elements()->map() ==
|
|
isolate()->heap()->fixed_cow_array_map()) {
|
|
isolate()->counters()->cow_arrays_created_runtime()->Increment();
|
|
}
|
|
} else {
|
|
ASSERT(literals_cell->IsAllocationSite());
|
|
site = Handle<AllocationSite>::cast(literals_cell);
|
|
boilerplate_object = Handle<JSObject>(
|
|
JSObject::cast(site->transition_info()), isolate());
|
|
}
|
|
|
|
ASSERT(!boilerplate_object.is_null());
|
|
ASSERT(site->SitePointsToLiteral());
|
|
|
|
ElementsKind boilerplate_elements_kind =
|
|
boilerplate_object->GetElementsKind();
|
|
|
|
// Check whether to use fast or slow deep-copying for boilerplate.
|
|
int max_properties = kMaxFastLiteralProperties;
|
|
if (IsFastLiteral(boilerplate_object,
|
|
kMaxFastLiteralDepth,
|
|
&max_properties)) {
|
|
AllocationSiteUsageContext usage_context(isolate(), site, false);
|
|
usage_context.EnterNewScope();
|
|
literal = BuildFastLiteral(boilerplate_object, &usage_context);
|
|
usage_context.ExitScope(site, boilerplate_object);
|
|
} else {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
// Boilerplate already exists and constant elements are never accessed,
|
|
// pass an empty fixed array to the runtime function instead.
|
|
Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
|
|
int literal_index = expr->literal_index();
|
|
int flags = expr->depth() == 1
|
|
? ArrayLiteral::kShallowElements
|
|
: ArrayLiteral::kNoFlags;
|
|
flags |= ArrayLiteral::kDisableMementos;
|
|
|
|
Add<HPushArgument>(Add<HConstant>(literals));
|
|
Add<HPushArgument>(Add<HConstant>(literal_index));
|
|
Add<HPushArgument>(Add<HConstant>(constants));
|
|
Add<HPushArgument>(Add<HConstant>(flags));
|
|
|
|
// TODO(mvstanton): Consider a flag to turn off creation of any
|
|
// AllocationMementos for this call: we are in crankshaft and should have
|
|
// learned enough about transition behavior to stop emitting mementos.
|
|
Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
|
|
literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
|
|
Runtime::FunctionForId(function_id),
|
|
4);
|
|
|
|
// De-opt if elements kind changed from boilerplate_elements_kind.
|
|
Handle<Map> map = Handle<Map>(boilerplate_object->map(), isolate());
|
|
literal = Add<HCheckMaps>(literal, map, top_info());
|
|
}
|
|
|
|
// The array is expected in the bailout environment during computation
|
|
// of the property values and is the value of the entire expression.
|
|
Push(literal);
|
|
// The literal index is on the stack, too.
|
|
Push(Add<HConstant>(expr->literal_index()));
|
|
|
|
HInstruction* elements = NULL;
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
Expression* subexpr = subexprs->at(i);
|
|
// If the subexpression is a literal or a simple materialized literal it
|
|
// is already set in the cloned array.
|
|
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
|
|
|
|
CHECK_ALIVE(VisitForValue(subexpr));
|
|
HValue* value = Pop();
|
|
if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
|
|
|
|
elements = AddLoadElements(literal);
|
|
|
|
HValue* key = Add<HConstant>(i);
|
|
|
|
switch (boilerplate_elements_kind) {
|
|
case FAST_SMI_ELEMENTS:
|
|
case FAST_HOLEY_SMI_ELEMENTS:
|
|
case FAST_ELEMENTS:
|
|
case FAST_HOLEY_ELEMENTS:
|
|
case FAST_DOUBLE_ELEMENTS:
|
|
case FAST_HOLEY_DOUBLE_ELEMENTS: {
|
|
HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
|
|
boilerplate_elements_kind);
|
|
instr->SetUninitialized(uninitialized);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
Add<HSimulate>(expr->GetIdForElement(i));
|
|
}
|
|
|
|
Drop(1); // array literal index
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
|
|
Handle<Map> map) {
|
|
BuildCheckHeapObject(object);
|
|
return Add<HCheckMaps>(object, map, top_info());
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
|
|
HValue* checked_object,
|
|
Handle<String> name,
|
|
HValue* value,
|
|
Handle<Map> map,
|
|
LookupResult* lookup) {
|
|
ASSERT(lookup->IsFound());
|
|
// If the property does not exist yet, we have to check that it wasn't made
|
|
// readonly or turned into a setter by some meanwhile modifications on the
|
|
// prototype chain.
|
|
if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
|
|
Object* proto = map->prototype();
|
|
// First check that the prototype chain isn't affected already.
|
|
LookupResult proto_result(isolate());
|
|
proto->Lookup(*name, &proto_result);
|
|
if (proto_result.IsProperty()) {
|
|
// If the inherited property could induce readonly-ness, bail out.
|
|
if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
|
|
Bailout(kImproperObjectOnPrototypeChainForStore);
|
|
return NULL;
|
|
}
|
|
// We only need to check up to the preexisting property.
|
|
proto = proto_result.holder();
|
|
} else {
|
|
// Otherwise, find the top prototype.
|
|
while (proto->GetPrototype(isolate())->IsJSObject()) {
|
|
proto = proto->GetPrototype(isolate());
|
|
}
|
|
ASSERT(proto->GetPrototype(isolate())->IsNull());
|
|
}
|
|
ASSERT(proto->IsJSObject());
|
|
BuildCheckPrototypeMaps(
|
|
Handle<JSObject>(JSObject::cast(map->prototype())),
|
|
Handle<JSObject>(JSObject::cast(proto)));
|
|
}
|
|
|
|
HObjectAccess field_access = HObjectAccess::ForField(map, lookup, name);
|
|
bool transition_to_field = lookup->IsTransitionToField(*map);
|
|
|
|
HStoreNamedField *instr;
|
|
if (FLAG_track_double_fields && field_access.representation().IsDouble()) {
|
|
HObjectAccess heap_number_access =
|
|
field_access.WithRepresentation(Representation::Tagged());
|
|
if (transition_to_field) {
|
|
// The store requires a mutable HeapNumber to be allocated.
|
|
NoObservableSideEffectsScope no_side_effects(this);
|
|
HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
|
|
HInstruction* heap_number = Add<HAllocate>(heap_number_size,
|
|
HType::HeapNumber(), isolate()->heap()->GetPretenureMode(),
|
|
HEAP_NUMBER_TYPE);
|
|
AddStoreMapConstant(heap_number, isolate()->factory()->heap_number_map());
|
|
Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
|
|
value);
|
|
instr = New<HStoreNamedField>(checked_object->ActualValue(),
|
|
heap_number_access,
|
|
heap_number);
|
|
} else {
|
|
// Already holds a HeapNumber; load the box and write its value field.
|
|
HInstruction* heap_number = Add<HLoadNamedField>(checked_object,
|
|
heap_number_access);
|
|
heap_number->set_type(HType::HeapNumber());
|
|
instr = New<HStoreNamedField>(heap_number,
|
|
HObjectAccess::ForHeapNumberValue(),
|
|
value);
|
|
}
|
|
} else {
|
|
// This is a normal store.
|
|
instr = New<HStoreNamedField>(
|
|
checked_object->ActualValue(), field_access, value,
|
|
transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
|
|
}
|
|
|
|
if (transition_to_field) {
|
|
Handle<Map> transition(lookup->GetTransitionMapFromMap(*map));
|
|
HConstant* transition_constant = Add<HConstant>(transition);
|
|
instr->SetTransition(transition_constant, top_info());
|
|
// TODO(fschneider): Record the new map type of the object in the IR to
|
|
// enable elimination of redundant checks after the transition store.
|
|
instr->SetGVNFlag(kChangesMaps);
|
|
}
|
|
return instr;
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric(
|
|
HValue* object,
|
|
Handle<String> name,
|
|
HValue* value) {
|
|
return New<HStoreNamedGeneric>(
|
|
object,
|
|
name,
|
|
value,
|
|
function_strict_mode_flag());
|
|
}
|
|
|
|
|
|
// Sets the lookup result and returns true if the load/store can be inlined.
|
|
static bool ComputeStoreField(Handle<Map> type,
|
|
Handle<String> name,
|
|
LookupResult* lookup,
|
|
bool lookup_transition = true) {
|
|
ASSERT(!type->is_observed());
|
|
if (!CanInlinePropertyAccess(*type)) {
|
|
lookup->NotFound();
|
|
return false;
|
|
}
|
|
// If we directly find a field, the access can be inlined.
|
|
type->LookupDescriptor(NULL, *name, lookup);
|
|
if (lookup->IsField()) return true;
|
|
|
|
if (!lookup_transition) return false;
|
|
|
|
type->LookupTransition(NULL, *name, lookup);
|
|
return lookup->IsTransitionToField(*type) &&
|
|
(type->unused_property_fields() > 0);
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic(
|
|
HValue* object,
|
|
Handle<String> name,
|
|
HValue* value,
|
|
Handle<Map> map) {
|
|
// Handle a store to a known field.
|
|
LookupResult lookup(isolate());
|
|
if (ComputeStoreField(map, name, &lookup)) {
|
|
HCheckMaps* checked_object = AddCheckMap(object, map);
|
|
return BuildStoreNamedField(checked_object, name, value, map, &lookup);
|
|
}
|
|
|
|
// No luck, do a generic store.
|
|
return BuildStoreNamedGeneric(object, name, value);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatibleForLoad(
|
|
PropertyAccessInfo* info) {
|
|
if (!CanInlinePropertyAccess(*map_)) return false;
|
|
|
|
if (!LookupDescriptor()) return false;
|
|
|
|
if (!lookup_.IsFound()) {
|
|
return (!info->lookup_.IsFound() || info->has_holder()) &&
|
|
map_->prototype() == info->map_->prototype();
|
|
}
|
|
|
|
// Mismatch if the other access info found the property in the prototype
|
|
// chain.
|
|
if (info->has_holder()) return false;
|
|
|
|
if (lookup_.IsPropertyCallbacks()) {
|
|
return accessor_.is_identical_to(info->accessor_);
|
|
}
|
|
|
|
if (lookup_.IsConstant()) {
|
|
return constant_.is_identical_to(info->constant_);
|
|
}
|
|
|
|
ASSERT(lookup_.IsField());
|
|
if (!info->lookup_.IsField()) return false;
|
|
|
|
Representation r = access_.representation();
|
|
if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
|
|
if (info->access_.offset() != access_.offset()) return false;
|
|
if (info->access_.IsInobject() != access_.IsInobject()) return false;
|
|
info->GeneralizeRepresentation(r);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
|
|
map_->LookupDescriptor(NULL, *name_, &lookup_);
|
|
return LoadResult(map_);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
|
|
if (lookup_.IsField()) {
|
|
access_ = HObjectAccess::ForField(map, &lookup_, name_);
|
|
} else if (lookup_.IsPropertyCallbacks()) {
|
|
Handle<Object> callback(lookup_.GetValueFromMap(*map), isolate());
|
|
if (!callback->IsAccessorPair()) return false;
|
|
Object* getter = Handle<AccessorPair>::cast(callback)->getter();
|
|
if (!getter->IsJSFunction()) return false;
|
|
Handle<JSFunction> accessor = handle(JSFunction::cast(getter));
|
|
CallOptimization call_optimization(accessor);
|
|
// TODO(dcarney): temporary hack unless crankshaft can handle api calls.
|
|
if (call_optimization.is_simple_api_call()) return false;
|
|
accessor_ = accessor;
|
|
} else if (lookup_.IsConstant()) {
|
|
constant_ = handle(lookup_.GetConstantFromMap(*map), isolate());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
|
|
Handle<Map> map = map_;
|
|
while (map->prototype()->IsJSObject()) {
|
|
holder_ = handle(JSObject::cast(map->prototype()));
|
|
if (holder_->map()->is_deprecated()) {
|
|
JSObject::TryMigrateInstance(holder_);
|
|
}
|
|
map = Handle<Map>(holder_->map());
|
|
if (!CanInlinePropertyAccess(*map)) {
|
|
lookup_.NotFound();
|
|
return false;
|
|
}
|
|
map->LookupDescriptor(*holder_, *name_, &lookup_);
|
|
if (lookup_.IsFound()) return LoadResult(map);
|
|
}
|
|
lookup_.NotFound();
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadMonomorphic() {
|
|
if (!CanInlinePropertyAccess(*map_)) return IsStringLength();
|
|
if (IsJSObjectFieldAccessor()) return true;
|
|
if (!LookupDescriptor()) return false;
|
|
if (lookup_.IsFound()) return true;
|
|
return LookupInPrototypes();
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadAsMonomorphic(
|
|
SmallMapList* types) {
|
|
ASSERT(map_.is_identical_to(types->first()));
|
|
if (!CanLoadMonomorphic()) return false;
|
|
if (types->length() > kMaxLoadPolymorphism) return false;
|
|
|
|
if (IsStringLength()) {
|
|
for (int i = 1; i < types->length(); ++i) {
|
|
if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (IsArrayLength()) {
|
|
bool is_fast = IsFastElementsKind(map_->elements_kind());
|
|
for (int i = 1; i < types->length(); ++i) {
|
|
Handle<Map> test_map = types->at(i);
|
|
if (test_map->instance_type() != JS_ARRAY_TYPE) return false;
|
|
if (IsFastElementsKind(test_map->elements_kind()) != is_fast) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (IsJSObjectFieldAccessor()) {
|
|
InstanceType instance_type = map_->instance_type();
|
|
for (int i = 1; i < types->length(); ++i) {
|
|
if (types->at(i)->instance_type() != instance_type) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
for (int i = 1; i < types->length(); ++i) {
|
|
PropertyAccessInfo test_info(isolate(), types->at(i), name_);
|
|
if (!test_info.IsCompatibleForLoad(this)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildLoadMonomorphic(
|
|
PropertyAccessInfo* info,
|
|
HValue* object,
|
|
HInstruction* checked_object,
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
bool can_inline_accessor) {
|
|
|
|
HObjectAccess access = HObjectAccess::ForMap(); // bogus default
|
|
if (info->GetJSObjectFieldAccess(&access)) {
|
|
return New<HLoadNamedField>(checked_object, access);
|
|
}
|
|
|
|
HValue* checked_holder = checked_object;
|
|
if (info->has_holder()) {
|
|
Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
|
|
checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
|
|
}
|
|
|
|
if (!info->lookup()->IsFound()) return graph()->GetConstantUndefined();
|
|
|
|
if (info->lookup()->IsField()) {
|
|
return BuildLoadNamedField(checked_holder, info->access());
|
|
}
|
|
|
|
if (info->lookup()->IsPropertyCallbacks()) {
|
|
Push(checked_object);
|
|
if (FLAG_inline_accessors &&
|
|
can_inline_accessor &&
|
|
TryInlineGetter(info->accessor(), ast_id, return_id)) {
|
|
return NULL;
|
|
}
|
|
Add<HPushArgument>(Pop());
|
|
return BuildCallConstantFunction(info->accessor(), 1);
|
|
}
|
|
|
|
ASSERT(info->lookup()->IsConstant());
|
|
return New<HConstant>(info->constant());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField(
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
HValue* object,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
// Something did not match; must use a polymorphic load.
|
|
int count = 0;
|
|
HBasicBlock* join = NULL;
|
|
for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
|
|
PropertyAccessInfo info(isolate(), types->at(i), name);
|
|
if (info.CanLoadMonomorphic()) {
|
|
if (count == 0) {
|
|
BuildCheckHeapObject(object);
|
|
join = graph()->CreateBasicBlock();
|
|
}
|
|
++count;
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
HCompareMap* compare = New<HCompareMap>(
|
|
object, info.map(), if_true, if_false);
|
|
FinishCurrentBlock(compare);
|
|
|
|
set_current_block(if_true);
|
|
|
|
HInstruction* load = BuildLoadMonomorphic(
|
|
&info, object, compare, ast_id, return_id, FLAG_polymorphic_inlining);
|
|
if (load == NULL) {
|
|
if (HasStackOverflow()) return;
|
|
} else {
|
|
if (!load->IsLinked()) {
|
|
AddInstruction(load);
|
|
}
|
|
if (!ast_context()->IsEffect()) Push(load);
|
|
}
|
|
|
|
if (current_block() != NULL) Goto(join);
|
|
set_current_block(if_false);
|
|
}
|
|
}
|
|
|
|
// Finish up. Unconditionally deoptimize if we've handled all the maps we
|
|
// know about and do not want to handle ones we've never seen. Otherwise
|
|
// use a generic IC.
|
|
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
|
|
// Because the deopt may be the only path in the polymorphic load, make sure
|
|
// that the environment stack matches the depth on deopt that it otherwise
|
|
// would have had after a successful load.
|
|
if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
|
|
FinishExitWithHardDeoptimization("Unknown map in polymorphic load", join);
|
|
} else {
|
|
HInstruction* load = Add<HLoadNamedGeneric>(object, name);
|
|
if (!ast_context()->IsEffect()) Push(load);
|
|
|
|
if (join != NULL) {
|
|
Goto(join);
|
|
} else {
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
|
|
return;
|
|
}
|
|
}
|
|
|
|
ASSERT(join != NULL);
|
|
join->SetJoinId(ast_id);
|
|
set_current_block(join);
|
|
if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryStorePolymorphicAsMonomorphic(
|
|
BailoutId assignment_id,
|
|
HValue* object,
|
|
HValue* value,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
// Use monomorphic store if property lookup results in the same field index
|
|
// for all maps. Requires special map check on the set of all handled maps.
|
|
if (types->length() > kMaxStorePolymorphism) return false;
|
|
|
|
LookupResult lookup(isolate());
|
|
int count;
|
|
Representation representation = Representation::None();
|
|
HObjectAccess access = HObjectAccess::ForMap(); // initial value unused.
|
|
for (count = 0; count < types->length(); ++count) {
|
|
Handle<Map> map = types->at(count);
|
|
// Pass false to ignore transitions.
|
|
if (!ComputeStoreField(map, name, &lookup, false)) break;
|
|
ASSERT(!map->is_observed());
|
|
|
|
HObjectAccess new_access = HObjectAccess::ForField(map, &lookup, name);
|
|
Representation new_representation = new_access.representation();
|
|
|
|
if (count == 0) {
|
|
// First time through the loop; set access and representation.
|
|
access = new_access;
|
|
representation = new_representation;
|
|
} else if (!representation.IsCompatibleForStore(new_representation)) {
|
|
// Representations did not match.
|
|
break;
|
|
} else if (access.offset() != new_access.offset()) {
|
|
// Offsets did not match.
|
|
break;
|
|
} else if (access.IsInobject() != new_access.IsInobject()) {
|
|
// In-objectness did not match.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count != types->length()) return false;
|
|
|
|
// Everything matched; can use monomorphic store.
|
|
BuildCheckHeapObject(object);
|
|
HCheckMaps* checked_object = Add<HCheckMaps>(object, types);
|
|
HInstruction* store;
|
|
CHECK_ALIVE_OR_RETURN(
|
|
store = BuildStoreNamedField(
|
|
checked_object, name, value, types->at(count - 1), &lookup),
|
|
true);
|
|
if (!ast_context()->IsEffect()) Push(value);
|
|
AddInstruction(store);
|
|
Add<HSimulate>(assignment_id);
|
|
if (!ast_context()->IsEffect()) Drop(1);
|
|
ast_context()->ReturnValue(value);
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField(
|
|
BailoutId assignment_id,
|
|
HValue* object,
|
|
HValue* value,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
if (TryStorePolymorphicAsMonomorphic(
|
|
assignment_id, object, value, types, name)) {
|
|
return;
|
|
}
|
|
|
|
// TODO(ager): We should recognize when the prototype chains for different
|
|
// maps are identical. In that case we can avoid repeatedly generating the
|
|
// same prototype map checks.
|
|
int count = 0;
|
|
HBasicBlock* join = NULL;
|
|
for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
|
|
Handle<Map> map = types->at(i);
|
|
LookupResult lookup(isolate());
|
|
if (ComputeStoreField(map, name, &lookup)) {
|
|
if (count == 0) {
|
|
BuildCheckHeapObject(object);
|
|
join = graph()->CreateBasicBlock();
|
|
}
|
|
++count;
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
HCompareMap* compare = New<HCompareMap>(object, map, if_true, if_false);
|
|
FinishCurrentBlock(compare);
|
|
|
|
set_current_block(if_true);
|
|
HInstruction* instr;
|
|
CHECK_ALIVE(instr = BuildStoreNamedField(
|
|
compare, name, value, map, &lookup));
|
|
// Goto will add the HSimulate for the store.
|
|
AddInstruction(instr);
|
|
if (!ast_context()->IsEffect()) Push(value);
|
|
Goto(join);
|
|
|
|
set_current_block(if_false);
|
|
}
|
|
}
|
|
|
|
// Finish up. Unconditionally deoptimize if we've handled all the maps we
|
|
// know about and do not want to handle ones we've never seen. Otherwise
|
|
// use a generic IC.
|
|
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
|
|
FinishExitWithHardDeoptimization("Unknown map in polymorphic store", join);
|
|
} else {
|
|
HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
|
|
AddInstruction(instr);
|
|
|
|
if (join != NULL) {
|
|
if (!ast_context()->IsEffect()) {
|
|
Push(value);
|
|
}
|
|
Goto(join);
|
|
} else {
|
|
// The HSimulate for the store should not see the stored value in
|
|
// effect contexts (it is not materialized at expr->id() in the
|
|
// unoptimized code).
|
|
if (instr->HasObservableSideEffects()) {
|
|
if (ast_context()->IsEffect()) {
|
|
Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
|
|
} else {
|
|
Push(value);
|
|
Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
|
|
Drop(1);
|
|
}
|
|
}
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
}
|
|
|
|
ASSERT(join != NULL);
|
|
join->SetJoinId(assignment_id);
|
|
set_current_block(join);
|
|
if (!ast_context()->IsEffect()) {
|
|
ast_context()->ReturnValue(Pop());
|
|
}
|
|
}
|
|
|
|
|
|
static bool ComputeReceiverTypes(Expression* expr,
|
|
HValue* receiver,
|
|
SmallMapList** t) {
|
|
SmallMapList* types = expr->GetReceiverTypes();
|
|
*t = types;
|
|
bool monomorphic = expr->IsMonomorphic();
|
|
if (types != NULL && receiver->HasMonomorphicJSObjectType()) {
|
|
Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
|
|
types->FilterForPossibleTransitions(root_map);
|
|
monomorphic = types->length() == 1;
|
|
}
|
|
return monomorphic && CanInlinePropertyAccess(*types->first());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildStore(Expression* expr,
|
|
Property* prop,
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
bool is_uninitialized) {
|
|
HValue* value = environment()->ExpressionStackAt(0);
|
|
|
|
if (!prop->key()->IsPropertyName()) {
|
|
// Keyed store.
|
|
HValue* key = environment()->ExpressionStackAt(1);
|
|
HValue* object = environment()->ExpressionStackAt(2);
|
|
bool has_side_effects = false;
|
|
HandleKeyedElementAccess(object, key, value, expr,
|
|
true, // is_store
|
|
&has_side_effects);
|
|
Drop(3);
|
|
Push(value);
|
|
Add<HSimulate>(return_id, REMOVABLE_SIMULATE);
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
// Named store.
|
|
HValue* object = environment()->ExpressionStackAt(1);
|
|
|
|
if (is_uninitialized) {
|
|
Add<HDeoptimize>("Insufficient type feedback for property assignment",
|
|
Deoptimizer::SOFT);
|
|
}
|
|
|
|
Literal* key = prop->key()->AsLiteral();
|
|
Handle<String> name = Handle<String>::cast(key->value());
|
|
ASSERT(!name.is_null());
|
|
|
|
HInstruction* instr = NULL;
|
|
|
|
SmallMapList* types;
|
|
bool monomorphic = ComputeReceiverTypes(expr, object, &types);
|
|
|
|
if (monomorphic) {
|
|
Handle<Map> map = types->first();
|
|
Handle<JSFunction> setter;
|
|
Handle<JSObject> holder;
|
|
if (LookupSetter(map, name, &setter, &holder)) {
|
|
AddCheckConstantFunction(holder, object, map);
|
|
if (FLAG_inline_accessors &&
|
|
TryInlineSetter(setter, ast_id, return_id, value)) {
|
|
return;
|
|
}
|
|
Drop(2);
|
|
Add<HPushArgument>(object);
|
|
Add<HPushArgument>(value);
|
|
instr = BuildCallConstantFunction(setter, 2);
|
|
} else {
|
|
Drop(2);
|
|
CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
|
|
name,
|
|
value,
|
|
map));
|
|
}
|
|
} else if (types != NULL && types->length() > 1) {
|
|
Drop(2);
|
|
return HandlePolymorphicStoreNamedField(ast_id, object, value, types, name);
|
|
} else {
|
|
Drop(2);
|
|
instr = BuildStoreNamedGeneric(object, name, value);
|
|
}
|
|
|
|
if (!ast_context()->IsEffect()) Push(value);
|
|
AddInstruction(instr);
|
|
if (instr->HasObservableSideEffects()) {
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
}
|
|
if (!ast_context()->IsEffect()) Drop(1);
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
|
|
Property* prop = expr->target()->AsProperty();
|
|
ASSERT(prop != NULL);
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
if (!prop->key()->IsPropertyName()) {
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
}
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
BuildStore(expr, prop, expr->id(),
|
|
expr->AssignmentId(), expr->IsUninitialized());
|
|
}
|
|
|
|
|
|
// Because not every expression has a position and there is not common
|
|
// superclass of Assignment and CountOperation, we cannot just pass the
|
|
// owning expression instead of position and ast_id separately.
|
|
void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
|
|
Variable* var,
|
|
HValue* value,
|
|
BailoutId ast_id) {
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
|
|
if (type == kUseCell) {
|
|
Handle<GlobalObject> global(current_info()->global_object());
|
|
Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
|
|
if (cell->type()->IsConstant()) {
|
|
IfBuilder builder(this);
|
|
HValue* constant = Add<HConstant>(cell->type()->AsConstant());
|
|
if (cell->type()->AsConstant()->IsNumber()) {
|
|
builder.If<HCompareNumericAndBranch>(value, constant, Token::EQ);
|
|
} else {
|
|
builder.If<HCompareObjectEqAndBranch>(value, constant);
|
|
}
|
|
builder.Then();
|
|
builder.Else();
|
|
Add<HDeoptimize>("Constant global variable assignment",
|
|
Deoptimizer::EAGER);
|
|
builder.End();
|
|
}
|
|
HInstruction* instr =
|
|
Add<HStoreGlobalCell>(value, cell, lookup.GetPropertyDetails());
|
|
if (instr->HasObservableSideEffects()) {
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
}
|
|
} else {
|
|
HGlobalObject* global_object = Add<HGlobalObject>();
|
|
HStoreNamedGeneric* instr =
|
|
Add<HStoreNamedGeneric>(global_object, var->name(),
|
|
value, function_strict_mode_flag());
|
|
USE(instr);
|
|
ASSERT(instr->HasObservableSideEffects());
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
|
|
Expression* target = expr->target();
|
|
VariableProxy* proxy = target->AsVariableProxy();
|
|
Property* prop = target->AsProperty();
|
|
ASSERT(proxy == NULL || prop == NULL);
|
|
|
|
// We have a second position recorded in the FullCodeGenerator to have
|
|
// type feedback for the binary operation.
|
|
BinaryOperation* operation = expr->binary_operation();
|
|
|
|
if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->mode() == LET) {
|
|
return Bailout(kUnsupportedLetCompoundAssignment);
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(operation));
|
|
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
HandleGlobalVariableAssignment(var,
|
|
Top(),
|
|
expr->AssignmentId());
|
|
break;
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
if (var->mode() == CONST) {
|
|
return Bailout(kUnsupportedConstCompoundAssignment);
|
|
}
|
|
BindIfLive(var, Top());
|
|
break;
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function
|
|
// using the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (current_info()->scope()->arguments() != NULL) {
|
|
// Parameters will be allocated to context slots. We have no
|
|
// direct way to detect that the variable is a parameter so we do
|
|
// a linear search of the parameter variables.
|
|
int count = current_info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == current_info()->scope()->parameter(i)) {
|
|
Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
|
|
}
|
|
}
|
|
}
|
|
|
|
HStoreContextSlot::Mode mode;
|
|
|
|
switch (var->mode()) {
|
|
case LET:
|
|
mode = HStoreContextSlot::kCheckDeoptimize;
|
|
break;
|
|
case CONST:
|
|
return ast_context()->ReturnValue(Pop());
|
|
case CONST_HARMONY:
|
|
// This case is checked statically so no need to
|
|
// perform checks here
|
|
UNREACHABLE();
|
|
default:
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot* instr = Add<HStoreContextSlot>(
|
|
context, var->index(), mode, Top());
|
|
if (instr->HasObservableSideEffects()) {
|
|
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout(kCompoundAssignmentToLookupSlot);
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else if (prop != NULL) {
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
HValue* object = Top();
|
|
HValue* key = NULL;
|
|
if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
|
|
prop->IsStringAccess()) {
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
key = Top();
|
|
}
|
|
|
|
CHECK_ALIVE(PushLoad(prop, object, key));
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
|
|
Push(BuildBinaryOperation(operation, left, right));
|
|
BuildStore(expr, prop, expr->id(),
|
|
expr->AssignmentId(), expr->IsUninitialized());
|
|
} else {
|
|
return Bailout(kInvalidLhsInCompoundAssignment);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
VariableProxy* proxy = expr->target()->AsVariableProxy();
|
|
Property* prop = expr->target()->AsProperty();
|
|
ASSERT(proxy == NULL || prop == NULL);
|
|
|
|
if (expr->is_compound()) {
|
|
HandleCompoundAssignment(expr);
|
|
return;
|
|
}
|
|
|
|
if (prop != NULL) {
|
|
HandlePropertyAssignment(expr);
|
|
} else if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
|
|
if (var->mode() == CONST) {
|
|
if (expr->op() != Token::INIT_CONST) {
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
if (var->IsStackAllocated()) {
|
|
// We insert a use of the old value to detect unsupported uses of const
|
|
// variables (e.g. initialization inside a loop).
|
|
HValue* old_value = environment()->Lookup(var);
|
|
Add<HUseConst>(old_value);
|
|
}
|
|
} else if (var->mode() == CONST_HARMONY) {
|
|
if (expr->op() != Token::INIT_CONST_HARMONY) {
|
|
return Bailout(kNonInitializerAssignmentToConst);
|
|
}
|
|
}
|
|
|
|
if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
|
|
|
|
// Handle the assignment.
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HandleGlobalVariableAssignment(var,
|
|
Top(),
|
|
expr->AssignmentId());
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
// Perform an initialization check for let declared variables
|
|
// or parameters.
|
|
if (var->mode() == LET && expr->op() == Token::ASSIGN) {
|
|
HValue* env_value = environment()->Lookup(var);
|
|
if (env_value == graph()->GetConstantHole()) {
|
|
return Bailout(kAssignmentToLetVariableBeforeInitialization);
|
|
}
|
|
}
|
|
// We do not allow the arguments object to occur in a context where it
|
|
// may escape, but assignments to stack-allocated locals are
|
|
// permitted.
|
|
CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
|
|
HValue* value = Pop();
|
|
BindIfLive(var, value);
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function using
|
|
// the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (current_info()->scope()->arguments() != NULL) {
|
|
// Parameters will rewrite to context slots. We have no direct way
|
|
// to detect that the variable is a parameter.
|
|
int count = current_info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == current_info()->scope()->parameter(i)) {
|
|
return Bailout(kAssignmentToParameterInArgumentsObject);
|
|
}
|
|
}
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->value()));
|
|
HStoreContextSlot::Mode mode;
|
|
if (expr->op() == Token::ASSIGN) {
|
|
switch (var->mode()) {
|
|
case LET:
|
|
mode = HStoreContextSlot::kCheckDeoptimize;
|
|
break;
|
|
case CONST:
|
|
return ast_context()->ReturnValue(Pop());
|
|
case CONST_HARMONY:
|
|
// This case is checked statically so no need to
|
|
// perform checks here
|
|
UNREACHABLE();
|
|
default:
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
}
|
|
} else if (expr->op() == Token::INIT_VAR ||
|
|
expr->op() == Token::INIT_LET ||
|
|
expr->op() == Token::INIT_CONST_HARMONY) {
|
|
mode = HStoreContextSlot::kNoCheck;
|
|
} else {
|
|
ASSERT(expr->op() == Token::INIT_CONST);
|
|
|
|
mode = HStoreContextSlot::kCheckIgnoreAssignment;
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot* instr = Add<HStoreContextSlot>(
|
|
context, var->index(), mode, Top());
|
|
if (instr->HasObservableSideEffects()) {
|
|
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout(kAssignmentToLOOKUPVariable);
|
|
}
|
|
} else {
|
|
return Bailout(kInvalidLeftHandSideInAssignment);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
|
|
// Generators are not optimized, so we should never get here.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
// We don't optimize functions with invalid left-hand sides in
|
|
// assignments, count operations, or for-in. Consequently throw can
|
|
// currently only occur in an effect context.
|
|
ASSERT(ast_context()->IsEffect());
|
|
CHECK_ALIVE(VisitForValue(expr->exception()));
|
|
|
|
HValue* value = environment()->Pop();
|
|
if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
Add<HThrow>(value);
|
|
Add<HSimulate>(expr->id());
|
|
|
|
// If the throw definitely exits the function, we can finish with a dummy
|
|
// control flow at this point. This is not the case if the throw is inside
|
|
// an inlined function which may be replaced.
|
|
if (call_context() == NULL) {
|
|
FinishExitCurrentBlock(New<HAbnormalExit>());
|
|
}
|
|
}
|
|
|
|
|
|
HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object,
|
|
HObjectAccess access) {
|
|
if (FLAG_track_double_fields && access.representation().IsDouble()) {
|
|
// load the heap number
|
|
HLoadNamedField* heap_number = Add<HLoadNamedField>(
|
|
object, access.WithRepresentation(Representation::Tagged()));
|
|
heap_number->set_type(HType::HeapNumber());
|
|
// load the double value from it
|
|
return New<HLoadNamedField>(
|
|
heap_number, HObjectAccess::ForHeapNumberValue());
|
|
}
|
|
return New<HLoadNamedField>(object, access);
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddLoadNamedField(HValue* object,
|
|
HObjectAccess access) {
|
|
return AddInstruction(BuildLoadNamedField(object, access));
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
|
|
if (string->IsConstant()) {
|
|
HConstant* c_string = HConstant::cast(string);
|
|
if (c_string->HasStringValue()) {
|
|
return Add<HConstant>(c_string->StringValue()->map()->instance_type());
|
|
}
|
|
}
|
|
return AddLoadNamedField(
|
|
AddLoadNamedField(string, HObjectAccess::ForMap()),
|
|
HObjectAccess::ForMapInstanceType());
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
|
|
if (string->IsConstant()) {
|
|
HConstant* c_string = HConstant::cast(string);
|
|
if (c_string->HasStringValue()) {
|
|
return Add<HConstant>(c_string->StringValue()->length());
|
|
}
|
|
}
|
|
return AddLoadNamedField(string, HObjectAccess::ForStringLength());
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric(
|
|
HValue* object,
|
|
Handle<String> name,
|
|
Property* expr) {
|
|
if (expr->IsUninitialized()) {
|
|
Add<HDeoptimize>("Insufficient type feedback for generic named load",
|
|
Deoptimizer::SOFT);
|
|
}
|
|
return New<HLoadNamedGeneric>(object, name);
|
|
}
|
|
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
|
|
HValue* key) {
|
|
return New<HLoadKeyedGeneric>(object, key);
|
|
}
|
|
|
|
|
|
LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
|
|
// Loads from a "stock" fast holey double arrays can elide the hole check.
|
|
LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
|
|
if (*map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS) &&
|
|
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
|
|
Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
|
|
Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
|
|
BuildCheckPrototypeMaps(prototype, object_prototype);
|
|
load_mode = ALLOW_RETURN_HOLE;
|
|
graph()->MarkDependsOnEmptyArrayProtoElements();
|
|
}
|
|
|
|
return load_mode;
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
HValue* dependency,
|
|
Handle<Map> map,
|
|
bool is_store,
|
|
KeyedAccessStoreMode store_mode) {
|
|
HCheckMaps* checked_object = Add<HCheckMaps>(object, map, top_info(),
|
|
dependency);
|
|
if (dependency) {
|
|
checked_object->ClearGVNFlag(kDependsOnElementsKind);
|
|
}
|
|
|
|
if (is_store && map->prototype()->IsJSObject()) {
|
|
// monomorphic stores need a prototype chain check because shape
|
|
// changes could allow callbacks on elements in the chain that
|
|
// aren't compatible with monomorphic keyed stores.
|
|
Handle<JSObject> prototype(JSObject::cast(map->prototype()));
|
|
Object* holder = map->prototype();
|
|
while (holder->GetPrototype(isolate())->IsJSObject()) {
|
|
holder = holder->GetPrototype(isolate());
|
|
}
|
|
ASSERT(holder->GetPrototype(isolate())->IsNull());
|
|
|
|
BuildCheckPrototypeMaps(prototype,
|
|
Handle<JSObject>(JSObject::cast(holder)));
|
|
}
|
|
|
|
LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
|
|
return BuildUncheckedMonomorphicElementAccess(
|
|
checked_object, key, val,
|
|
map->instance_type() == JS_ARRAY_TYPE,
|
|
map->elements_kind(), is_store,
|
|
load_mode, store_mode);
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
SmallMapList* maps) {
|
|
// For polymorphic loads of similar elements kinds (i.e. all tagged or all
|
|
// double), always use the "worst case" code without a transition. This is
|
|
// much faster than transitioning the elements to the worst case, trading a
|
|
// HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
|
|
bool has_double_maps = false;
|
|
bool has_smi_or_object_maps = false;
|
|
bool has_js_array_access = false;
|
|
bool has_non_js_array_access = false;
|
|
bool has_seen_holey_elements = false;
|
|
Handle<Map> most_general_consolidated_map;
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
if (!map->IsJSObjectMap()) return NULL;
|
|
// Don't allow mixing of JSArrays with JSObjects.
|
|
if (map->instance_type() == JS_ARRAY_TYPE) {
|
|
if (has_non_js_array_access) return NULL;
|
|
has_js_array_access = true;
|
|
} else if (has_js_array_access) {
|
|
return NULL;
|
|
} else {
|
|
has_non_js_array_access = true;
|
|
}
|
|
// Don't allow mixed, incompatible elements kinds.
|
|
if (map->has_fast_double_elements()) {
|
|
if (has_smi_or_object_maps) return NULL;
|
|
has_double_maps = true;
|
|
} else if (map->has_fast_smi_or_object_elements()) {
|
|
if (has_double_maps) return NULL;
|
|
has_smi_or_object_maps = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
// Remember if we've ever seen holey elements.
|
|
if (IsHoleyElementsKind(map->elements_kind())) {
|
|
has_seen_holey_elements = true;
|
|
}
|
|
// Remember the most general elements kind, the code for its load will
|
|
// properly handle all of the more specific cases.
|
|
if ((i == 0) || IsMoreGeneralElementsKindTransition(
|
|
most_general_consolidated_map->elements_kind(),
|
|
map->elements_kind())) {
|
|
most_general_consolidated_map = map;
|
|
}
|
|
}
|
|
if (!has_double_maps && !has_smi_or_object_maps) return NULL;
|
|
|
|
HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
|
|
// FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
|
|
// If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
|
|
ElementsKind consolidated_elements_kind = has_seen_holey_elements
|
|
? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
|
|
: most_general_consolidated_map->elements_kind();
|
|
HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
|
|
checked_object, key, val,
|
|
most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
|
|
consolidated_elements_kind,
|
|
false, NEVER_RETURN_HOLE, STANDARD_STORE);
|
|
return instr;
|
|
}
|
|
|
|
|
|
HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* val,
|
|
SmallMapList* maps,
|
|
bool is_store,
|
|
KeyedAccessStoreMode store_mode,
|
|
bool* has_side_effects) {
|
|
*has_side_effects = false;
|
|
BuildCheckHeapObject(object);
|
|
|
|
if (!is_store) {
|
|
HInstruction* consolidated_load =
|
|
TryBuildConsolidatedElementLoad(object, key, val, maps);
|
|
if (consolidated_load != NULL) {
|
|
*has_side_effects |= consolidated_load->HasObservableSideEffects();
|
|
return consolidated_load;
|
|
}
|
|
}
|
|
|
|
// Elements_kind transition support.
|
|
MapHandleList transition_target(maps->length());
|
|
// Collect possible transition targets.
|
|
MapHandleList possible_transitioned_maps(maps->length());
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
ElementsKind elements_kind = map->elements_kind();
|
|
if (IsFastElementsKind(elements_kind) &&
|
|
elements_kind != GetInitialFastElementsKind()) {
|
|
possible_transitioned_maps.Add(map);
|
|
}
|
|
}
|
|
// Get transition target for each map (NULL == no transition).
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
Handle<Map> transitioned_map =
|
|
map->FindTransitionedMap(&possible_transitioned_maps);
|
|
transition_target.Add(transitioned_map);
|
|
}
|
|
|
|
MapHandleList untransitionable_maps(maps->length());
|
|
HTransitionElementsKind* transition = NULL;
|
|
for (int i = 0; i < maps->length(); ++i) {
|
|
Handle<Map> map = maps->at(i);
|
|
ASSERT(map->IsMap());
|
|
if (!transition_target.at(i).is_null()) {
|
|
ASSERT(Map::IsValidElementsTransition(
|
|
map->elements_kind(),
|
|
transition_target.at(i)->elements_kind()));
|
|
transition = Add<HTransitionElementsKind>(object, map,
|
|
transition_target.at(i));
|
|
} else {
|
|
untransitionable_maps.Add(map);
|
|
}
|
|
}
|
|
|
|
// If only one map is left after transitioning, handle this case
|
|
// monomorphically.
|
|
ASSERT(untransitionable_maps.length() >= 1);
|
|
if (untransitionable_maps.length() == 1) {
|
|
Handle<Map> untransitionable_map = untransitionable_maps[0];
|
|
HInstruction* instr = NULL;
|
|
if (untransitionable_map->has_slow_elements_kind() ||
|
|
!untransitionable_map->IsJSObjectMap()) {
|
|
instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
|
|
: BuildLoadKeyedGeneric(object, key));
|
|
} else {
|
|
instr = BuildMonomorphicElementAccess(
|
|
object, key, val, transition, untransitionable_map, is_store,
|
|
store_mode);
|
|
}
|
|
*has_side_effects |= instr->HasObservableSideEffects();
|
|
return is_store ? NULL : instr;
|
|
}
|
|
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
|
|
for (int i = 0; i < untransitionable_maps.length(); ++i) {
|
|
Handle<Map> map = untransitionable_maps[i];
|
|
if (!map->IsJSObjectMap()) continue;
|
|
ElementsKind elements_kind = map->elements_kind();
|
|
HBasicBlock* this_map = graph()->CreateBasicBlock();
|
|
HBasicBlock* other_map = graph()->CreateBasicBlock();
|
|
HCompareMap* mapcompare =
|
|
New<HCompareMap>(object, map, this_map, other_map);
|
|
FinishCurrentBlock(mapcompare);
|
|
|
|
set_current_block(this_map);
|
|
HInstruction* access = NULL;
|
|
if (IsDictionaryElementsKind(elements_kind)) {
|
|
access = is_store
|
|
? AddInstruction(BuildStoreKeyedGeneric(object, key, val))
|
|
: AddInstruction(BuildLoadKeyedGeneric(object, key));
|
|
} else {
|
|
ASSERT(IsFastElementsKind(elements_kind) ||
|
|
IsExternalArrayElementsKind(elements_kind));
|
|
LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
|
|
// Happily, mapcompare is a checked object.
|
|
access = BuildUncheckedMonomorphicElementAccess(
|
|
mapcompare, key, val,
|
|
map->instance_type() == JS_ARRAY_TYPE,
|
|
elements_kind, is_store,
|
|
load_mode,
|
|
store_mode);
|
|
}
|
|
*has_side_effects |= access->HasObservableSideEffects();
|
|
// The caller will use has_side_effects and add a correct Simulate.
|
|
access->SetFlag(HValue::kHasNoObservableSideEffects);
|
|
if (!is_store) {
|
|
Push(access);
|
|
}
|
|
NoObservableSideEffectsScope scope(this);
|
|
GotoNoSimulate(join);
|
|
set_current_block(other_map);
|
|
}
|
|
|
|
// Deopt if none of the cases matched.
|
|
NoObservableSideEffectsScope scope(this);
|
|
FinishExitWithHardDeoptimization("Unknown map in polymorphic element access",
|
|
join);
|
|
set_current_block(join);
|
|
return is_store ? NULL : Pop();
|
|
}
|
|
|
|
|
|
HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
|
|
HValue* obj,
|
|
HValue* key,
|
|
HValue* val,
|
|
Expression* expr,
|
|
bool is_store,
|
|
bool* has_side_effects) {
|
|
ASSERT(!expr->IsPropertyName());
|
|
HInstruction* instr = NULL;
|
|
|
|
SmallMapList* types;
|
|
bool monomorphic = ComputeReceiverTypes(expr, obj, &types);
|
|
|
|
bool force_generic = false;
|
|
if (is_store && (monomorphic || (types != NULL && !types->is_empty()))) {
|
|
// Stores can't be mono/polymorphic if their prototype chain has dictionary
|
|
// elements. However a receiver map that has dictionary elements itself
|
|
// should be left to normal mono/poly behavior (the other maps may benefit
|
|
// from highly optimized stores).
|
|
for (int i = 0; i < types->length(); i++) {
|
|
Handle<Map> current_map = types->at(i);
|
|
if (current_map->DictionaryElementsInPrototypeChainOnly()) {
|
|
force_generic = true;
|
|
monomorphic = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (monomorphic) {
|
|
Handle<Map> map = types->first();
|
|
if (map->has_slow_elements_kind()) {
|
|
instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
|
|
: BuildLoadKeyedGeneric(obj, key);
|
|
AddInstruction(instr);
|
|
} else {
|
|
BuildCheckHeapObject(obj);
|
|
instr = BuildMonomorphicElementAccess(
|
|
obj, key, val, NULL, map, is_store, expr->GetStoreMode());
|
|
}
|
|
} else if (!force_generic && (types != NULL && !types->is_empty())) {
|
|
return HandlePolymorphicElementAccess(
|
|
obj, key, val, types, is_store,
|
|
expr->GetStoreMode(), has_side_effects);
|
|
} else {
|
|
if (is_store) {
|
|
if (expr->IsAssignment() &&
|
|
expr->AsAssignment()->HasNoTypeInformation()) {
|
|
Add<HDeoptimize>("Insufficient type feedback for keyed store",
|
|
Deoptimizer::SOFT);
|
|
}
|
|
instr = BuildStoreKeyedGeneric(obj, key, val);
|
|
} else {
|
|
if (expr->AsProperty()->HasNoTypeInformation()) {
|
|
Add<HDeoptimize>("Insufficient type feedback for keyed load",
|
|
Deoptimizer::SOFT);
|
|
}
|
|
instr = BuildLoadKeyedGeneric(obj, key);
|
|
}
|
|
AddInstruction(instr);
|
|
}
|
|
*has_side_effects = instr->HasObservableSideEffects();
|
|
return instr;
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric(
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* value) {
|
|
return New<HStoreKeyedGeneric>(
|
|
object,
|
|
key,
|
|
value,
|
|
function_strict_mode_flag());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
|
|
// Outermost function already has arguments on the stack.
|
|
if (function_state()->outer() == NULL) return;
|
|
|
|
if (function_state()->arguments_pushed()) return;
|
|
|
|
// Push arguments when entering inlined function.
|
|
HEnterInlined* entry = function_state()->entry();
|
|
entry->set_arguments_pushed();
|
|
|
|
HArgumentsObject* arguments = entry->arguments_object();
|
|
const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
|
|
|
|
HInstruction* insert_after = entry;
|
|
for (int i = 0; i < arguments_values->length(); i++) {
|
|
HValue* argument = arguments_values->at(i);
|
|
HInstruction* push_argument = New<HPushArgument>(argument);
|
|
push_argument->InsertAfter(insert_after);
|
|
insert_after = push_argument;
|
|
}
|
|
|
|
HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
|
|
arguments_elements->ClearFlag(HValue::kUseGVN);
|
|
arguments_elements->InsertAfter(insert_after);
|
|
function_state()->set_arguments_elements(arguments_elements);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
|
|
VariableProxy* proxy = expr->obj()->AsVariableProxy();
|
|
if (proxy == NULL) return false;
|
|
if (!proxy->var()->IsStackAllocated()) return false;
|
|
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
|
|
return false;
|
|
}
|
|
|
|
HInstruction* result = NULL;
|
|
if (expr->key()->IsPropertyName()) {
|
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
|
if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
|
|
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = Add<HArgumentsElements>(false);
|
|
result = New<HArgumentsLength>(elements);
|
|
} else {
|
|
// Number of arguments without receiver.
|
|
int argument_count = environment()->
|
|
arguments_environment()->parameter_count() - 1;
|
|
result = New<HConstant>(argument_count);
|
|
}
|
|
} else {
|
|
Push(graph()->GetArgumentsObject());
|
|
CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
|
|
HValue* key = Pop();
|
|
Drop(1); // Arguments object.
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = Add<HArgumentsElements>(false);
|
|
HInstruction* length = Add<HArgumentsLength>(elements);
|
|
HInstruction* checked_key = Add<HBoundsCheck>(key, length);
|
|
result = New<HAccessArgumentsAt>(elements, length, checked_key);
|
|
} else {
|
|
EnsureArgumentsArePushedForAccess();
|
|
|
|
// Number of arguments without receiver.
|
|
HInstruction* elements = function_state()->arguments_elements();
|
|
int argument_count = environment()->
|
|
arguments_environment()->parameter_count() - 1;
|
|
HInstruction* length = Add<HConstant>(argument_count);
|
|
HInstruction* checked_key = Add<HBoundsCheck>(key, length);
|
|
result = New<HAccessArgumentsAt>(elements, length, checked_key);
|
|
}
|
|
}
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::PushLoad(Property* expr,
|
|
HValue* object,
|
|
HValue* key) {
|
|
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
|
|
Push(object);
|
|
if (key != NULL) Push(key);
|
|
BuildLoad(expr, expr->LoadId());
|
|
}
|
|
|
|
|
|
static bool AreStringTypes(SmallMapList* types) {
|
|
for (int i = 0; i < types->length(); i++) {
|
|
if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildLoad(Property* expr,
|
|
BailoutId ast_id) {
|
|
HInstruction* instr = NULL;
|
|
if (expr->IsStringAccess()) {
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HInstruction* char_code = BuildStringCharCodeAt(string, index);
|
|
AddInstruction(char_code);
|
|
instr = NewUncasted<HStringCharFromCode>(char_code);
|
|
|
|
} else if (expr->IsFunctionPrototype()) {
|
|
HValue* function = Pop();
|
|
BuildCheckHeapObject(function);
|
|
instr = New<HLoadFunctionPrototype>(function);
|
|
|
|
} else if (expr->key()->IsPropertyName()) {
|
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
|
HValue* object = Pop();
|
|
|
|
SmallMapList* types;
|
|
ComputeReceiverTypes(expr, object, &types);
|
|
ASSERT(types != NULL);
|
|
|
|
if (types->length() > 0) {
|
|
PropertyAccessInfo info(isolate(), types->first(), name);
|
|
if (!info.CanLoadAsMonomorphic(types)) {
|
|
return HandlePolymorphicLoadNamedField(
|
|
ast_id, expr->LoadId(), object, types, name);
|
|
}
|
|
|
|
BuildCheckHeapObject(object);
|
|
HInstruction* checked_object;
|
|
if (AreStringTypes(types)) {
|
|
checked_object =
|
|
Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
|
|
} else {
|
|
checked_object = Add<HCheckMaps>(object, types);
|
|
}
|
|
instr = BuildLoadMonomorphic(
|
|
&info, object, checked_object, ast_id, expr->LoadId());
|
|
if (instr == NULL) return;
|
|
if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
|
|
} else {
|
|
instr = BuildLoadNamedGeneric(object, name, expr);
|
|
}
|
|
|
|
} else {
|
|
HValue* key = Pop();
|
|
HValue* obj = Pop();
|
|
|
|
bool has_side_effects = false;
|
|
HValue* load = HandleKeyedElementAccess(
|
|
obj, key, NULL, expr,
|
|
false, // is_store
|
|
&has_side_effects);
|
|
if (has_side_effects) {
|
|
if (ast_context()->IsEffect()) {
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
} else {
|
|
Push(load);
|
|
Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
|
|
Drop(1);
|
|
}
|
|
}
|
|
return ast_context()->ReturnValue(load);
|
|
}
|
|
return ast_context()->ReturnInstruction(instr, ast_id);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
|
|
if (TryArgumentsAccess(expr)) return;
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->obj()));
|
|
if ((!expr->IsFunctionPrototype() && !expr->key()->IsPropertyName()) ||
|
|
expr->IsStringAccess()) {
|
|
CHECK_ALIVE(VisitForValue(expr->key()));
|
|
}
|
|
|
|
BuildLoad(expr, expr->id());
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant,
|
|
CompilationInfo* info) {
|
|
HConstant* constant_value = New<HConstant>(constant);
|
|
|
|
if (constant->map()->CanOmitMapChecks()) {
|
|
constant->map()->AddDependentCompilationInfo(
|
|
DependentCode::kPrototypeCheckGroup, info);
|
|
return constant_value;
|
|
}
|
|
|
|
AddInstruction(constant_value);
|
|
HCheckMaps* check =
|
|
Add<HCheckMaps>(constant_value, handle(constant->map()), info);
|
|
check->ClearGVNFlag(kDependsOnElementsKind);
|
|
return check;
|
|
}
|
|
|
|
|
|
HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
|
|
Handle<JSObject> holder) {
|
|
while (!prototype.is_identical_to(holder)) {
|
|
BuildConstantMapCheck(prototype, top_info());
|
|
prototype = handle(JSObject::cast(prototype->GetPrototype()));
|
|
}
|
|
|
|
HInstruction* checked_object = BuildConstantMapCheck(prototype, top_info());
|
|
if (!checked_object->IsLinked()) AddInstruction(checked_object);
|
|
return checked_object;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
|
|
Handle<Map> receiver_map) {
|
|
if (!holder.is_null()) {
|
|
Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
|
|
BuildCheckPrototypeMaps(prototype, holder);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::AddCheckConstantFunction(
|
|
Handle<JSObject> holder,
|
|
HValue* receiver,
|
|
Handle<Map> receiver_map) {
|
|
// Constant functions have the nice property that the map will change if they
|
|
// are overwritten. Therefore it is enough to check the map of the holder and
|
|
// its prototypes.
|
|
AddCheckMap(receiver, receiver_map);
|
|
AddCheckPrototypeMaps(holder, receiver_map);
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
|
|
HValue* fun, int argument_count, bool pass_argument_count) {
|
|
return New<HCallJSFunction>(
|
|
fun, argument_count, pass_argument_count);
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
|
|
HValue* fun, HValue* context,
|
|
int argument_count, HValue* expected_param_count) {
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate()->call_descriptor(Isolate::ArgumentAdaptorCall);
|
|
|
|
HValue* arity = Add<HConstant>(argument_count - 1);
|
|
|
|
HValue* op_vals[] = { fun, context, arity, expected_param_count };
|
|
|
|
Handle<Code> adaptor =
|
|
isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
HConstant* adaptor_value = Add<HConstant>(adaptor);
|
|
|
|
return New<HCallWithDescriptor>(
|
|
adaptor_value, argument_count, descriptor,
|
|
Vector<HValue*>(op_vals, descriptor->environment_length()));
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
|
|
Handle<JSFunction> jsfun, int argument_count) {
|
|
HValue* target = Add<HConstant>(jsfun);
|
|
// For constant functions, we try to avoid calling the
|
|
// argument adaptor and instead call the function directly
|
|
int formal_parameter_count = jsfun->shared()->formal_parameter_count();
|
|
bool dont_adapt_arguments =
|
|
(formal_parameter_count ==
|
|
SharedFunctionInfo::kDontAdaptArgumentsSentinel);
|
|
int arity = argument_count - 1;
|
|
bool can_invoke_directly =
|
|
dont_adapt_arguments || formal_parameter_count == arity;
|
|
if (can_invoke_directly) {
|
|
return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
|
|
} else {
|
|
HValue* param_count_value = Add<HConstant>(formal_parameter_count);
|
|
HValue* context = Add<HLoadNamedField>(target,
|
|
HObjectAccess::ForFunctionContextPointer());
|
|
return NewArgumentAdaptorCall(target, context,
|
|
argument_count, param_count_value);
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::NewCallNamed(
|
|
Handle<String> name, int argument_count) {
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate()->call_descriptor(Isolate::NamedCall);
|
|
HValue* op_vals[] = { context(), Add<HConstant>(name) };
|
|
int arity = argument_count - 1;
|
|
Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arity);
|
|
|
|
return New<HCallWithDescriptor>(
|
|
Add<HConstant>(ic), argument_count, descriptor,
|
|
Vector<HValue*>(op_vals, descriptor->environment_length()));
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::NewCallKeyed(
|
|
HValue* key, int argument_count) {
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate()->call_descriptor(Isolate::KeyedCall);
|
|
HValue* op_vals[] = { context(), key };
|
|
int arity = argument_count - 1;
|
|
Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
|
|
|
|
return New<HCallWithDescriptor>(
|
|
Add<HConstant>(ic), argument_count, descriptor,
|
|
Vector<HValue*>(op_vals, descriptor->environment_length()));
|
|
}
|
|
|
|
class FunctionSorter {
|
|
public:
|
|
FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
|
|
FunctionSorter(int index, int ticks, int ast_length, int src_length)
|
|
: index_(index),
|
|
ticks_(ticks),
|
|
ast_length_(ast_length),
|
|
src_length_(src_length) { }
|
|
|
|
int index() const { return index_; }
|
|
int ticks() const { return ticks_; }
|
|
int ast_length() const { return ast_length_; }
|
|
int src_length() const { return src_length_; }
|
|
|
|
private:
|
|
int index_;
|
|
int ticks_;
|
|
int ast_length_;
|
|
int src_length_;
|
|
};
|
|
|
|
|
|
inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
|
|
int diff = lhs.ticks() - rhs.ticks();
|
|
if (diff != 0) return diff > 0;
|
|
diff = lhs.ast_length() - rhs.ast_length();
|
|
if (diff != 0) return diff < 0;
|
|
return lhs.src_length() < rhs.src_length();
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryCallPolymorphicAsMonomorphic(
|
|
Call* expr,
|
|
HValue* receiver,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
if (types->length() > kMaxCallPolymorphism) return false;
|
|
|
|
PropertyAccessInfo info(isolate(), types->at(0), name);
|
|
if (!info.CanLoadAsMonomorphic(types)) return false;
|
|
if (!expr->ComputeTarget(info.map(), name)) return false;
|
|
|
|
BuildCheckHeapObject(receiver);
|
|
Add<HCheckMaps>(receiver, types);
|
|
AddCheckPrototypeMaps(expr->holder(), info.map());
|
|
if (FLAG_trace_inlining) {
|
|
Handle<JSFunction> caller = current_info()->closure();
|
|
SmartArrayPointer<char> caller_name =
|
|
caller->shared()->DebugName()->ToCString();
|
|
PrintF("Trying to inline the polymorphic call to %s from %s\n",
|
|
name->ToCString().get(), caller_name.get());
|
|
}
|
|
|
|
if (!TryInlineCall(expr)) {
|
|
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
|
|
HInstruction* call = BuildCallConstantFunction(
|
|
expr->target(), argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
AddInstruction(call);
|
|
if (!ast_context()->IsEffect()) Push(call);
|
|
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
|
|
if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
|
|
Call* expr,
|
|
HValue* receiver,
|
|
SmallMapList* types,
|
|
Handle<String> name) {
|
|
if (TryCallPolymorphicAsMonomorphic(expr, receiver, types, name)) return;
|
|
|
|
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
|
|
HBasicBlock* join = NULL;
|
|
FunctionSorter order[kMaxCallPolymorphism];
|
|
int ordered_functions = 0;
|
|
|
|
Handle<Map> initial_string_map(
|
|
isolate()->native_context()->string_function()->initial_map());
|
|
Handle<Map> string_marker_map(
|
|
JSObject::cast(initial_string_map->prototype())->map());
|
|
Handle<Map> initial_number_map(
|
|
isolate()->native_context()->number_function()->initial_map());
|
|
Handle<Map> number_marker_map(
|
|
JSObject::cast(initial_number_map->prototype())->map());
|
|
Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
|
|
|
|
bool handle_smi = false;
|
|
|
|
for (int i = 0;
|
|
i < types->length() && ordered_functions < kMaxCallPolymorphism;
|
|
++i) {
|
|
Handle<Map> map = types->at(i);
|
|
if (expr->ComputeTarget(map, name)) {
|
|
if (map.is_identical_to(number_marker_map)) handle_smi = true;
|
|
order[ordered_functions++] =
|
|
FunctionSorter(i,
|
|
expr->target()->shared()->profiler_ticks(),
|
|
InliningAstSize(expr->target()),
|
|
expr->target()->shared()->SourceSize());
|
|
}
|
|
}
|
|
|
|
std::sort(order, order + ordered_functions);
|
|
|
|
HBasicBlock* number_block = NULL;
|
|
|
|
for (int fn = 0; fn < ordered_functions; ++fn) {
|
|
int i = order[fn].index();
|
|
Handle<Map> map = types->at(i);
|
|
if (fn == 0) {
|
|
// Only needed once.
|
|
join = graph()->CreateBasicBlock();
|
|
if (handle_smi) {
|
|
HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
|
|
number_block = graph()->CreateBasicBlock();
|
|
FinishCurrentBlock(New<HIsSmiAndBranch>(
|
|
receiver, empty_smi_block, not_smi_block));
|
|
Goto(empty_smi_block, number_block);
|
|
set_current_block(not_smi_block);
|
|
} else {
|
|
BuildCheckHeapObject(receiver);
|
|
}
|
|
}
|
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
|
HUnaryControlInstruction* compare;
|
|
|
|
if (handle_smi && map.is_identical_to(number_marker_map)) {
|
|
compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
|
|
map = initial_number_map;
|
|
expr->set_number_check(
|
|
Handle<JSObject>(JSObject::cast(map->prototype())));
|
|
} else if (map.is_identical_to(string_marker_map)) {
|
|
compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
|
|
map = initial_string_map;
|
|
expr->set_string_check(
|
|
Handle<JSObject>(JSObject::cast(map->prototype())));
|
|
} else {
|
|
compare = New<HCompareMap>(receiver, map, if_true, if_false);
|
|
expr->set_map_check();
|
|
}
|
|
|
|
FinishCurrentBlock(compare);
|
|
|
|
if (expr->check_type() == NUMBER_CHECK) {
|
|
Goto(if_true, number_block);
|
|
if_true = number_block;
|
|
number_block->SetJoinId(expr->id());
|
|
}
|
|
set_current_block(if_true);
|
|
|
|
expr->ComputeTarget(map, name);
|
|
AddCheckPrototypeMaps(expr->holder(), map);
|
|
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
|
|
Handle<JSFunction> caller = current_info()->closure();
|
|
SmartArrayPointer<char> caller_name =
|
|
caller->shared()->DebugName()->ToCString();
|
|
PrintF("Trying to inline the polymorphic call to %s from %s\n",
|
|
name->ToCString().get(),
|
|
caller_name.get());
|
|
}
|
|
if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
|
|
// Trying to inline will signal that we should bailout from the
|
|
// entire compilation by setting stack overflow on the visitor.
|
|
if (HasStackOverflow()) return;
|
|
} else {
|
|
HInstruction* call = BuildCallConstantFunction(
|
|
expr->target(), argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
AddInstruction(call);
|
|
if (!ast_context()->IsEffect()) Push(call);
|
|
}
|
|
|
|
if (current_block() != NULL) Goto(join);
|
|
set_current_block(if_false);
|
|
}
|
|
|
|
// Finish up. Unconditionally deoptimize if we've handled all the maps we
|
|
// know about and do not want to handle ones we've never seen. Otherwise
|
|
// use a generic IC.
|
|
if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
|
|
// Because the deopt may be the only path in the polymorphic call, make sure
|
|
// that the environment stack matches the depth on deopt that it otherwise
|
|
// would have had after a successful call.
|
|
Drop(argument_count);
|
|
if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
|
|
FinishExitWithHardDeoptimization("Unknown map in polymorphic call", join);
|
|
} else {
|
|
HInstruction* call = NewCallNamed(name, argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
|
|
if (join != NULL) {
|
|
AddInstruction(call);
|
|
if (!ast_context()->IsEffect()) Push(call);
|
|
Goto(join);
|
|
} else {
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
// We assume that control flow is always live after an expression. So
|
|
// even without predecessors to the join block, we set it as the exit
|
|
// block and continue by adding instructions there.
|
|
ASSERT(join != NULL);
|
|
if (join->HasPredecessor()) {
|
|
set_current_block(join);
|
|
join->SetJoinId(expr->id());
|
|
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
|
|
} else {
|
|
set_current_block(NULL);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
|
|
Handle<JSFunction> caller,
|
|
const char* reason) {
|
|
if (FLAG_trace_inlining) {
|
|
SmartArrayPointer<char> target_name =
|
|
target->shared()->DebugName()->ToCString();
|
|
SmartArrayPointer<char> caller_name =
|
|
caller->shared()->DebugName()->ToCString();
|
|
if (reason == NULL) {
|
|
PrintF("Inlined %s called from %s.\n", target_name.get(),
|
|
caller_name.get());
|
|
} else {
|
|
PrintF("Did not inline %s called from %s (%s).\n",
|
|
target_name.get(), caller_name.get(), reason);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static const int kNotInlinable = 1000000000;
|
|
|
|
|
|
int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
|
|
if (!FLAG_use_inlining) return kNotInlinable;
|
|
|
|
// Precondition: call is monomorphic and we have found a target with the
|
|
// appropriate arity.
|
|
Handle<JSFunction> caller = current_info()->closure();
|
|
Handle<SharedFunctionInfo> target_shared(target->shared());
|
|
|
|
// Always inline builtins marked for inlining.
|
|
if (target->IsBuiltin()) {
|
|
return target_shared->inline_builtin() ? 0 : kNotInlinable;
|
|
}
|
|
|
|
// Do a quick check on source code length to avoid parsing large
|
|
// inlining candidates.
|
|
if (target_shared->SourceSize() >
|
|
Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
|
|
TraceInline(target, caller, "target text too big");
|
|
return kNotInlinable;
|
|
}
|
|
|
|
// Target must be inlineable.
|
|
if (!target_shared->IsInlineable()) {
|
|
TraceInline(target, caller, "target not inlineable");
|
|
return kNotInlinable;
|
|
}
|
|
if (target_shared->dont_inline() || target_shared->dont_optimize()) {
|
|
TraceInline(target, caller, "target contains unsupported syntax [early]");
|
|
return kNotInlinable;
|
|
}
|
|
|
|
int nodes_added = target_shared->ast_node_count();
|
|
return nodes_added;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
|
|
int arguments_count,
|
|
HValue* implicit_return_value,
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
InliningKind inlining_kind) {
|
|
int nodes_added = InliningAstSize(target);
|
|
if (nodes_added == kNotInlinable) return false;
|
|
|
|
Handle<JSFunction> caller = current_info()->closure();
|
|
|
|
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
|
|
TraceInline(target, caller, "target AST is too large [early]");
|
|
return false;
|
|
}
|
|
|
|
// Don't inline deeper than the maximum number of inlining levels.
|
|
HEnvironment* env = environment();
|
|
int current_level = 1;
|
|
while (env->outer() != NULL) {
|
|
if (current_level == FLAG_max_inlining_levels) {
|
|
TraceInline(target, caller, "inline depth limit reached");
|
|
return false;
|
|
}
|
|
if (env->outer()->frame_type() == JS_FUNCTION) {
|
|
current_level++;
|
|
}
|
|
env = env->outer();
|
|
}
|
|
|
|
// Don't inline recursive functions.
|
|
for (FunctionState* state = function_state();
|
|
state != NULL;
|
|
state = state->outer()) {
|
|
if (*state->compilation_info()->closure() == *target) {
|
|
TraceInline(target, caller, "target is recursive");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We don't want to add more than a certain number of nodes from inlining.
|
|
if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
|
|
kUnlimitedMaxInlinedNodesCumulative)) {
|
|
TraceInline(target, caller, "cumulative AST node limit reached");
|
|
return false;
|
|
}
|
|
|
|
// Parse and allocate variables.
|
|
CompilationInfo target_info(target, zone());
|
|
Handle<SharedFunctionInfo> target_shared(target->shared());
|
|
if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
|
|
if (target_info.isolate()->has_pending_exception()) {
|
|
// Parse or scope error, never optimize this function.
|
|
SetStackOverflow();
|
|
target_shared->DisableOptimization(kParseScopeError);
|
|
}
|
|
TraceInline(target, caller, "parse failure");
|
|
return false;
|
|
}
|
|
|
|
if (target_info.scope()->num_heap_slots() > 0) {
|
|
TraceInline(target, caller, "target has context-allocated variables");
|
|
return false;
|
|
}
|
|
FunctionLiteral* function = target_info.function();
|
|
|
|
// The following conditions must be checked again after re-parsing, because
|
|
// earlier the information might not have been complete due to lazy parsing.
|
|
nodes_added = function->ast_node_count();
|
|
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
|
|
TraceInline(target, caller, "target AST is too large [late]");
|
|
return false;
|
|
}
|
|
AstProperties::Flags* flags(function->flags());
|
|
if (flags->Contains(kDontInline) || function->dont_optimize()) {
|
|
TraceInline(target, caller, "target contains unsupported syntax [late]");
|
|
return false;
|
|
}
|
|
|
|
// If the function uses the arguments object check that inlining of functions
|
|
// with arguments object is enabled and the arguments-variable is
|
|
// stack allocated.
|
|
if (function->scope()->arguments() != NULL) {
|
|
if (!FLAG_inline_arguments) {
|
|
TraceInline(target, caller, "target uses arguments object");
|
|
return false;
|
|
}
|
|
|
|
if (!function->scope()->arguments()->IsStackAllocated()) {
|
|
TraceInline(target,
|
|
caller,
|
|
"target uses non-stackallocated arguments object");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All declarations must be inlineable.
|
|
ZoneList<Declaration*>* decls = target_info.scope()->declarations();
|
|
int decl_count = decls->length();
|
|
for (int i = 0; i < decl_count; ++i) {
|
|
if (!decls->at(i)->IsInlineable()) {
|
|
TraceInline(target, caller, "target has non-trivial declaration");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Generate the deoptimization data for the unoptimized version of
|
|
// the target function if we don't already have it.
|
|
if (!target_shared->has_deoptimization_support()) {
|
|
// Note that we compile here using the same AST that we will use for
|
|
// generating the optimized inline code.
|
|
target_info.EnableDeoptimizationSupport();
|
|
if (!FullCodeGenerator::MakeCode(&target_info)) {
|
|
TraceInline(target, caller, "could not generate deoptimization info");
|
|
return false;
|
|
}
|
|
if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
|
|
// The scope info might not have been set if a lazily compiled
|
|
// function is inlined before being called for the first time.
|
|
Handle<ScopeInfo> target_scope_info =
|
|
ScopeInfo::Create(target_info.scope(), zone());
|
|
target_shared->set_scope_info(*target_scope_info);
|
|
}
|
|
target_shared->EnableDeoptimizationSupport(*target_info.code());
|
|
Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
|
|
&target_info,
|
|
target_shared);
|
|
}
|
|
|
|
// ----------------------------------------------------------------
|
|
// After this point, we've made a decision to inline this function (so
|
|
// TryInline should always return true).
|
|
|
|
// Type-check the inlined function.
|
|
ASSERT(target_shared->has_deoptimization_support());
|
|
AstTyper::Run(&target_info);
|
|
|
|
// Save the pending call context. Set up new one for the inlined function.
|
|
// The function state is new-allocated because we need to delete it
|
|
// in two different places.
|
|
FunctionState* target_state = new FunctionState(
|
|
this, &target_info, inlining_kind);
|
|
|
|
HConstant* undefined = graph()->GetConstantUndefined();
|
|
|
|
HEnvironment* inner_env =
|
|
environment()->CopyForInlining(target,
|
|
arguments_count,
|
|
function,
|
|
undefined,
|
|
function_state()->inlining_kind());
|
|
|
|
HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
|
|
inner_env->BindContext(context);
|
|
|
|
Add<HSimulate>(return_id);
|
|
current_block()->UpdateEnvironment(inner_env);
|
|
HArgumentsObject* arguments_object = NULL;
|
|
|
|
// If the function uses arguments object create and bind one, also copy
|
|
// current arguments values to use them for materialization.
|
|
if (function->scope()->arguments() != NULL) {
|
|
ASSERT(function->scope()->arguments()->IsStackAllocated());
|
|
HEnvironment* arguments_env = inner_env->arguments_environment();
|
|
int arguments_count = arguments_env->parameter_count();
|
|
arguments_object = Add<HArgumentsObject>(arguments_count);
|
|
inner_env->Bind(function->scope()->arguments(), arguments_object);
|
|
for (int i = 0; i < arguments_count; i++) {
|
|
arguments_object->AddArgument(arguments_env->Lookup(i), zone());
|
|
}
|
|
}
|
|
|
|
HEnterInlined* enter_inlined =
|
|
Add<HEnterInlined>(target, arguments_count, function,
|
|
function_state()->inlining_kind(),
|
|
function->scope()->arguments(),
|
|
arguments_object);
|
|
function_state()->set_entry(enter_inlined);
|
|
|
|
VisitDeclarations(target_info.scope()->declarations());
|
|
VisitStatements(function->body());
|
|
if (HasStackOverflow()) {
|
|
// Bail out if the inline function did, as we cannot residualize a call
|
|
// instead.
|
|
TraceInline(target, caller, "inline graph construction failed");
|
|
target_shared->DisableOptimization(kInliningBailedOut);
|
|
inline_bailout_ = true;
|
|
delete target_state;
|
|
return true;
|
|
}
|
|
|
|
// Update inlined nodes count.
|
|
inlined_count_ += nodes_added;
|
|
|
|
Handle<Code> unoptimized_code(target_shared->code());
|
|
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
|
|
Handle<TypeFeedbackInfo> type_info(
|
|
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
|
|
graph()->update_type_change_checksum(type_info->own_type_change_checksum());
|
|
|
|
TraceInline(target, caller, NULL);
|
|
|
|
if (current_block() != NULL) {
|
|
FunctionState* state = function_state();
|
|
if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
|
|
// Falling off the end of an inlined construct call. In a test context the
|
|
// return value will always evaluate to true, in a value context the
|
|
// return value is the newly allocated receiver.
|
|
if (call_context()->IsTest()) {
|
|
Goto(inlined_test_context()->if_true(), state);
|
|
} else if (call_context()->IsEffect()) {
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
AddLeaveInlined(implicit_return_value, state);
|
|
}
|
|
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
|
|
// Falling off the end of an inlined setter call. The returned value is
|
|
// never used, the value of an assignment is always the value of the RHS
|
|
// of the assignment.
|
|
if (call_context()->IsTest()) {
|
|
inlined_test_context()->ReturnValue(implicit_return_value);
|
|
} else if (call_context()->IsEffect()) {
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
AddLeaveInlined(implicit_return_value, state);
|
|
}
|
|
} else {
|
|
// Falling off the end of a normal inlined function. This basically means
|
|
// returning undefined.
|
|
if (call_context()->IsTest()) {
|
|
Goto(inlined_test_context()->if_false(), state);
|
|
} else if (call_context()->IsEffect()) {
|
|
Goto(function_return(), state);
|
|
} else {
|
|
ASSERT(call_context()->IsValue());
|
|
AddLeaveInlined(undefined, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix up the function exits.
|
|
if (inlined_test_context() != NULL) {
|
|
HBasicBlock* if_true = inlined_test_context()->if_true();
|
|
HBasicBlock* if_false = inlined_test_context()->if_false();
|
|
|
|
HEnterInlined* entry = function_state()->entry();
|
|
|
|
// Pop the return test context from the expression context stack.
|
|
ASSERT(ast_context() == inlined_test_context());
|
|
ClearInlinedTestContext();
|
|
delete target_state;
|
|
|
|
// Forward to the real test context.
|
|
if (if_true->HasPredecessor()) {
|
|
entry->RegisterReturnTarget(if_true, zone());
|
|
if_true->SetJoinId(ast_id);
|
|
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
|
|
Goto(if_true, true_target, function_state());
|
|
}
|
|
if (if_false->HasPredecessor()) {
|
|
entry->RegisterReturnTarget(if_false, zone());
|
|
if_false->SetJoinId(ast_id);
|
|
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
|
|
Goto(if_false, false_target, function_state());
|
|
}
|
|
set_current_block(NULL);
|
|
return true;
|
|
|
|
} else if (function_return()->HasPredecessor()) {
|
|
function_state()->entry()->RegisterReturnTarget(function_return(), zone());
|
|
function_return()->SetJoinId(ast_id);
|
|
set_current_block(function_return());
|
|
} else {
|
|
set_current_block(NULL);
|
|
}
|
|
delete target_state;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
|
|
return TryInline(expr->target(),
|
|
expr->arguments()->length(),
|
|
NULL,
|
|
expr->id(),
|
|
expr->ReturnId(),
|
|
drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
|
|
HValue* implicit_return_value) {
|
|
return TryInline(expr->target(),
|
|
expr->arguments()->length(),
|
|
implicit_return_value,
|
|
expr->id(),
|
|
expr->ReturnId(),
|
|
CONSTRUCT_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
|
|
BailoutId ast_id,
|
|
BailoutId return_id) {
|
|
return TryInline(getter,
|
|
0,
|
|
NULL,
|
|
ast_id,
|
|
return_id,
|
|
GETTER_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
|
|
BailoutId id,
|
|
BailoutId assignment_id,
|
|
HValue* implicit_return_value) {
|
|
return TryInline(setter,
|
|
1,
|
|
implicit_return_value,
|
|
id, assignment_id,
|
|
SETTER_CALL_RETURN);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
|
|
Call* expr,
|
|
int arguments_count) {
|
|
return TryInline(function,
|
|
arguments_count,
|
|
NULL,
|
|
expr->id(),
|
|
expr->ReturnId(),
|
|
NORMAL_RETURN);
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr,
|
|
bool drop_extra) {
|
|
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
|
|
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
|
|
switch (id) {
|
|
case kMathExp:
|
|
if (!FLAG_fast_math) break;
|
|
// Fall through if FLAG_fast_math.
|
|
case kMathRound:
|
|
case kMathFloor:
|
|
case kMathAbs:
|
|
case kMathSqrt:
|
|
case kMathLog:
|
|
if (expr->arguments()->length() == 1) {
|
|
HValue* argument = Pop();
|
|
Drop(1); // Receiver.
|
|
HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
|
|
if (drop_extra) Drop(1); // Optionally drop the function.
|
|
ast_context()->ReturnInstruction(op, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathImul:
|
|
if (expr->arguments()->length() == 2) {
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Drop(1); // Receiver.
|
|
HInstruction* op = HMul::NewImul(zone(), context(), left, right);
|
|
if (drop_extra) Drop(1); // Optionally drop the function.
|
|
ast_context()->ReturnInstruction(op, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
default:
|
|
// Not supported for inlining yet.
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
|
|
Call* expr,
|
|
HValue* receiver,
|
|
Handle<Map> receiver_map,
|
|
CheckType check_type) {
|
|
ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
|
|
// Try to inline calls like Math.* as operations in the calling function.
|
|
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
|
|
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
|
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
|
switch (id) {
|
|
case kStringCharCodeAt:
|
|
case kStringCharAt:
|
|
if (argument_count == 2 && check_type == STRING_CHECK) {
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
ASSERT(!expr->holder().is_null());
|
|
BuildCheckPrototypeMaps(Call::GetPrototypeForPrimitiveCheck(
|
|
STRING_CHECK, expr->holder()->GetIsolate()),
|
|
expr->holder());
|
|
HInstruction* char_code =
|
|
BuildStringCharCodeAt(string, index);
|
|
if (id == kStringCharCodeAt) {
|
|
ast_context()->ReturnInstruction(char_code, expr->id());
|
|
return true;
|
|
}
|
|
AddInstruction(char_code);
|
|
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kStringFromCharCode:
|
|
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
HValue* argument = Pop();
|
|
Drop(1); // Receiver.
|
|
HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathExp:
|
|
if (!FLAG_fast_math) break;
|
|
// Fall through if FLAG_fast_math.
|
|
case kMathRound:
|
|
case kMathFloor:
|
|
case kMathAbs:
|
|
case kMathSqrt:
|
|
case kMathLog:
|
|
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
HValue* argument = Pop();
|
|
Drop(1); // Receiver.
|
|
HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
|
|
ast_context()->ReturnInstruction(op, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathPow:
|
|
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Pop(); // Pop receiver.
|
|
HInstruction* result = NULL;
|
|
// Use sqrt() if exponent is 0.5 or -0.5.
|
|
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
|
|
double exponent = HConstant::cast(right)->DoubleValue();
|
|
if (exponent == 0.5) {
|
|
result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
|
|
} else if (exponent == -0.5) {
|
|
HValue* one = graph()->GetConstant1();
|
|
HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
|
|
left, kMathPowHalf);
|
|
// MathPowHalf doesn't have side effects so there's no need for
|
|
// an environment simulation here.
|
|
ASSERT(!sqrt->HasObservableSideEffects());
|
|
result = NewUncasted<HDiv>(one, sqrt);
|
|
} else if (exponent == 2.0) {
|
|
result = NewUncasted<HMul>(left, left);
|
|
}
|
|
}
|
|
|
|
if (result == NULL) {
|
|
result = NewUncasted<HPower>(left, right);
|
|
}
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathMax:
|
|
case kMathMin:
|
|
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Drop(1); // Receiver.
|
|
HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
|
|
: HMathMinMax::kMathMax;
|
|
HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kMathImul:
|
|
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Drop(1); // Receiver.
|
|
HInstruction* result = HMul::NewImul(zone(), context(), left, right);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
}
|
|
break;
|
|
case kArrayPop: {
|
|
if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
|
|
return false;
|
|
}
|
|
if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
|
|
ElementsKind elements_kind = receiver_map->elements_kind();
|
|
if (!IsFastElementsKind(elements_kind)) return false;
|
|
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
|
|
|
|
Drop(expr->arguments()->length());
|
|
HValue* result;
|
|
HValue* checked_object;
|
|
HValue* reduced_length;
|
|
HValue* receiver = Pop();
|
|
{ NoObservableSideEffectsScope scope(this);
|
|
checked_object = AddCheckMap(receiver, receiver_map);
|
|
HValue* elements = AddLoadElements(checked_object);
|
|
// Ensure that we aren't popping from a copy-on-write array.
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
|
|
Add<HCheckMaps>(
|
|
elements, isolate()->factory()->fixed_array_map(), top_info());
|
|
}
|
|
HValue* length = Add<HLoadNamedField>(
|
|
checked_object, HObjectAccess::ForArrayLength(elements_kind));
|
|
reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
|
|
HValue* bounds_check = Add<HBoundsCheck>(
|
|
graph()->GetConstant0(), length);
|
|
result = AddElementAccess(elements, reduced_length, NULL,
|
|
bounds_check, elements_kind, false);
|
|
Factory* factory = isolate()->factory();
|
|
double nan_double = FixedDoubleArray::hole_nan_as_double();
|
|
HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
|
|
? Add<HConstant>(factory->the_hole_value())
|
|
: Add<HConstant>(nan_double);
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
|
|
elements_kind = FAST_HOLEY_ELEMENTS;
|
|
}
|
|
AddElementAccess(
|
|
elements, reduced_length, hole, bounds_check, elements_kind, true);
|
|
}
|
|
Add<HStoreNamedField>(
|
|
checked_object, HObjectAccess::ForArrayLength(elements_kind),
|
|
reduced_length);
|
|
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
|
|
ast_context()->ReturnValue(result);
|
|
return true;
|
|
}
|
|
default:
|
|
// Not yet supported for inlining.
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
|
|
Expression* callee = expr->expression();
|
|
Property* prop = callee->AsProperty();
|
|
ASSERT(prop != NULL);
|
|
|
|
if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
|
|
return false;
|
|
}
|
|
Handle<Map> function_map = expr->GetReceiverTypes()->first();
|
|
if (function_map->instance_type() != JS_FUNCTION_TYPE ||
|
|
!expr->target()->shared()->HasBuiltinFunctionId() ||
|
|
expr->target()->shared()->builtin_function_id() != kFunctionApply) {
|
|
return false;
|
|
}
|
|
|
|
if (current_info()->scope()->arguments() == NULL) return false;
|
|
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
if (args->length() != 2) return false;
|
|
|
|
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
|
|
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
|
|
HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
|
|
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
|
|
|
|
// Found pattern f.apply(receiver, arguments).
|
|
CHECK_ALIVE_OR_RETURN(VisitForValue(prop->obj()), true);
|
|
HValue* function = Top();
|
|
|
|
AddCheckConstantFunction(expr->holder(), function, function_map);
|
|
|
|
CHECK_ALIVE_OR_RETURN(VisitForValue(args->at(0)), true);
|
|
HValue* receiver = Pop();
|
|
|
|
Drop(1); // Pop the function.
|
|
|
|
if (function_state()->outer() == NULL) {
|
|
HInstruction* elements = Add<HArgumentsElements>(false);
|
|
HInstruction* length = Add<HArgumentsLength>(elements);
|
|
HValue* wrapped_receiver = BuildWrapReceiver(receiver, function);
|
|
HInstruction* result = New<HApplyArguments>(function,
|
|
wrapped_receiver,
|
|
length,
|
|
elements);
|
|
ast_context()->ReturnInstruction(result, expr->id());
|
|
return true;
|
|
} else {
|
|
// We are inside inlined function and we know exactly what is inside
|
|
// arguments object. But we need to be able to materialize at deopt.
|
|
ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
|
|
function_state()->entry()->arguments_object()->arguments_count());
|
|
HArgumentsObject* args = function_state()->entry()->arguments_object();
|
|
const ZoneList<HValue*>* arguments_values = args->arguments_values();
|
|
int arguments_count = arguments_values->length();
|
|
Push(BuildWrapReceiver(receiver, function));
|
|
for (int i = 1; i < arguments_count; i++) {
|
|
Push(arguments_values->at(i));
|
|
}
|
|
|
|
Handle<JSFunction> known_function;
|
|
if (function->IsConstant() &&
|
|
HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
|
|
known_function = Handle<JSFunction>::cast(
|
|
HConstant::cast(function)->handle(isolate()));
|
|
int args_count = arguments_count - 1; // Excluding receiver.
|
|
if (TryInlineApply(known_function, expr, args_count)) return true;
|
|
}
|
|
|
|
Drop(arguments_count - 1);
|
|
Push(Add<HPushArgument>(Pop()));
|
|
for (int i = 1; i < arguments_count; i++) {
|
|
Push(Add<HPushArgument>(arguments_values->at(i)));
|
|
}
|
|
|
|
HInvokeFunction* call = New<HInvokeFunction>(function,
|
|
known_function,
|
|
arguments_count);
|
|
Drop(arguments_count);
|
|
ast_context()->ReturnInstruction(call, expr->id());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
|
|
Handle<JSFunction> target) {
|
|
SharedFunctionInfo* shared = target->shared();
|
|
if (shared->is_classic_mode() && !shared->native()) {
|
|
HValue* context = Add<HLoadNamedField>(
|
|
function,
|
|
HObjectAccess::ForJSObjectOffset(JSFunction::kContextOffset));
|
|
HValue* global_object = Add<HLoadNamedField>(
|
|
context,
|
|
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
|
|
return Add<HLoadNamedField>(
|
|
global_object,
|
|
HObjectAccess::ForJSObjectOffset(
|
|
GlobalObject::kGlobalReceiverOffset));
|
|
}
|
|
return graph()->GetConstantUndefined();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCall(Call* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
Expression* callee = expr->expression();
|
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
|
HInstruction* call = NULL;
|
|
|
|
Property* prop = callee->AsProperty();
|
|
if (prop != NULL) {
|
|
if (!prop->key()->IsPropertyName()) {
|
|
// Keyed function call.
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
|
|
// Push receiver and key like the non-optimized code generator expects it.
|
|
HValue* key = Pop();
|
|
HValue* receiver = Pop();
|
|
Push(key);
|
|
Push(Add<HPushArgument>(receiver));
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
if (expr->IsMonomorphic()) {
|
|
BuildCheckHeapObject(receiver);
|
|
ElementsKind kind = expr->KeyedArrayCallIsHoley()
|
|
? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
|
|
|
|
Handle<Map> map(isolate()->get_initial_js_array_map(kind));
|
|
|
|
HValue* function = BuildMonomorphicElementAccess(
|
|
receiver, key, NULL, NULL, map, false, STANDARD_STORE);
|
|
|
|
call = New<HCallFunction>(function, argument_count);
|
|
} else {
|
|
call = NewCallKeyed(key, argument_count);
|
|
}
|
|
Drop(argument_count + 1); // 1 is the key.
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
|
|
// Named function call.
|
|
if (TryCallApply(expr)) return;
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
|
HValue* receiver =
|
|
environment()->ExpressionStackAt(expr->arguments()->length());
|
|
|
|
SmallMapList* types;
|
|
bool was_monomorphic = expr->IsMonomorphic();
|
|
bool monomorphic = ComputeReceiverTypes(expr, receiver, &types);
|
|
if (!was_monomorphic && monomorphic) {
|
|
monomorphic = expr->ComputeTarget(types->first(), name);
|
|
}
|
|
|
|
if (monomorphic) {
|
|
Handle<Map> map = types->first();
|
|
if (TryInlineBuiltinMethodCall(expr, receiver, map, expr->check_type())) {
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
|
|
expr->check_type() != RECEIVER_MAP_CHECK) {
|
|
// When the target has a custom call IC generator, use the IC,
|
|
// because it is likely to generate better code. Also use the IC
|
|
// when a primitive receiver check is required.
|
|
call = NewCallNamed(name, argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
} else {
|
|
AddCheckConstantFunction(expr->holder(), receiver, map);
|
|
|
|
if (TryInlineCall(expr)) return;
|
|
call = BuildCallConstantFunction(expr->target(), argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
}
|
|
} else if (types != NULL && types->length() > 1) {
|
|
ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
|
|
HandlePolymorphicCallNamed(expr, receiver, types, name);
|
|
return;
|
|
|
|
} else {
|
|
call = NewCallNamed(name, argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
}
|
|
} else {
|
|
VariableProxy* proxy = expr->expression()->AsVariableProxy();
|
|
if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
|
|
return Bailout(kPossibleDirectCallToEval);
|
|
}
|
|
|
|
bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
|
|
if (global_call) {
|
|
Variable* var = proxy->var();
|
|
bool known_global_function = false;
|
|
// If there is a global property cell for the name at compile time and
|
|
// access check is not enabled we assume that the function will not change
|
|
// and generate optimized code for calling the function.
|
|
LookupResult lookup(isolate());
|
|
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
|
|
if (type == kUseCell &&
|
|
!current_info()->global_object()->IsAccessCheckNeeded()) {
|
|
Handle<GlobalObject> global(current_info()->global_object());
|
|
known_global_function = expr->ComputeGlobalTarget(global, &lookup);
|
|
}
|
|
if (known_global_function) {
|
|
// Push the global object instead of the global receiver because
|
|
// code generated by the full code generator expects it.
|
|
HGlobalObject* global_object = Add<HGlobalObject>();
|
|
Push(global_object);
|
|
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Pop();
|
|
Add<HCheckValue>(function, expr->target());
|
|
|
|
// Patch the global object on the stack by the expected receiver.
|
|
HValue* receiver = ImplicitReceiverFor(function, expr->target());
|
|
const int receiver_index = argument_count - 1;
|
|
environment()->SetExpressionStackAt(receiver_index, receiver);
|
|
|
|
if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop.
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
if (TryInlineCall(expr)) return;
|
|
|
|
if (expr->target().is_identical_to(current_info()->closure())) {
|
|
graph()->MarkRecursive();
|
|
}
|
|
|
|
if (CallStubCompiler::HasCustomCallGenerator(expr->target())) {
|
|
// We're about to install a contextual IC, which expects the global
|
|
// object as receiver rather than the global proxy.
|
|
HGlobalObject* global_object = Add<HGlobalObject>();
|
|
const int receiver_index = argument_count - 1;
|
|
environment()->SetExpressionStackAt(receiver_index, global_object);
|
|
// When the target has a custom call IC generator, use the IC,
|
|
// because it is likely to generate better code.
|
|
call = NewCallNamed(var->name(), argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
} else {
|
|
call = BuildCallConstantFunction(expr->target(), argument_count);
|
|
PushArgumentsFromEnvironment(argument_count);
|
|
}
|
|
} else {
|
|
HGlobalObject* receiver = Add<HGlobalObject>();
|
|
Push(Add<HPushArgument>(receiver));
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
call = NewCallNamed(var->name(), argument_count);
|
|
Drop(argument_count);
|
|
}
|
|
|
|
} else if (expr->IsMonomorphic()) {
|
|
// The function is on the stack in the unoptimized code during
|
|
// evaluation of the arguments.
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
|
|
Add<HCheckValue>(function, expr->target());
|
|
|
|
HValue* receiver = ImplicitReceiverFor(function, expr->target());
|
|
Push(receiver);
|
|
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function.
|
|
if (FLAG_trace_inlining) {
|
|
PrintF("Inlining builtin ");
|
|
expr->target()->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (TryInlineCall(expr, true)) { // Drop function from environment.
|
|
return;
|
|
} else {
|
|
call = PreProcessCall(New<HInvokeFunction>(function, expr->target(),
|
|
argument_count));
|
|
Drop(1); // The function.
|
|
}
|
|
|
|
} else {
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
HValue* receiver = graph()->GetConstantUndefined();
|
|
Push(Add<HPushArgument>(receiver));
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
call = New<HCallFunction>(
|
|
function, argument_count, NORMAL_CONTEXTUAL_CALL);
|
|
Drop(argument_count + 1);
|
|
}
|
|
}
|
|
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildInlinedCallNewArray(CallNew* expr) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
|
|
int argument_count = expr->arguments()->length();
|
|
// We should at least have the constructor on the expression stack.
|
|
HValue* constructor = environment()->ExpressionStackAt(argument_count);
|
|
|
|
ElementsKind kind = expr->elements_kind();
|
|
Handle<AllocationSite> site = expr->allocation_site();
|
|
ASSERT(!site.is_null());
|
|
|
|
// Register on the site for deoptimization if the transition feedback changes.
|
|
AllocationSite::AddDependentCompilationInfo(
|
|
site, AllocationSite::TRANSITIONS, top_info());
|
|
HInstruction* site_instruction = Add<HConstant>(site);
|
|
|
|
// In the single constant argument case, we may have to adjust elements kind
|
|
// to avoid creating a packed non-empty array.
|
|
if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
|
|
HValue* argument = environment()->Top();
|
|
if (argument->IsConstant()) {
|
|
HConstant* constant_argument = HConstant::cast(argument);
|
|
ASSERT(constant_argument->HasSmiValue());
|
|
int constant_array_size = constant_argument->Integer32Value();
|
|
if (constant_array_size != 0) {
|
|
kind = GetHoleyElementsKind(kind);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build the array.
|
|
JSArrayBuilder array_builder(this,
|
|
kind,
|
|
site_instruction,
|
|
constructor,
|
|
DISABLE_ALLOCATION_SITES);
|
|
HValue* new_object;
|
|
if (argument_count == 0) {
|
|
new_object = array_builder.AllocateEmptyArray();
|
|
} else if (argument_count == 1) {
|
|
HValue* argument = environment()->Top();
|
|
new_object = BuildAllocateArrayFromLength(&array_builder, argument);
|
|
} else {
|
|
HValue* length = Add<HConstant>(argument_count);
|
|
// Smi arrays need to initialize array elements with the hole because
|
|
// bailout could occur if the arguments don't fit in a smi.
|
|
//
|
|
// TODO(mvstanton): If all the arguments are constants in smi range, then
|
|
// we could set fill_with_hole to false and save a few instructions.
|
|
JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind)
|
|
? JSArrayBuilder::FILL_WITH_HOLE
|
|
: JSArrayBuilder::DONT_FILL_WITH_HOLE;
|
|
new_object = array_builder.AllocateArray(length, length, fill_mode);
|
|
HValue* elements = array_builder.GetElementsLocation();
|
|
for (int i = 0; i < argument_count; i++) {
|
|
HValue* value = environment()->ExpressionStackAt(argument_count - i - 1);
|
|
HValue* constant_i = Add<HConstant>(i);
|
|
Add<HStoreKeyed>(elements, constant_i, value, kind);
|
|
}
|
|
}
|
|
|
|
Drop(argument_count + 1); // drop constructor and args.
|
|
ast_context()->ReturnValue(new_object);
|
|
}
|
|
|
|
|
|
// Checks whether allocation using the given constructor can be inlined.
|
|
static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
|
|
return constructor->has_initial_map() &&
|
|
constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
|
|
constructor->initial_map()->instance_size() < HAllocate::kMaxInlineSize &&
|
|
constructor->initial_map()->InitialPropertiesLength() == 0;
|
|
}
|
|
|
|
|
|
bool HOptimizedGraphBuilder::IsCallNewArrayInlineable(CallNew* expr) {
|
|
bool inline_ok = false;
|
|
Handle<JSFunction> caller = current_info()->closure();
|
|
Handle<JSFunction> target(isolate()->global_context()->array_function(),
|
|
isolate());
|
|
int argument_count = expr->arguments()->length();
|
|
// We should have the function plus array arguments on the environment stack.
|
|
ASSERT(environment()->length() >= (argument_count + 1));
|
|
Handle<AllocationSite> site = expr->allocation_site();
|
|
ASSERT(!site.is_null());
|
|
|
|
if (site->CanInlineCall()) {
|
|
// We also want to avoid inlining in certain 1 argument scenarios.
|
|
if (argument_count == 1) {
|
|
HValue* argument = Top();
|
|
if (argument->IsConstant()) {
|
|
// Do not inline if the constant length argument is not a smi or
|
|
// outside the valid range for a fast array.
|
|
HConstant* constant_argument = HConstant::cast(argument);
|
|
if (constant_argument->HasSmiValue()) {
|
|
int value = constant_argument->Integer32Value();
|
|
inline_ok = value >= 0 &&
|
|
value < JSObject::kInitialMaxFastElementArray;
|
|
if (!inline_ok) {
|
|
TraceInline(target, caller,
|
|
"Length outside of valid array range");
|
|
}
|
|
}
|
|
} else {
|
|
inline_ok = true;
|
|
}
|
|
} else {
|
|
inline_ok = true;
|
|
}
|
|
} else {
|
|
TraceInline(target, caller, "AllocationSite requested no inlining.");
|
|
}
|
|
|
|
if (inline_ok) {
|
|
TraceInline(target, caller, NULL);
|
|
}
|
|
return inline_ok;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
|
|
Factory* factory = isolate()->factory();
|
|
|
|
// The constructor function is on the stack in the unoptimized code
|
|
// during evaluation of the arguments.
|
|
CHECK_ALIVE(VisitForValue(expr->expression()));
|
|
HValue* function = Top();
|
|
CHECK_ALIVE(VisitExpressions(expr->arguments()));
|
|
|
|
if (FLAG_inline_construct &&
|
|
expr->IsMonomorphic() &&
|
|
IsAllocationInlineable(expr->target())) {
|
|
Handle<JSFunction> constructor = expr->target();
|
|
HValue* check = Add<HCheckValue>(function, constructor);
|
|
|
|
// Force completion of inobject slack tracking before generating
|
|
// allocation code to finalize instance size.
|
|
if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
|
|
constructor->shared()->CompleteInobjectSlackTracking();
|
|
}
|
|
|
|
// Calculate instance size from initial map of constructor.
|
|
ASSERT(constructor->has_initial_map());
|
|
Handle<Map> initial_map(constructor->initial_map());
|
|
int instance_size = initial_map->instance_size();
|
|
ASSERT(initial_map->InitialPropertiesLength() == 0);
|
|
|
|
// Allocate an instance of the implicit receiver object.
|
|
HValue* size_in_bytes = Add<HConstant>(instance_size);
|
|
PretenureFlag pretenure_flag =
|
|
(FLAG_pretenuring_call_new &&
|
|
isolate()->heap()->GetPretenureMode() == TENURED)
|
|
? TENURED : NOT_TENURED;
|
|
HAllocate* receiver =
|
|
Add<HAllocate>(size_in_bytes, HType::JSObject(), pretenure_flag,
|
|
JS_OBJECT_TYPE);
|
|
receiver->set_known_initial_map(initial_map);
|
|
|
|
// Load the initial map from the constructor.
|
|
HValue* constructor_value = Add<HConstant>(constructor);
|
|
HValue* initial_map_value =
|
|
Add<HLoadNamedField>(constructor_value, HObjectAccess::ForJSObjectOffset(
|
|
JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// Initialize map and fields of the newly allocated object.
|
|
{ NoObservableSideEffectsScope no_effects(this);
|
|
ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
|
|
Add<HStoreNamedField>(receiver,
|
|
HObjectAccess::ForJSObjectOffset(JSObject::kMapOffset),
|
|
initial_map_value);
|
|
HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
|
|
Add<HStoreNamedField>(receiver,
|
|
HObjectAccess::ForJSObjectOffset(JSObject::kPropertiesOffset),
|
|
empty_fixed_array);
|
|
Add<HStoreNamedField>(receiver,
|
|
HObjectAccess::ForJSObjectOffset(JSObject::kElementsOffset),
|
|
empty_fixed_array);
|
|
if (initial_map->inobject_properties() != 0) {
|
|
HConstant* undefined = graph()->GetConstantUndefined();
|
|
for (int i = 0; i < initial_map->inobject_properties(); i++) {
|
|
int property_offset = JSObject::kHeaderSize + i * kPointerSize;
|
|
Add<HStoreNamedField>(receiver,
|
|
HObjectAccess::ForJSObjectOffset(property_offset),
|
|
undefined);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace the constructor function with a newly allocated receiver using
|
|
// the index of the receiver from the top of the expression stack.
|
|
const int receiver_index = argument_count - 1;
|
|
ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
|
|
environment()->SetExpressionStackAt(receiver_index, receiver);
|
|
|
|
if (TryInlineConstruct(expr, receiver)) return;
|
|
|
|
// TODO(mstarzinger): For now we remove the previous HAllocate and all
|
|
// corresponding instructions and instead add HPushArgument for the
|
|
// arguments in case inlining failed. What we actually should do is for
|
|
// inlining to try to build a subgraph without mutating the parent graph.
|
|
HInstruction* instr = current_block()->last();
|
|
while (instr != initial_map_value) {
|
|
HInstruction* prev_instr = instr->previous();
|
|
instr->DeleteAndReplaceWith(NULL);
|
|
instr = prev_instr;
|
|
}
|
|
initial_map_value->DeleteAndReplaceWith(NULL);
|
|
receiver->DeleteAndReplaceWith(NULL);
|
|
check->DeleteAndReplaceWith(NULL);
|
|
environment()->SetExpressionStackAt(receiver_index, function);
|
|
HInstruction* call =
|
|
PreProcessCall(New<HCallNew>(function, argument_count));
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
} else {
|
|
// The constructor function is both an operand to the instruction and an
|
|
// argument to the construct call.
|
|
Handle<JSFunction> array_function(
|
|
isolate()->global_context()->array_function(), isolate());
|
|
bool use_call_new_array = expr->target().is_identical_to(array_function);
|
|
if (use_call_new_array && IsCallNewArrayInlineable(expr)) {
|
|
// Verify we are still calling the array function for our native context.
|
|
Add<HCheckValue>(function, array_function);
|
|
BuildInlinedCallNewArray(expr);
|
|
return;
|
|
}
|
|
|
|
HBinaryCall* call;
|
|
if (use_call_new_array) {
|
|
Add<HCheckValue>(function, array_function);
|
|
call = New<HCallNewArray>(function, argument_count,
|
|
expr->elements_kind());
|
|
} else {
|
|
call = New<HCallNew>(function, argument_count);
|
|
}
|
|
PreProcessCall(call);
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
|
|
// Support for generating inlined runtime functions.
|
|
|
|
// Lookup table for generators for runtime calls that are generated inline.
|
|
// Elements of the table are member pointers to functions of
|
|
// HOptimizedGraphBuilder.
|
|
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
|
|
&HOptimizedGraphBuilder::Generate##Name,
|
|
|
|
const HOptimizedGraphBuilder::InlineFunctionGenerator
|
|
HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
|
|
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
|
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
|
};
|
|
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
|
|
|
|
|
|
template <class ViewClass>
|
|
void HGraphBuilder::BuildArrayBufferViewInitialization(
|
|
HValue* obj,
|
|
HValue* buffer,
|
|
HValue* byte_offset,
|
|
HValue* byte_length) {
|
|
|
|
for (int offset = ViewClass::kSize;
|
|
offset < ViewClass::kSizeWithInternalFields;
|
|
offset += kPointerSize) {
|
|
Add<HStoreNamedField>(obj,
|
|
HObjectAccess::ForJSObjectOffset(offset),
|
|
Add<HConstant>(static_cast<int32_t>(0)));
|
|
}
|
|
|
|
Add<HStoreNamedField>(
|
|
obj,
|
|
HObjectAccess::ForJSArrayBufferViewBuffer(), buffer);
|
|
Add<HStoreNamedField>(
|
|
obj,
|
|
HObjectAccess::ForJSArrayBufferViewByteOffset(),
|
|
byte_offset);
|
|
Add<HStoreNamedField>(
|
|
obj,
|
|
HObjectAccess::ForJSArrayBufferViewByteLength(),
|
|
byte_length);
|
|
|
|
HObjectAccess weak_first_view_access =
|
|
HObjectAccess::ForJSArrayBufferWeakFirstView();
|
|
Add<HStoreNamedField>(obj,
|
|
HObjectAccess::ForJSArrayBufferViewWeakNext(),
|
|
Add<HLoadNamedField>(buffer, weak_first_view_access));
|
|
Add<HStoreNamedField>(buffer, weak_first_view_access, obj);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitDataViewInitialize(
|
|
CallRuntime* expr) {
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
NoObservableSideEffectsScope scope(this);
|
|
ASSERT(arguments->length()== 4);
|
|
CHECK_ALIVE(VisitForValue(arguments->at(0)));
|
|
HValue* obj = Pop();
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(1)));
|
|
HValue* buffer = Pop();
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(2)));
|
|
HValue* byte_offset = Pop();
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(3)));
|
|
HValue* byte_length = Pop();
|
|
|
|
BuildArrayBufferViewInitialization<JSDataView>(
|
|
obj, buffer, byte_offset, byte_length);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitTypedArrayInitialize(
|
|
CallRuntime* expr) {
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
NoObservableSideEffectsScope scope(this);
|
|
static const int kObjectArg = 0;
|
|
static const int kArrayIdArg = 1;
|
|
static const int kBufferArg = 2;
|
|
static const int kByteOffsetArg = 3;
|
|
static const int kByteLengthArg = 4;
|
|
static const int kArgsLength = 5;
|
|
ASSERT(arguments->length() == kArgsLength);
|
|
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
|
|
HValue* obj = Pop();
|
|
|
|
ASSERT(arguments->at(kArrayIdArg)->node_type() == AstNode::kLiteral);
|
|
Handle<Object> value =
|
|
static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
|
|
ASSERT(value->IsSmi());
|
|
int array_id = Smi::cast(*value)->value();
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
|
|
HValue* buffer = Pop();
|
|
|
|
HValue* byte_offset;
|
|
bool is_zero_byte_offset;
|
|
|
|
if (arguments->at(kByteOffsetArg)->node_type() == AstNode::kLiteral
|
|
&& Smi::FromInt(0) ==
|
|
*static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
|
|
byte_offset = Add<HConstant>(static_cast<int32_t>(0));
|
|
is_zero_byte_offset = true;
|
|
} else {
|
|
CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
|
|
byte_offset = Pop();
|
|
is_zero_byte_offset = false;
|
|
}
|
|
|
|
CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
|
|
HValue* byte_length = Pop();
|
|
|
|
IfBuilder byte_offset_smi(this);
|
|
|
|
if (!is_zero_byte_offset) {
|
|
byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
|
|
byte_offset_smi.Then();
|
|
}
|
|
|
|
{ // byte_offset is Smi.
|
|
BuildArrayBufferViewInitialization<JSTypedArray>(
|
|
obj, buffer, byte_offset, byte_length);
|
|
|
|
ExternalArrayType array_type = kExternalByteArray; // Bogus initialization.
|
|
size_t element_size = 1; // Bogus initialization.
|
|
Runtime::ArrayIdToTypeAndSize(array_id, &array_type, &element_size);
|
|
|
|
HInstruction* length = AddUncasted<HDiv>(byte_length,
|
|
Add<HConstant>(static_cast<int32_t>(element_size)));
|
|
|
|
Add<HStoreNamedField>(obj,
|
|
HObjectAccess::ForJSTypedArrayLength(),
|
|
length);
|
|
|
|
HValue* elements =
|
|
Add<HAllocate>(
|
|
Add<HConstant>(ExternalArray::kAlignedSize),
|
|
HType::JSArray(),
|
|
NOT_TENURED,
|
|
static_cast<InstanceType>(FIRST_EXTERNAL_ARRAY_TYPE + array_type));
|
|
|
|
Handle<Map> external_array_map(
|
|
isolate()->heap()->MapForExternalArrayType(array_type));
|
|
Add<HStoreNamedField>(elements,
|
|
HObjectAccess::ForMap(),
|
|
Add<HConstant>(external_array_map));
|
|
|
|
HValue* backing_store = Add<HLoadNamedField>(
|
|
buffer, HObjectAccess::ForJSArrayBufferBackingStore());
|
|
|
|
HValue* typed_array_start;
|
|
if (is_zero_byte_offset) {
|
|
typed_array_start = backing_store;
|
|
} else {
|
|
HInstruction* external_pointer =
|
|
AddUncasted<HAdd>(backing_store, byte_offset);
|
|
// Arguments are checked prior to call to TypedArrayInitialize,
|
|
// including byte_offset.
|
|
external_pointer->ClearFlag(HValue::kCanOverflow);
|
|
typed_array_start = external_pointer;
|
|
}
|
|
|
|
Add<HStoreNamedField>(elements,
|
|
HObjectAccess::ForExternalArrayExternalPointer(),
|
|
typed_array_start);
|
|
Add<HStoreNamedField>(elements,
|
|
HObjectAccess::ForFixedArrayLength(),
|
|
length);
|
|
Add<HStoreNamedField>(
|
|
obj, HObjectAccess::ForElementsPointer(), elements);
|
|
}
|
|
|
|
if (!is_zero_byte_offset) {
|
|
byte_offset_smi.Else();
|
|
{ // byte_offset is not Smi.
|
|
Push(Add<HPushArgument>(obj));
|
|
VisitArgument(arguments->at(kArrayIdArg));
|
|
Push(Add<HPushArgument>(buffer));
|
|
Push(Add<HPushArgument>(byte_offset));
|
|
Push(Add<HPushArgument>(byte_length));
|
|
Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
|
|
Drop(kArgsLength);
|
|
}
|
|
}
|
|
byte_offset_smi.End();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (expr->is_jsruntime()) {
|
|
return Bailout(kCallToAJavaScriptRuntimeFunction);
|
|
}
|
|
|
|
const Runtime::Function* function = expr->function();
|
|
ASSERT(function != NULL);
|
|
|
|
if (function->function_id == Runtime::kDataViewInitialize) {
|
|
return VisitDataViewInitialize(expr);
|
|
}
|
|
|
|
if (function->function_id == Runtime::kTypedArrayInitialize) {
|
|
return VisitTypedArrayInitialize(expr);
|
|
}
|
|
|
|
if (function->function_id == Runtime::kMaxSmi) {
|
|
ASSERT(expr->arguments()->length() == 0);
|
|
HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
|
|
return ast_context()->ReturnInstruction(max_smi, expr->id());
|
|
}
|
|
|
|
if (function->intrinsic_type == Runtime::INLINE) {
|
|
ASSERT(expr->name()->length() > 0);
|
|
ASSERT(expr->name()->Get(0) == '_');
|
|
// Call to an inline function.
|
|
int lookup_index = static_cast<int>(function->function_id) -
|
|
static_cast<int>(Runtime::kFirstInlineFunction);
|
|
ASSERT(lookup_index >= 0);
|
|
ASSERT(static_cast<size_t>(lookup_index) <
|
|
ARRAY_SIZE(kInlineFunctionGenerators));
|
|
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
|
|
|
|
// Call the inline code generator using the pointer-to-member.
|
|
(this->*generator)(expr);
|
|
} else {
|
|
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
|
|
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
|
|
|
|
Handle<String> name = expr->name();
|
|
int argument_count = expr->arguments()->length();
|
|
HCallRuntime* call = New<HCallRuntime>(name, function,
|
|
argument_count);
|
|
Drop(argument_count);
|
|
return ast_context()->ReturnInstruction(call, expr->id());
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
switch (expr->op()) {
|
|
case Token::DELETE: return VisitDelete(expr);
|
|
case Token::VOID: return VisitVoid(expr);
|
|
case Token::TYPEOF: return VisitTypeof(expr);
|
|
case Token::NOT: return VisitNot(expr);
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
|
|
Property* prop = expr->expression()->AsProperty();
|
|
VariableProxy* proxy = expr->expression()->AsVariableProxy();
|
|
if (prop != NULL) {
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
HValue* key = Pop();
|
|
HValue* obj = Pop();
|
|
HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
|
|
Add<HPushArgument>(obj);
|
|
Add<HPushArgument>(key);
|
|
Add<HPushArgument>(Add<HConstant>(function_strict_mode_flag()));
|
|
// TODO(olivf) InvokeFunction produces a check for the parameter count,
|
|
// even though we are certain to pass the correct number of arguments here.
|
|
HInstruction* instr = New<HInvokeFunction>(function, 3);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
} else if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->IsUnallocated()) {
|
|
Bailout(kDeleteWithGlobalVariable);
|
|
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
|
|
// Result of deleting non-global variables is false. 'this' is not
|
|
// really a variable, though we implement it as one. The
|
|
// subexpression does not have side effects.
|
|
HValue* value = var->is_this()
|
|
? graph()->GetConstantTrue()
|
|
: graph()->GetConstantFalse();
|
|
return ast_context()->ReturnValue(value);
|
|
} else {
|
|
Bailout(kDeleteWithNonGlobalVariable);
|
|
}
|
|
} else {
|
|
// Result of deleting non-property, non-variable reference is true.
|
|
// Evaluate the subexpression for side effects.
|
|
CHECK_ALIVE(VisitForEffect(expr->expression()));
|
|
return ast_context()->ReturnValue(graph()->GetConstantTrue());
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForEffect(expr->expression()));
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForTypeOf(expr->expression()));
|
|
HValue* value = Pop();
|
|
HInstruction* instr = New<HTypeof>(value);
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
|
|
if (ast_context()->IsTest()) {
|
|
TestContext* context = TestContext::cast(ast_context());
|
|
VisitForControl(expr->expression(),
|
|
context->if_false(),
|
|
context->if_true());
|
|
return;
|
|
}
|
|
|
|
if (ast_context()->IsEffect()) {
|
|
VisitForEffect(expr->expression());
|
|
return;
|
|
}
|
|
|
|
ASSERT(ast_context()->IsValue());
|
|
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
|
|
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
|
|
CHECK_BAILOUT(VisitForControl(expr->expression(),
|
|
materialize_false,
|
|
materialize_true));
|
|
|
|
if (materialize_false->HasPredecessor()) {
|
|
materialize_false->SetJoinId(expr->MaterializeFalseId());
|
|
set_current_block(materialize_false);
|
|
Push(graph()->GetConstantFalse());
|
|
} else {
|
|
materialize_false = NULL;
|
|
}
|
|
|
|
if (materialize_true->HasPredecessor()) {
|
|
materialize_true->SetJoinId(expr->MaterializeTrueId());
|
|
set_current_block(materialize_true);
|
|
Push(graph()->GetConstantTrue());
|
|
} else {
|
|
materialize_true = NULL;
|
|
}
|
|
|
|
HBasicBlock* join =
|
|
CreateJoin(materialize_false, materialize_true, expr->id());
|
|
set_current_block(join);
|
|
if (join != NULL) return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildIncrement(
|
|
bool returns_original_input,
|
|
CountOperation* expr) {
|
|
// The input to the count operation is on top of the expression stack.
|
|
Handle<Type> info = expr->type();
|
|
Representation rep = Representation::FromType(info);
|
|
if (rep.IsNone() || rep.IsTagged()) {
|
|
rep = Representation::Smi();
|
|
}
|
|
|
|
if (returns_original_input) {
|
|
// We need an explicit HValue representing ToNumber(input). The
|
|
// actual HChange instruction we need is (sometimes) added in a later
|
|
// phase, so it is not available now to be used as an input to HAdd and
|
|
// as the return value.
|
|
HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
|
|
if (!rep.IsDouble()) {
|
|
number_input->SetFlag(HInstruction::kFlexibleRepresentation);
|
|
number_input->SetFlag(HInstruction::kCannotBeTagged);
|
|
}
|
|
Push(number_input);
|
|
}
|
|
|
|
// The addition has no side effects, so we do not need
|
|
// to simulate the expression stack after this instruction.
|
|
// Any later failures deopt to the load of the input or earlier.
|
|
HConstant* delta = (expr->op() == Token::INC)
|
|
? graph()->GetConstant1()
|
|
: graph()->GetConstantMinus1();
|
|
HInstruction* instr = AddUncasted<HAdd>(Top(), delta);
|
|
if (instr->IsAdd()) {
|
|
HAdd* add = HAdd::cast(instr);
|
|
add->set_observed_input_representation(1, rep);
|
|
add->set_observed_input_representation(2, Representation::Smi());
|
|
}
|
|
instr->SetFlag(HInstruction::kCannotBeTagged);
|
|
instr->ClearAllSideEffects();
|
|
return instr;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
|
|
Property* prop,
|
|
BailoutId ast_id,
|
|
BailoutId return_id,
|
|
HValue* object,
|
|
HValue* key,
|
|
HValue* value) {
|
|
EffectContext for_effect(this);
|
|
Push(object);
|
|
if (key != NULL) Push(key);
|
|
Push(value);
|
|
BuildStore(expr, prop, ast_id, return_id);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
Expression* target = expr->expression();
|
|
VariableProxy* proxy = target->AsVariableProxy();
|
|
Property* prop = target->AsProperty();
|
|
if (proxy == NULL && prop == NULL) {
|
|
return Bailout(kInvalidLhsInCountOperation);
|
|
}
|
|
|
|
// Match the full code generator stack by simulating an extra stack
|
|
// element for postfix operations in a non-effect context. The return
|
|
// value is ToNumber(input).
|
|
bool returns_original_input =
|
|
expr->is_postfix() && !ast_context()->IsEffect();
|
|
HValue* input = NULL; // ToNumber(original_input).
|
|
HValue* after = NULL; // The result after incrementing or decrementing.
|
|
|
|
if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->mode() == CONST) {
|
|
return Bailout(kUnsupportedCountOperationWithConst);
|
|
}
|
|
// Argument of the count operation is a variable, not a property.
|
|
ASSERT(prop == NULL);
|
|
CHECK_ALIVE(VisitForValue(target));
|
|
|
|
after = BuildIncrement(returns_original_input, expr);
|
|
input = returns_original_input ? Top() : Pop();
|
|
Push(after);
|
|
|
|
switch (var->location()) {
|
|
case Variable::UNALLOCATED:
|
|
HandleGlobalVariableAssignment(var,
|
|
after,
|
|
expr->AssignmentId());
|
|
break;
|
|
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
BindIfLive(var, after);
|
|
break;
|
|
|
|
case Variable::CONTEXT: {
|
|
// Bail out if we try to mutate a parameter value in a function
|
|
// using the arguments object. We do not (yet) correctly handle the
|
|
// arguments property of the function.
|
|
if (current_info()->scope()->arguments() != NULL) {
|
|
// Parameters will rewrite to context slots. We have no direct
|
|
// way to detect that the variable is a parameter so we use a
|
|
// linear search of the parameter list.
|
|
int count = current_info()->scope()->num_parameters();
|
|
for (int i = 0; i < count; ++i) {
|
|
if (var == current_info()->scope()->parameter(i)) {
|
|
return Bailout(kAssignmentToParameterInArgumentsObject);
|
|
}
|
|
}
|
|
}
|
|
|
|
HValue* context = BuildContextChainWalk(var);
|
|
HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
|
|
? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
|
|
HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
|
|
mode, after);
|
|
if (instr->HasObservableSideEffects()) {
|
|
Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Variable::LOOKUP:
|
|
return Bailout(kLookupVariableInCountOperation);
|
|
}
|
|
|
|
Drop(returns_original_input ? 2 : 1);
|
|
return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
|
|
}
|
|
|
|
// Argument of the count operation is a property.
|
|
ASSERT(prop != NULL);
|
|
if (returns_original_input) Push(graph()->GetConstantUndefined());
|
|
|
|
CHECK_ALIVE(VisitForValue(prop->obj()));
|
|
HValue* object = Top();
|
|
|
|
HValue* key = NULL;
|
|
if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
|
|
prop->IsStringAccess()) {
|
|
CHECK_ALIVE(VisitForValue(prop->key()));
|
|
key = Top();
|
|
}
|
|
|
|
CHECK_ALIVE(PushLoad(prop, object, key));
|
|
|
|
after = BuildIncrement(returns_original_input, expr);
|
|
|
|
if (returns_original_input) {
|
|
input = Pop();
|
|
// Drop object and key to push it again in the effect context below.
|
|
Drop(key == NULL ? 1 : 2);
|
|
environment()->SetExpressionStackAt(0, input);
|
|
CHECK_ALIVE(BuildStoreForEffect(
|
|
expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
environment()->SetExpressionStackAt(0, after);
|
|
return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
|
|
HValue* string,
|
|
HValue* index) {
|
|
if (string->IsConstant() && index->IsConstant()) {
|
|
HConstant* c_string = HConstant::cast(string);
|
|
HConstant* c_index = HConstant::cast(index);
|
|
if (c_string->HasStringValue() && c_index->HasNumberValue()) {
|
|
int32_t i = c_index->NumberValueAsInteger32();
|
|
Handle<String> s = c_string->StringValue();
|
|
if (i < 0 || i >= s->length()) {
|
|
return New<HConstant>(OS::nan_value());
|
|
}
|
|
return New<HConstant>(s->Get(i));
|
|
}
|
|
}
|
|
string = BuildCheckString(string);
|
|
index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
|
|
return New<HStringCharCodeAt>(string, index);
|
|
}
|
|
|
|
|
|
// Checks if the given shift amounts have following forms:
|
|
// (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
|
|
static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
|
|
HValue* const32_minus_sa) {
|
|
if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
|
|
const HConstant* c1 = HConstant::cast(sa);
|
|
const HConstant* c2 = HConstant::cast(const32_minus_sa);
|
|
return c1->HasInteger32Value() && c2->HasInteger32Value() &&
|
|
(c1->Integer32Value() + c2->Integer32Value() == 32);
|
|
}
|
|
if (!const32_minus_sa->IsSub()) return false;
|
|
HSub* sub = HSub::cast(const32_minus_sa);
|
|
if (sa != sub->right()) return false;
|
|
HValue* const32 = sub->left();
|
|
if (!const32->IsConstant() ||
|
|
HConstant::cast(const32)->Integer32Value() != 32) {
|
|
return false;
|
|
}
|
|
return (sub->right() == sa);
|
|
}
|
|
|
|
|
|
// Checks if the left and the right are shift instructions with the oposite
|
|
// directions that can be replaced by one rotate right instruction or not.
|
|
// Returns the operand and the shift amount for the rotate instruction in the
|
|
// former case.
|
|
bool HGraphBuilder::MatchRotateRight(HValue* left,
|
|
HValue* right,
|
|
HValue** operand,
|
|
HValue** shift_amount) {
|
|
HShl* shl;
|
|
HShr* shr;
|
|
if (left->IsShl() && right->IsShr()) {
|
|
shl = HShl::cast(left);
|
|
shr = HShr::cast(right);
|
|
} else if (left->IsShr() && right->IsShl()) {
|
|
shl = HShl::cast(right);
|
|
shr = HShr::cast(left);
|
|
} else {
|
|
return false;
|
|
}
|
|
if (shl->left() != shr->left()) return false;
|
|
|
|
if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
|
|
!ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
|
|
return false;
|
|
}
|
|
*operand= shr->left();
|
|
*shift_amount = shr->right();
|
|
return true;
|
|
}
|
|
|
|
|
|
bool CanBeZero(HValue* right) {
|
|
if (right->IsConstant()) {
|
|
HConstant* right_const = HConstant::cast(right);
|
|
if (right_const->HasInteger32Value() &&
|
|
(right_const->Integer32Value() & 0x1f) != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::EnforceNumberType(HValue* number,
|
|
Handle<Type> expected) {
|
|
if (expected->Is(Type::Smi())) {
|
|
return AddUncasted<HForceRepresentation>(number, Representation::Smi());
|
|
}
|
|
if (expected->Is(Type::Signed32())) {
|
|
return AddUncasted<HForceRepresentation>(number,
|
|
Representation::Integer32());
|
|
}
|
|
return number;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::TruncateToNumber(HValue* value, Handle<Type>* expected) {
|
|
if (value->IsConstant()) {
|
|
HConstant* constant = HConstant::cast(value);
|
|
Maybe<HConstant*> number = constant->CopyToTruncatedNumber(zone());
|
|
if (number.has_value) {
|
|
*expected = Type::Number(isolate());
|
|
return AddInstruction(number.value);
|
|
}
|
|
}
|
|
|
|
// We put temporary values on the stack, which don't correspond to anything
|
|
// in baseline code. Since nothing is observable we avoid recording those
|
|
// pushes with a NoObservableSideEffectsScope.
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
|
|
Handle<Type> expected_type = *expected;
|
|
|
|
// Separate the number type from the rest.
|
|
Handle<Type> expected_obj = Type::Intersect(
|
|
expected_type, Type::NonNumber(isolate()), isolate());
|
|
Handle<Type> expected_number = Type::Intersect(
|
|
expected_type, Type::Number(isolate()), isolate());
|
|
|
|
// We expect to get a number.
|
|
// (We need to check first, since Type::None->Is(Type::Any()) == true.
|
|
if (expected_obj->Is(Type::None())) {
|
|
ASSERT(!expected_number->Is(Type::None()));
|
|
return value;
|
|
}
|
|
|
|
if (expected_obj->Is(Type::Undefined())) {
|
|
// This is already done by HChange.
|
|
*expected = Type::Union(
|
|
expected_number, Type::Double(isolate()), isolate());
|
|
return value;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
|
|
HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
|
|
BinaryOperation* expr,
|
|
HValue* left,
|
|
HValue* right) {
|
|
Handle<Type> left_type = expr->left()->bounds().lower;
|
|
Handle<Type> right_type = expr->right()->bounds().lower;
|
|
Handle<Type> result_type = expr->bounds().lower;
|
|
Maybe<int> fixed_right_arg = expr->fixed_right_arg();
|
|
Handle<AllocationSite> allocation_site = expr->allocation_site();
|
|
|
|
HAllocationMode allocation_mode =
|
|
FLAG_allocation_site_pretenuring
|
|
? (allocation_site.is_null()
|
|
? HAllocationMode(NOT_TENURED)
|
|
: HAllocationMode(allocation_site))
|
|
: HAllocationMode(isolate()->heap()->GetPretenureMode());
|
|
|
|
HValue* result = HGraphBuilder::BuildBinaryOperation(
|
|
expr->op(), left, right, left_type, right_type, result_type,
|
|
fixed_right_arg, allocation_mode);
|
|
// Add a simulate after instructions with observable side effects, and
|
|
// after phis, which are the result of BuildBinaryOperation when we
|
|
// inlined some complex subgraph.
|
|
if (result->HasObservableSideEffects() || result->IsPhi()) {
|
|
Push(result);
|
|
Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
|
|
Drop(1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
HValue* HGraphBuilder::BuildBinaryOperation(
|
|
Token::Value op,
|
|
HValue* left,
|
|
HValue* right,
|
|
Handle<Type> left_type,
|
|
Handle<Type> right_type,
|
|
Handle<Type> result_type,
|
|
Maybe<int> fixed_right_arg,
|
|
HAllocationMode allocation_mode) {
|
|
|
|
Representation left_rep = Representation::FromType(left_type);
|
|
Representation right_rep = Representation::FromType(right_type);
|
|
|
|
bool maybe_string_add = op == Token::ADD &&
|
|
(left_type->Maybe(Type::String()) ||
|
|
right_type->Maybe(Type::String()));
|
|
|
|
if (left_type->Is(Type::None())) {
|
|
Add<HDeoptimize>("Insufficient type feedback for LHS of binary operation",
|
|
Deoptimizer::SOFT);
|
|
// TODO(rossberg): we should be able to get rid of non-continuous
|
|
// defaults.
|
|
left_type = Type::Any(isolate());
|
|
} else {
|
|
if (!maybe_string_add) left = TruncateToNumber(left, &left_type);
|
|
left_rep = Representation::FromType(left_type);
|
|
}
|
|
|
|
if (right_type->Is(Type::None())) {
|
|
Add<HDeoptimize>("Insufficient type feedback for RHS of binary operation",
|
|
Deoptimizer::SOFT);
|
|
right_type = Type::Any(isolate());
|
|
} else {
|
|
if (!maybe_string_add) right = TruncateToNumber(right, &right_type);
|
|
right_rep = Representation::FromType(right_type);
|
|
}
|
|
|
|
// Special case for string addition here.
|
|
if (op == Token::ADD &&
|
|
(left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
|
|
// Validate type feedback for left argument.
|
|
if (left_type->Is(Type::String())) {
|
|
left = BuildCheckString(left);
|
|
}
|
|
|
|
// Validate type feedback for right argument.
|
|
if (right_type->Is(Type::String())) {
|
|
right = BuildCheckString(right);
|
|
}
|
|
|
|
// Convert left argument as necessary.
|
|
if (left_type->Is(Type::Number())) {
|
|
ASSERT(right_type->Is(Type::String()));
|
|
left = BuildNumberToString(left, left_type);
|
|
} else if (!left_type->Is(Type::String())) {
|
|
ASSERT(right_type->Is(Type::String()));
|
|
HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
|
|
Add<HPushArgument>(left);
|
|
Add<HPushArgument>(right);
|
|
return AddUncasted<HInvokeFunction>(function, 2);
|
|
}
|
|
|
|
// Convert right argument as necessary.
|
|
if (right_type->Is(Type::Number())) {
|
|
ASSERT(left_type->Is(Type::String()));
|
|
right = BuildNumberToString(right, right_type);
|
|
} else if (!right_type->Is(Type::String())) {
|
|
ASSERT(left_type->Is(Type::String()));
|
|
HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
|
|
Add<HPushArgument>(left);
|
|
Add<HPushArgument>(right);
|
|
return AddUncasted<HInvokeFunction>(function, 2);
|
|
}
|
|
|
|
// Inline the string addition into the stub when creating allocation
|
|
// mementos to gather allocation site feedback.
|
|
if (graph()->info()->IsStub() &&
|
|
allocation_mode.CreateAllocationMementos()) {
|
|
return BuildStringAdd(left, right, allocation_mode);
|
|
}
|
|
|
|
// Register the dependent code with the allocation site.
|
|
if (!allocation_mode.feedback_site().is_null()) {
|
|
ASSERT(!graph()->info()->IsStub());
|
|
Handle<AllocationSite> site(allocation_mode.feedback_site());
|
|
AllocationSite::AddDependentCompilationInfo(
|
|
site, AllocationSite::TENURING, top_info());
|
|
}
|
|
|
|
// Inline string addition if we know that we'll create a cons string.
|
|
if (left->IsConstant()) {
|
|
HConstant* c_left = HConstant::cast(left);
|
|
if (c_left->HasStringValue()) {
|
|
int c_left_length = c_left->StringValue()->length();
|
|
if (c_left_length == 0) {
|
|
return right;
|
|
} else if (c_left_length + 1 >= ConsString::kMinLength) {
|
|
return BuildStringAdd(left, right, allocation_mode);
|
|
}
|
|
}
|
|
}
|
|
if (right->IsConstant()) {
|
|
HConstant* c_right = HConstant::cast(right);
|
|
if (c_right->HasStringValue()) {
|
|
int c_right_length = c_right->StringValue()->length();
|
|
if (c_right_length == 0) {
|
|
return left;
|
|
} else if (c_right_length + 1 >= ConsString::kMinLength) {
|
|
return BuildStringAdd(left, right, allocation_mode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fallback to using the string add stub.
|
|
return AddUncasted<HStringAdd>(
|
|
left, right, allocation_mode.GetPretenureMode(),
|
|
STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
|
|
}
|
|
|
|
if (graph()->info()->IsStub()) {
|
|
left = EnforceNumberType(left, left_type);
|
|
right = EnforceNumberType(right, right_type);
|
|
}
|
|
|
|
Representation result_rep = Representation::FromType(result_type);
|
|
|
|
bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
|
|
(right_rep.IsTagged() && !right_rep.IsSmi());
|
|
|
|
HInstruction* instr = NULL;
|
|
// Only the stub is allowed to call into the runtime, since otherwise we would
|
|
// inline several instructions (including the two pushes) for every tagged
|
|
// operation in optimized code, which is more expensive, than a stub call.
|
|
if (graph()->info()->IsStub() && is_non_primitive) {
|
|
HValue* function = AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op));
|
|
Add<HPushArgument>(left);
|
|
Add<HPushArgument>(right);
|
|
instr = AddUncasted<HInvokeFunction>(function, 2);
|
|
} else {
|
|
switch (op) {
|
|
case Token::ADD:
|
|
instr = AddUncasted<HAdd>(left, right);
|
|
break;
|
|
case Token::SUB:
|
|
instr = AddUncasted<HSub>(left, right);
|
|
break;
|
|
case Token::MUL:
|
|
instr = AddUncasted<HMul>(left, right);
|
|
break;
|
|
case Token::MOD: {
|
|
if (fixed_right_arg.has_value) {
|
|
if (right->IsConstant()) {
|
|
HConstant* c_right = HConstant::cast(right);
|
|
if (c_right->HasInteger32Value()) {
|
|
ASSERT_EQ(fixed_right_arg.value, c_right->Integer32Value());
|
|
}
|
|
} else {
|
|
HConstant* fixed_right = Add<HConstant>(
|
|
static_cast<int>(fixed_right_arg.value));
|
|
IfBuilder if_same(this);
|
|
if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
|
|
if_same.Then();
|
|
if_same.ElseDeopt("Unexpected RHS of binary operation");
|
|
right = fixed_right;
|
|
}
|
|
}
|
|
instr = AddUncasted<HMod>(left, right);
|
|
break;
|
|
}
|
|
case Token::DIV:
|
|
instr = AddUncasted<HDiv>(left, right);
|
|
break;
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND:
|
|
instr = AddUncasted<HBitwise>(op, left, right);
|
|
break;
|
|
case Token::BIT_OR: {
|
|
HValue* operand, *shift_amount;
|
|
if (left_type->Is(Type::Signed32()) &&
|
|
right_type->Is(Type::Signed32()) &&
|
|
MatchRotateRight(left, right, &operand, &shift_amount)) {
|
|
instr = AddUncasted<HRor>(operand, shift_amount);
|
|
} else {
|
|
instr = AddUncasted<HBitwise>(op, left, right);
|
|
}
|
|
break;
|
|
}
|
|
case Token::SAR:
|
|
instr = AddUncasted<HSar>(left, right);
|
|
break;
|
|
case Token::SHR:
|
|
instr = AddUncasted<HShr>(left, right);
|
|
if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
|
|
CanBeZero(right)) {
|
|
graph()->RecordUint32Instruction(instr);
|
|
}
|
|
break;
|
|
case Token::SHL:
|
|
instr = AddUncasted<HShl>(left, right);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
if (instr->IsBinaryOperation()) {
|
|
HBinaryOperation* binop = HBinaryOperation::cast(instr);
|
|
binop->set_observed_input_representation(1, left_rep);
|
|
binop->set_observed_input_representation(2, right_rep);
|
|
binop->initialize_output_representation(result_rep);
|
|
if (graph()->info()->IsStub()) {
|
|
// Stub should not call into stub.
|
|
instr->SetFlag(HValue::kCannotBeTagged);
|
|
// And should truncate on HForceRepresentation already.
|
|
if (left->IsForceRepresentation()) {
|
|
left->CopyFlag(HValue::kTruncatingToSmi, instr);
|
|
left->CopyFlag(HValue::kTruncatingToInt32, instr);
|
|
}
|
|
if (right->IsForceRepresentation()) {
|
|
right->CopyFlag(HValue::kTruncatingToSmi, instr);
|
|
right->CopyFlag(HValue::kTruncatingToInt32, instr);
|
|
}
|
|
}
|
|
}
|
|
return instr;
|
|
}
|
|
|
|
|
|
// Check for the form (%_ClassOf(foo) === 'BarClass').
|
|
static bool IsClassOfTest(CompareOperation* expr) {
|
|
if (expr->op() != Token::EQ_STRICT) return false;
|
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
|
if (call == NULL) return false;
|
|
Literal* literal = expr->right()->AsLiteral();
|
|
if (literal == NULL) return false;
|
|
if (!literal->value()->IsString()) return false;
|
|
if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
|
|
return false;
|
|
}
|
|
ASSERT(call->arguments()->length() == 1);
|
|
return true;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
switch (expr->op()) {
|
|
case Token::COMMA:
|
|
return VisitComma(expr);
|
|
case Token::OR:
|
|
case Token::AND:
|
|
return VisitLogicalExpression(expr);
|
|
default:
|
|
return VisitArithmeticExpression(expr);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForEffect(expr->left()));
|
|
// Visit the right subexpression in the same AST context as the entire
|
|
// expression.
|
|
Visit(expr->right());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
|
|
bool is_logical_and = expr->op() == Token::AND;
|
|
if (ast_context()->IsTest()) {
|
|
TestContext* context = TestContext::cast(ast_context());
|
|
// Translate left subexpression.
|
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
|
if (is_logical_and) {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(),
|
|
eval_right,
|
|
context->if_false()));
|
|
} else {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(),
|
|
context->if_true(),
|
|
eval_right));
|
|
}
|
|
|
|
// Translate right subexpression by visiting it in the same AST
|
|
// context as the entire expression.
|
|
if (eval_right->HasPredecessor()) {
|
|
eval_right->SetJoinId(expr->RightId());
|
|
set_current_block(eval_right);
|
|
Visit(expr->right());
|
|
}
|
|
|
|
} else if (ast_context()->IsValue()) {
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
ASSERT(current_block() != NULL);
|
|
HValue* left_value = Top();
|
|
|
|
if (left_value->IsConstant()) {
|
|
HConstant* left_constant = HConstant::cast(left_value);
|
|
if ((is_logical_and && left_constant->BooleanValue()) ||
|
|
(!is_logical_and && !left_constant->BooleanValue())) {
|
|
Drop(1); // left_value.
|
|
CHECK_ALIVE(VisitForValue(expr->right()));
|
|
}
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
// We need an extra block to maintain edge-split form.
|
|
HBasicBlock* empty_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
|
ToBooleanStub::Types expected(expr->left()->to_boolean_types());
|
|
HBranch* test = is_logical_and
|
|
? New<HBranch>(left_value, expected, eval_right, empty_block)
|
|
: New<HBranch>(left_value, expected, empty_block, eval_right);
|
|
FinishCurrentBlock(test);
|
|
|
|
set_current_block(eval_right);
|
|
Drop(1); // Value of the left subexpression.
|
|
CHECK_BAILOUT(VisitForValue(expr->right()));
|
|
|
|
HBasicBlock* join_block =
|
|
CreateJoin(empty_block, current_block(), expr->id());
|
|
set_current_block(join_block);
|
|
return ast_context()->ReturnValue(Pop());
|
|
|
|
} else {
|
|
ASSERT(ast_context()->IsEffect());
|
|
// In an effect context, we don't need the value of the left subexpression,
|
|
// only its control flow and side effects. We need an extra block to
|
|
// maintain edge-split form.
|
|
HBasicBlock* empty_block = graph()->CreateBasicBlock();
|
|
HBasicBlock* right_block = graph()->CreateBasicBlock();
|
|
if (is_logical_and) {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
|
|
} else {
|
|
CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
|
|
}
|
|
|
|
// TODO(kmillikin): Find a way to fix this. It's ugly that there are
|
|
// actually two empty blocks (one here and one inserted by
|
|
// TestContext::BuildBranch, and that they both have an HSimulate though the
|
|
// second one is not a merge node, and that we really have no good AST ID to
|
|
// put on that first HSimulate.
|
|
|
|
if (empty_block->HasPredecessor()) {
|
|
empty_block->SetJoinId(expr->id());
|
|
} else {
|
|
empty_block = NULL;
|
|
}
|
|
|
|
if (right_block->HasPredecessor()) {
|
|
right_block->SetJoinId(expr->RightId());
|
|
set_current_block(right_block);
|
|
CHECK_BAILOUT(VisitForEffect(expr->right()));
|
|
right_block = current_block();
|
|
} else {
|
|
right_block = NULL;
|
|
}
|
|
|
|
HBasicBlock* join_block =
|
|
CreateJoin(empty_block, right_block, expr->id());
|
|
set_current_block(join_block);
|
|
// We did not materialize any value in the predecessor environments,
|
|
// so there is no need to handle it here.
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
CHECK_ALIVE(VisitForValue(expr->right()));
|
|
SetSourcePosition(expr->position());
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HValue* result = BuildBinaryOperation(expr, left, right);
|
|
if (FLAG_emit_opt_code_positions && result->IsBinaryOperation()) {
|
|
HBinaryOperation::cast(result)->SetOperandPositions(
|
|
zone(), expr->left()->position(), expr->right()->position());
|
|
}
|
|
return ast_context()->ReturnValue(result);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
|
|
Expression* sub_expr,
|
|
Handle<String> check) {
|
|
CHECK_ALIVE(VisitForTypeOf(sub_expr));
|
|
SetSourcePosition(expr->position());
|
|
HValue* value = Pop();
|
|
HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
}
|
|
|
|
|
|
static bool IsLiteralCompareBool(Isolate* isolate,
|
|
HValue* left,
|
|
Token::Value op,
|
|
HValue* right) {
|
|
return op == Token::EQ_STRICT &&
|
|
((left->IsConstant() &&
|
|
HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
|
|
(right->IsConstant() &&
|
|
HConstant::cast(right)->handle(isolate)->IsBoolean()));
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
|
|
if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
|
|
// Check for a few fast cases. The AST visiting behavior must be in sync
|
|
// with the full codegen: We don't push both left and right values onto
|
|
// the expression stack when one side is a special-case literal.
|
|
Expression* sub_expr = NULL;
|
|
Handle<String> check;
|
|
if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
|
|
return HandleLiteralCompareTypeof(expr, sub_expr, check);
|
|
}
|
|
if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
|
|
return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
|
|
}
|
|
if (expr->IsLiteralCompareNull(&sub_expr)) {
|
|
return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
|
|
}
|
|
|
|
if (IsClassOfTest(expr)) {
|
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
Literal* literal = expr->right()->AsLiteral();
|
|
Handle<String> rhs = Handle<String>::cast(literal->value());
|
|
HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
}
|
|
|
|
Handle<Type> left_type = expr->left()->bounds().lower;
|
|
Handle<Type> right_type = expr->right()->bounds().lower;
|
|
Handle<Type> combined_type = expr->combined_type();
|
|
|
|
CHECK_ALIVE(VisitForValue(expr->left()));
|
|
CHECK_ALIVE(VisitForValue(expr->right()));
|
|
|
|
if (FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
Token::Value op = expr->op();
|
|
|
|
if (IsLiteralCompareBool(isolate(), left, op, right)) {
|
|
HCompareObjectEqAndBranch* result =
|
|
New<HCompareObjectEqAndBranch>(left, right);
|
|
return ast_context()->ReturnControl(result, expr->id());
|
|
}
|
|
|
|
if (op == Token::INSTANCEOF) {
|
|
// Check to see if the rhs of the instanceof is a global function not
|
|
// residing in new space. If it is we assume that the function will stay the
|
|
// same.
|
|
Handle<JSFunction> target = Handle<JSFunction>::null();
|
|
VariableProxy* proxy = expr->right()->AsVariableProxy();
|
|
bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
|
|
if (global_function &&
|
|
current_info()->has_global_object() &&
|
|
!current_info()->global_object()->IsAccessCheckNeeded()) {
|
|
Handle<String> name = proxy->name();
|
|
Handle<GlobalObject> global(current_info()->global_object());
|
|
LookupResult lookup(isolate());
|
|
global->Lookup(*name, &lookup);
|
|
if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
|
|
Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
|
|
// If the function is in new space we assume it's more likely to
|
|
// change and thus prefer the general IC code.
|
|
if (!isolate()->heap()->InNewSpace(*candidate)) {
|
|
target = candidate;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the target is not null we have found a known global function that is
|
|
// assumed to stay the same for this instanceof.
|
|
if (target.is_null()) {
|
|
HInstanceOf* result = New<HInstanceOf>(left, right);
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
} else {
|
|
Add<HCheckValue>(right, target);
|
|
HInstanceOfKnownGlobal* result =
|
|
New<HInstanceOfKnownGlobal>(left, target);
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
}
|
|
|
|
// Code below assumes that we don't fall through.
|
|
UNREACHABLE();
|
|
} else if (op == Token::IN) {
|
|
HValue* function = AddLoadJSBuiltin(Builtins::IN);
|
|
Add<HPushArgument>(left);
|
|
Add<HPushArgument>(right);
|
|
// TODO(olivf) InvokeFunction produces a check for the parameter count,
|
|
// even though we are certain to pass the correct number of arguments here.
|
|
HInstruction* result = New<HInvokeFunction>(function, 2);
|
|
return ast_context()->ReturnInstruction(result, expr->id());
|
|
}
|
|
|
|
HControlInstruction* compare = BuildCompareInstruction(
|
|
op, left, right, left_type, right_type, combined_type,
|
|
expr->left()->position(), expr->right()->position(), expr->id());
|
|
if (compare == NULL) return; // Bailed out.
|
|
return ast_context()->ReturnControl(compare, expr->id());
|
|
}
|
|
|
|
|
|
HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
|
|
Token::Value op,
|
|
HValue* left,
|
|
HValue* right,
|
|
Handle<Type> left_type,
|
|
Handle<Type> right_type,
|
|
Handle<Type> combined_type,
|
|
int left_position,
|
|
int right_position,
|
|
BailoutId bailout_id) {
|
|
// Cases handled below depend on collected type feedback. They should
|
|
// soft deoptimize when there is no type feedback.
|
|
if (combined_type->Is(Type::None())) {
|
|
Add<HDeoptimize>("Insufficient type feedback for combined type "
|
|
"of binary operation",
|
|
Deoptimizer::SOFT);
|
|
combined_type = left_type = right_type = Type::Any(isolate());
|
|
}
|
|
|
|
Representation left_rep = Representation::FromType(left_type);
|
|
Representation right_rep = Representation::FromType(right_type);
|
|
Representation combined_rep = Representation::FromType(combined_type);
|
|
|
|
if (combined_type->Is(Type::Receiver())) {
|
|
if (Token::IsEqualityOp(op)) {
|
|
// Can we get away with map check and not instance type check?
|
|
HValue* operand_to_check =
|
|
left->block()->block_id() < right->block()->block_id() ? left : right;
|
|
if (combined_type->IsClass()) {
|
|
Handle<Map> map = combined_type->AsClass();
|
|
AddCheckMap(operand_to_check, map);
|
|
HCompareObjectEqAndBranch* result =
|
|
New<HCompareObjectEqAndBranch>(left, right);
|
|
if (FLAG_emit_opt_code_positions) {
|
|
result->set_operand_position(zone(), 0, left_position);
|
|
result->set_operand_position(zone(), 1, right_position);
|
|
}
|
|
return result;
|
|
} else {
|
|
BuildCheckHeapObject(operand_to_check);
|
|
Add<HCheckInstanceType>(operand_to_check,
|
|
HCheckInstanceType::IS_SPEC_OBJECT);
|
|
HCompareObjectEqAndBranch* result =
|
|
New<HCompareObjectEqAndBranch>(left, right);
|
|
return result;
|
|
}
|
|
} else {
|
|
Bailout(kUnsupportedNonPrimitiveCompare);
|
|
return NULL;
|
|
}
|
|
} else if (combined_type->Is(Type::InternalizedString()) &&
|
|
Token::IsEqualityOp(op)) {
|
|
BuildCheckHeapObject(left);
|
|
Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
|
|
BuildCheckHeapObject(right);
|
|
Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
|
|
HCompareObjectEqAndBranch* result =
|
|
New<HCompareObjectEqAndBranch>(left, right);
|
|
return result;
|
|
} else if (combined_type->Is(Type::String())) {
|
|
BuildCheckHeapObject(left);
|
|
Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
|
|
BuildCheckHeapObject(right);
|
|
Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
|
|
HStringCompareAndBranch* result =
|
|
New<HStringCompareAndBranch>(left, right, op);
|
|
return result;
|
|
} else {
|
|
if (combined_rep.IsTagged() || combined_rep.IsNone()) {
|
|
HCompareGeneric* result = Add<HCompareGeneric>(left, right, op);
|
|
result->set_observed_input_representation(1, left_rep);
|
|
result->set_observed_input_representation(2, right_rep);
|
|
if (result->HasObservableSideEffects()) {
|
|
Push(result);
|
|
AddSimulate(bailout_id, REMOVABLE_SIMULATE);
|
|
Drop(1);
|
|
}
|
|
// TODO(jkummerow): Can we make this more efficient?
|
|
HBranch* branch = New<HBranch>(result);
|
|
return branch;
|
|
} else {
|
|
HCompareNumericAndBranch* result =
|
|
New<HCompareNumericAndBranch>(left, right, op);
|
|
result->set_observed_input_representation(left_rep, right_rep);
|
|
if (FLAG_emit_opt_code_positions) {
|
|
result->SetOperandPositions(zone(), left_position, right_position);
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
|
|
Expression* sub_expr,
|
|
NilValue nil) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
ASSERT(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
|
|
if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
|
|
CHECK_ALIVE(VisitForValue(sub_expr));
|
|
HValue* value = Pop();
|
|
if (expr->op() == Token::EQ_STRICT) {
|
|
HConstant* nil_constant = nil == kNullValue
|
|
? graph()->GetConstantNull()
|
|
: graph()->GetConstantUndefined();
|
|
HCompareObjectEqAndBranch* instr =
|
|
New<HCompareObjectEqAndBranch>(value, nil_constant);
|
|
return ast_context()->ReturnControl(instr, expr->id());
|
|
} else {
|
|
ASSERT_EQ(Token::EQ, expr->op());
|
|
Handle<Type> type = expr->combined_type()->Is(Type::None())
|
|
? Type::Any(isolate_) : expr->combined_type();
|
|
HIfContinuation continuation;
|
|
BuildCompareNil(value, type, &continuation);
|
|
return ast_context()->ReturnContinuation(&continuation, expr->id());
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
|
|
// If we share optimized code between different closures, the
|
|
// this-function is not a constant, except inside an inlined body.
|
|
if (function_state()->outer() != NULL) {
|
|
return New<HConstant>(
|
|
function_state()->compilation_info()->closure());
|
|
} else {
|
|
return New<HThisFunction>();
|
|
}
|
|
}
|
|
|
|
|
|
HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
|
|
Handle<JSObject> boilerplate_object,
|
|
AllocationSiteUsageContext* site_context) {
|
|
NoObservableSideEffectsScope no_effects(this);
|
|
InstanceType instance_type = boilerplate_object->map()->instance_type();
|
|
ASSERT(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
|
|
|
|
HType type = instance_type == JS_ARRAY_TYPE
|
|
? HType::JSArray() : HType::JSObject();
|
|
HValue* object_size_constant = Add<HConstant>(
|
|
boilerplate_object->map()->instance_size());
|
|
|
|
PretenureFlag pretenure_flag = isolate()->heap()->GetPretenureMode();
|
|
if (FLAG_allocation_site_pretenuring) {
|
|
pretenure_flag = site_context->current()->GetPretenureMode();
|
|
Handle<AllocationSite> site(site_context->current());
|
|
AllocationSite::AddDependentCompilationInfo(
|
|
site, AllocationSite::TENURING, top_info());
|
|
}
|
|
|
|
HInstruction* object = Add<HAllocate>(object_size_constant, type,
|
|
pretenure_flag, instance_type, site_context->current());
|
|
|
|
BuildEmitObjectHeader(boilerplate_object, object);
|
|
|
|
Handle<FixedArrayBase> elements(boilerplate_object->elements());
|
|
int elements_size = (elements->length() > 0 &&
|
|
elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
|
|
elements->Size() : 0;
|
|
|
|
HInstruction* object_elements = NULL;
|
|
if (elements_size > 0) {
|
|
HValue* object_elements_size = Add<HConstant>(elements_size);
|
|
if (boilerplate_object->HasFastDoubleElements()) {
|
|
object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
|
|
pretenure_flag, FIXED_DOUBLE_ARRAY_TYPE, site_context->current());
|
|
} else {
|
|
object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
|
|
pretenure_flag, FIXED_ARRAY_TYPE, site_context->current());
|
|
}
|
|
}
|
|
BuildInitElementsInObjectHeader(boilerplate_object, object, object_elements);
|
|
|
|
// Copy object elements if non-COW.
|
|
if (object_elements != NULL) {
|
|
BuildEmitElements(boilerplate_object, elements, object_elements,
|
|
site_context);
|
|
}
|
|
|
|
// Copy in-object properties.
|
|
if (boilerplate_object->map()->NumberOfFields() != 0) {
|
|
BuildEmitInObjectProperties(boilerplate_object, object, site_context,
|
|
pretenure_flag);
|
|
}
|
|
return object;
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildEmitObjectHeader(
|
|
Handle<JSObject> boilerplate_object,
|
|
HInstruction* object) {
|
|
ASSERT(boilerplate_object->properties()->length() == 0);
|
|
|
|
Handle<Map> boilerplate_object_map(boilerplate_object->map());
|
|
AddStoreMapConstant(object, boilerplate_object_map);
|
|
|
|
Handle<Object> properties_field =
|
|
Handle<Object>(boilerplate_object->properties(), isolate());
|
|
ASSERT(*properties_field == isolate()->heap()->empty_fixed_array());
|
|
HInstruction* properties = Add<HConstant>(properties_field);
|
|
HObjectAccess access = HObjectAccess::ForPropertiesPointer();
|
|
Add<HStoreNamedField>(object, access, properties);
|
|
|
|
if (boilerplate_object->IsJSArray()) {
|
|
Handle<JSArray> boilerplate_array =
|
|
Handle<JSArray>::cast(boilerplate_object);
|
|
Handle<Object> length_field =
|
|
Handle<Object>(boilerplate_array->length(), isolate());
|
|
HInstruction* length = Add<HConstant>(length_field);
|
|
|
|
ASSERT(boilerplate_array->length()->IsSmi());
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
|
|
boilerplate_array->GetElementsKind()), length);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildInitElementsInObjectHeader(
|
|
Handle<JSObject> boilerplate_object,
|
|
HInstruction* object,
|
|
HInstruction* object_elements) {
|
|
ASSERT(boilerplate_object->properties()->length() == 0);
|
|
if (object_elements == NULL) {
|
|
Handle<Object> elements_field =
|
|
Handle<Object>(boilerplate_object->elements(), isolate());
|
|
object_elements = Add<HConstant>(elements_field);
|
|
}
|
|
Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
|
|
object_elements);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
|
|
Handle<JSObject> boilerplate_object,
|
|
HInstruction* object,
|
|
AllocationSiteUsageContext* site_context,
|
|
PretenureFlag pretenure_flag) {
|
|
Handle<DescriptorArray> descriptors(
|
|
boilerplate_object->map()->instance_descriptors());
|
|
int limit = boilerplate_object->map()->NumberOfOwnDescriptors();
|
|
|
|
int copied_fields = 0;
|
|
for (int i = 0; i < limit; i++) {
|
|
PropertyDetails details = descriptors->GetDetails(i);
|
|
if (details.type() != FIELD) continue;
|
|
copied_fields++;
|
|
int index = descriptors->GetFieldIndex(i);
|
|
int property_offset = boilerplate_object->GetInObjectPropertyOffset(index);
|
|
Handle<Name> name(descriptors->GetKey(i));
|
|
Handle<Object> value =
|
|
Handle<Object>(boilerplate_object->InObjectPropertyAt(index),
|
|
isolate());
|
|
|
|
// The access for the store depends on the type of the boilerplate.
|
|
HObjectAccess access = boilerplate_object->IsJSArray() ?
|
|
HObjectAccess::ForJSArrayOffset(property_offset) :
|
|
HObjectAccess::ForJSObjectOffset(property_offset);
|
|
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
Handle<AllocationSite> current_site = site_context->EnterNewScope();
|
|
HInstruction* result =
|
|
BuildFastLiteral(value_object, site_context);
|
|
site_context->ExitScope(current_site, value_object);
|
|
Add<HStoreNamedField>(object, access, result);
|
|
} else {
|
|
Representation representation = details.representation();
|
|
HInstruction* value_instruction;
|
|
|
|
if (representation.IsDouble()) {
|
|
// Allocate a HeapNumber box and store the value into it.
|
|
HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
|
|
// This heap number alloc does not have a corresponding
|
|
// AllocationSite. That is okay because
|
|
// 1) it's a child object of another object with a valid allocation site
|
|
// 2) we can just use the mode of the parent object for pretenuring
|
|
HInstruction* double_box =
|
|
Add<HAllocate>(heap_number_constant, HType::HeapNumber(),
|
|
pretenure_flag, HEAP_NUMBER_TYPE);
|
|
AddStoreMapConstant(double_box,
|
|
isolate()->factory()->heap_number_map());
|
|
Add<HStoreNamedField>(double_box, HObjectAccess::ForHeapNumberValue(),
|
|
Add<HConstant>(value));
|
|
value_instruction = double_box;
|
|
} else if (representation.IsSmi() && value->IsUninitialized()) {
|
|
value_instruction = graph()->GetConstant0();
|
|
} else {
|
|
value_instruction = Add<HConstant>(value);
|
|
}
|
|
|
|
Add<HStoreNamedField>(object, access, value_instruction);
|
|
}
|
|
}
|
|
|
|
int inobject_properties = boilerplate_object->map()->inobject_properties();
|
|
HInstruction* value_instruction =
|
|
Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
|
|
for (int i = copied_fields; i < inobject_properties; i++) {
|
|
ASSERT(boilerplate_object->IsJSObject());
|
|
int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
|
|
HObjectAccess access = HObjectAccess::ForJSObjectOffset(property_offset);
|
|
Add<HStoreNamedField>(object, access, value_instruction);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildEmitElements(
|
|
Handle<JSObject> boilerplate_object,
|
|
Handle<FixedArrayBase> elements,
|
|
HValue* object_elements,
|
|
AllocationSiteUsageContext* site_context) {
|
|
ElementsKind kind = boilerplate_object->map()->elements_kind();
|
|
int elements_length = elements->length();
|
|
HValue* object_elements_length = Add<HConstant>(elements_length);
|
|
BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
|
|
|
|
// Copy elements backing store content.
|
|
if (elements->IsFixedDoubleArray()) {
|
|
BuildEmitFixedDoubleArray(elements, kind, object_elements);
|
|
} else if (elements->IsFixedArray()) {
|
|
BuildEmitFixedArray(elements, kind, object_elements,
|
|
site_context);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
|
|
Handle<FixedArrayBase> elements,
|
|
ElementsKind kind,
|
|
HValue* object_elements) {
|
|
HInstruction* boilerplate_elements = Add<HConstant>(elements);
|
|
int elements_length = elements->length();
|
|
for (int i = 0; i < elements_length; i++) {
|
|
HValue* key_constant = Add<HConstant>(i);
|
|
HInstruction* value_instruction =
|
|
Add<HLoadKeyed>(boilerplate_elements, key_constant,
|
|
static_cast<HValue*>(NULL), kind,
|
|
ALLOW_RETURN_HOLE);
|
|
HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
|
|
value_instruction, kind);
|
|
store->SetFlag(HValue::kAllowUndefinedAsNaN);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::BuildEmitFixedArray(
|
|
Handle<FixedArrayBase> elements,
|
|
ElementsKind kind,
|
|
HValue* object_elements,
|
|
AllocationSiteUsageContext* site_context) {
|
|
HInstruction* boilerplate_elements = Add<HConstant>(elements);
|
|
int elements_length = elements->length();
|
|
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
|
|
for (int i = 0; i < elements_length; i++) {
|
|
Handle<Object> value(fast_elements->get(i), isolate());
|
|
HValue* key_constant = Add<HConstant>(i);
|
|
if (value->IsJSObject()) {
|
|
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
|
|
Handle<AllocationSite> current_site = site_context->EnterNewScope();
|
|
HInstruction* result =
|
|
BuildFastLiteral(value_object, site_context);
|
|
site_context->ExitScope(current_site, value_object);
|
|
Add<HStoreKeyed>(object_elements, key_constant, result, kind);
|
|
} else {
|
|
HInstruction* value_instruction =
|
|
Add<HLoadKeyed>(boilerplate_elements, key_constant,
|
|
static_cast<HValue*>(NULL), kind,
|
|
ALLOW_RETURN_HOLE);
|
|
Add<HStoreKeyed>(object_elements, key_constant, value_instruction, kind);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
|
|
ASSERT(!HasStackOverflow());
|
|
ASSERT(current_block() != NULL);
|
|
ASSERT(current_block()->HasPredecessor());
|
|
HInstruction* instr = BuildThisFunction();
|
|
return ast_context()->ReturnInstruction(instr, expr->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitDeclarations(
|
|
ZoneList<Declaration*>* declarations) {
|
|
ASSERT(globals_.is_empty());
|
|
AstVisitor::VisitDeclarations(declarations);
|
|
if (!globals_.is_empty()) {
|
|
Handle<FixedArray> array =
|
|
isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
|
|
for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
|
|
int flags = DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
|
|
DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
|
|
DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
|
|
Add<HDeclareGlobals>(array, flags);
|
|
globals_.Clear();
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitVariableDeclaration(
|
|
VariableDeclaration* declaration) {
|
|
VariableProxy* proxy = declaration->proxy();
|
|
VariableMode mode = declaration->mode();
|
|
Variable* variable = proxy->var();
|
|
bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED:
|
|
globals_.Add(variable->name(), zone());
|
|
globals_.Add(variable->binding_needs_init()
|
|
? isolate()->factory()->the_hole_value()
|
|
: isolate()->factory()->undefined_value(), zone());
|
|
return;
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL:
|
|
if (hole_init) {
|
|
HValue* value = graph()->GetConstantHole();
|
|
environment()->Bind(variable, value);
|
|
}
|
|
break;
|
|
case Variable::CONTEXT:
|
|
if (hole_init) {
|
|
HValue* value = graph()->GetConstantHole();
|
|
HValue* context = environment()->context();
|
|
HStoreContextSlot* store = Add<HStoreContextSlot>(
|
|
context, variable->index(), HStoreContextSlot::kNoCheck, value);
|
|
if (store->HasObservableSideEffects()) {
|
|
Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
|
|
}
|
|
}
|
|
break;
|
|
case Variable::LOOKUP:
|
|
return Bailout(kUnsupportedLookupSlotInDeclaration);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitFunctionDeclaration(
|
|
FunctionDeclaration* declaration) {
|
|
VariableProxy* proxy = declaration->proxy();
|
|
Variable* variable = proxy->var();
|
|
switch (variable->location()) {
|
|
case Variable::UNALLOCATED: {
|
|
globals_.Add(variable->name(), zone());
|
|
Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(
|
|
declaration->fun(), current_info()->script());
|
|
// Check for stack-overflow exception.
|
|
if (function.is_null()) return SetStackOverflow();
|
|
globals_.Add(function, zone());
|
|
return;
|
|
}
|
|
case Variable::PARAMETER:
|
|
case Variable::LOCAL: {
|
|
CHECK_ALIVE(VisitForValue(declaration->fun()));
|
|
HValue* value = Pop();
|
|
BindIfLive(variable, value);
|
|
break;
|
|
}
|
|
case Variable::CONTEXT: {
|
|
CHECK_ALIVE(VisitForValue(declaration->fun()));
|
|
HValue* value = Pop();
|
|
HValue* context = environment()->context();
|
|
HStoreContextSlot* store = Add<HStoreContextSlot>(
|
|
context, variable->index(), HStoreContextSlot::kNoCheck, value);
|
|
if (store->HasObservableSideEffects()) {
|
|
Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
|
|
}
|
|
break;
|
|
}
|
|
case Variable::LOOKUP:
|
|
return Bailout(kUnsupportedLookupSlotInDeclaration);
|
|
}
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModuleDeclaration(
|
|
ModuleDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitImportDeclaration(
|
|
ImportDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitExportDeclaration(
|
|
ExportDeclaration* declaration) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
// Generators for inline runtime functions.
|
|
// Support for types.
|
|
void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
New<HHasInstanceTypeAndBranch>(value,
|
|
FIRST_SPEC_OBJECT_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasCachedArrayIndexAndBranch* result =
|
|
New<HHasCachedArrayIndexAndBranch>(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HHasInstanceTypeAndBranch* result =
|
|
New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionIsNonNegativeSmi);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
|
|
CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf);
|
|
}
|
|
|
|
|
|
// Support for construct call checks.
|
|
void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 0);
|
|
if (function_state()->outer() != NULL) {
|
|
// We are generating graph for inlined function.
|
|
HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
|
|
? graph()->GetConstantTrue()
|
|
: graph()->GetConstantFalse();
|
|
return ast_context()->ReturnValue(value);
|
|
} else {
|
|
return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
|
|
call->id());
|
|
}
|
|
}
|
|
|
|
|
|
// Support for arguments.length and arguments[?].
|
|
void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
|
|
// Our implementation of arguments (based on this stack frame or an
|
|
// adapter below it) does not work for inlined functions. This runtime
|
|
// function is blacklisted by AstNode::IsInlineable.
|
|
ASSERT(function_state()->outer() == NULL);
|
|
ASSERT(call->arguments()->length() == 0);
|
|
HInstruction* elements = Add<HArgumentsElements>(false);
|
|
HArgumentsLength* result = New<HArgumentsLength>(elements);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
|
|
// Our implementation of arguments (based on this stack frame or an
|
|
// adapter below it) does not work for inlined functions. This runtime
|
|
// function is blacklisted by AstNode::IsInlineable.
|
|
ASSERT(function_state()->outer() == NULL);
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* index = Pop();
|
|
HInstruction* elements = Add<HArgumentsElements>(false);
|
|
HInstruction* length = Add<HArgumentsLength>(elements);
|
|
HInstruction* checked_index = Add<HBoundsCheck>(index, length);
|
|
HAccessArgumentsAt* result = New<HAccessArgumentsAt>(
|
|
elements, length, checked_index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for accessing the class and value fields of an object.
|
|
void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
|
|
// The special form detected by IsClassOfTest is detected before we get here
|
|
// and does not cause a bailout.
|
|
return Bailout(kInlinedRuntimeFunctionClassOf);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HValueOf* result = New<HValueOf>(value);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
|
|
Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* date = Pop();
|
|
HDateField* result = New<HDateField>(date, index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
|
|
CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 3);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
|
|
HValue* value = Pop();
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
|
|
index, value);
|
|
Add<HSimulate>(call->id(), FIXED_SIMULATE);
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
|
|
CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 3);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
|
|
HValue* value = Pop();
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
|
|
index, value);
|
|
Add<HSimulate>(call->id(), FIXED_SIMULATE);
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* value = Pop();
|
|
HValue* object = Pop();
|
|
// Check if object is a not a smi.
|
|
HBasicBlock* if_smi = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
FinishCurrentBlock(New<HIsSmiAndBranch>(object, if_smi, if_heap_object));
|
|
Goto(if_smi, join);
|
|
|
|
// Check if object is a JSValue.
|
|
set_current_block(if_heap_object);
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
New<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
|
|
HBasicBlock* if_js_value = graph()->CreateBasicBlock();
|
|
HBasicBlock* not_js_value = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_js_value);
|
|
typecheck->SetSuccessorAt(1, not_js_value);
|
|
FinishCurrentBlock(typecheck);
|
|
Goto(not_js_value, join);
|
|
|
|
// Create in-object property store to kValueOffset.
|
|
set_current_block(if_js_value);
|
|
Add<HStoreNamedField>(object,
|
|
HObjectAccess::ForJSObjectOffset(JSValue::kValueOffset), value);
|
|
Goto(if_js_value, join);
|
|
join->SetJoinId(call->id());
|
|
set_current_block(join);
|
|
return ast_context()->ReturnValue(value);
|
|
}
|
|
|
|
|
|
// Fast support for charCodeAt(n).
|
|
void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HInstruction* result = BuildStringCharCodeAt(string, index);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for string.charAt(n) and string[n].
|
|
void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* char_code = Pop();
|
|
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for string.charAt(n) and string[n].
|
|
void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* index = Pop();
|
|
HValue* string = Pop();
|
|
HInstruction* char_code = BuildStringCharCodeAt(string, index);
|
|
AddInstruction(char_code);
|
|
HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for object equality testing.
|
|
void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 2);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HCompareObjectEqAndBranch* result =
|
|
New<HCompareObjectEqAndBranch>(left, right);
|
|
return ast_context()->ReturnControl(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) {
|
|
// %_Log is ignored in optimized code.
|
|
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
|
|
}
|
|
|
|
|
|
// Fast support for StringAdd.
|
|
void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HInstruction* result = NewUncasted<HStringAdd>(left, right);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for SubString.
|
|
void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
|
|
ASSERT_EQ(3, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
|
|
Drop(3);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Fast support for StringCompare.
|
|
void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
|
|
Drop(2);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for direct calls from JavaScript to native RegExp code.
|
|
void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
|
|
ASSERT_EQ(4, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
|
|
Drop(4);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Construct a RegExp exec result with two in-object properties.
|
|
void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
|
|
ASSERT_EQ(3, call->arguments()->length());
|
|
CHECK_ALIVE(VisitArgumentList(call->arguments()));
|
|
HCallStub* result = New<HCallStub>(CodeStub::RegExpConstructResult, 3);
|
|
Drop(3);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Support for fast native caches.
|
|
void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionGetFromCache);
|
|
}
|
|
|
|
|
|
// Fast support for number to string.
|
|
void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
|
|
ASSERT_EQ(1, call->arguments()->length());
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* number = Pop();
|
|
HValue* result = BuildNumberToString(number, Type::Any(isolate()));
|
|
return ast_context()->ReturnValue(result);
|
|
}
|
|
|
|
|
|
// Fast call for custom callbacks.
|
|
void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
|
|
// 1 ~ The function to call is not itself an argument to the call.
|
|
int arg_count = call->arguments()->length() - 1;
|
|
ASSERT(arg_count >= 1); // There's always at least a receiver.
|
|
|
|
for (int i = 0; i < arg_count; ++i) {
|
|
CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
|
|
}
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->last()));
|
|
|
|
HValue* function = Pop();
|
|
|
|
// Branch for function proxies, or other non-functions.
|
|
HHasInstanceTypeAndBranch* typecheck =
|
|
New<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
|
|
HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
|
|
HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
|
|
HBasicBlock* join = graph()->CreateBasicBlock();
|
|
typecheck->SetSuccessorAt(0, if_jsfunction);
|
|
typecheck->SetSuccessorAt(1, if_nonfunction);
|
|
FinishCurrentBlock(typecheck);
|
|
|
|
set_current_block(if_jsfunction);
|
|
HInstruction* invoke_result = Add<HInvokeFunction>(function, arg_count);
|
|
Drop(arg_count);
|
|
Push(invoke_result);
|
|
Goto(if_jsfunction, join);
|
|
|
|
set_current_block(if_nonfunction);
|
|
HInstruction* call_result = Add<HCallFunction>(function, arg_count);
|
|
Drop(arg_count);
|
|
Push(call_result);
|
|
Goto(if_nonfunction, join);
|
|
|
|
set_current_block(join);
|
|
join->SetJoinId(call->id());
|
|
return ast_context()->ReturnValue(Pop());
|
|
}
|
|
|
|
|
|
// Fast call to math functions.
|
|
void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
|
|
ASSERT_EQ(2, call->arguments()->length());
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
|
|
HValue* right = Pop();
|
|
HValue* left = Pop();
|
|
HInstruction* result = NewUncasted<HPower>(left, right);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
// Check whether two RegExps are equivalent
|
|
void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionIsRegExpEquivalent);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
|
|
ASSERT(call->arguments()->length() == 1);
|
|
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
|
|
HValue* value = Pop();
|
|
HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
|
|
return ast_context()->ReturnInstruction(result, call->id());
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionFastAsciiArrayJoin);
|
|
}
|
|
|
|
|
|
// Support for generators.
|
|
void HOptimizedGraphBuilder::GenerateGeneratorNext(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionGeneratorNext);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
|
|
return Bailout(kInlinedRuntimeFunctionGeneratorThrow);
|
|
}
|
|
|
|
|
|
void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
|
|
CallRuntime* call) {
|
|
Add<HDebugBreak>();
|
|
return ast_context()->ReturnValue(graph()->GetConstant0());
|
|
}
|
|
|
|
|
|
#undef CHECK_BAILOUT
|
|
#undef CHECK_ALIVE
|
|
|
|
|
|
HEnvironment::HEnvironment(HEnvironment* outer,
|
|
Scope* scope,
|
|
Handle<JSFunction> closure,
|
|
Zone* zone)
|
|
: closure_(closure),
|
|
values_(0, zone),
|
|
frame_type_(JS_FUNCTION),
|
|
parameter_count_(0),
|
|
specials_count_(1),
|
|
local_count_(0),
|
|
outer_(outer),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(BailoutId::None()),
|
|
zone_(zone) {
|
|
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
|
|
}
|
|
|
|
|
|
HEnvironment::HEnvironment(Zone* zone, int parameter_count)
|
|
: values_(0, zone),
|
|
frame_type_(STUB),
|
|
parameter_count_(parameter_count),
|
|
specials_count_(1),
|
|
local_count_(0),
|
|
outer_(NULL),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(BailoutId::None()),
|
|
zone_(zone) {
|
|
Initialize(parameter_count, 0, 0);
|
|
}
|
|
|
|
|
|
HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
|
|
: values_(0, zone),
|
|
frame_type_(JS_FUNCTION),
|
|
parameter_count_(0),
|
|
specials_count_(0),
|
|
local_count_(0),
|
|
outer_(NULL),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(other->ast_id()),
|
|
zone_(zone) {
|
|
Initialize(other);
|
|
}
|
|
|
|
|
|
HEnvironment::HEnvironment(HEnvironment* outer,
|
|
Handle<JSFunction> closure,
|
|
FrameType frame_type,
|
|
int arguments,
|
|
Zone* zone)
|
|
: closure_(closure),
|
|
values_(arguments, zone),
|
|
frame_type_(frame_type),
|
|
parameter_count_(arguments),
|
|
specials_count_(0),
|
|
local_count_(0),
|
|
outer_(outer),
|
|
entry_(NULL),
|
|
pop_count_(0),
|
|
push_count_(0),
|
|
ast_id_(BailoutId::None()),
|
|
zone_(zone) {
|
|
}
|
|
|
|
|
|
void HEnvironment::Initialize(int parameter_count,
|
|
int local_count,
|
|
int stack_height) {
|
|
parameter_count_ = parameter_count;
|
|
local_count_ = local_count;
|
|
|
|
// Avoid reallocating the temporaries' backing store on the first Push.
|
|
int total = parameter_count + specials_count_ + local_count + stack_height;
|
|
values_.Initialize(total + 4, zone());
|
|
for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
|
|
}
|
|
|
|
|
|
void HEnvironment::Initialize(const HEnvironment* other) {
|
|
closure_ = other->closure();
|
|
values_.AddAll(other->values_, zone());
|
|
assigned_variables_.Union(other->assigned_variables_, zone());
|
|
frame_type_ = other->frame_type_;
|
|
parameter_count_ = other->parameter_count_;
|
|
local_count_ = other->local_count_;
|
|
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
|
|
entry_ = other->entry_;
|
|
pop_count_ = other->pop_count_;
|
|
push_count_ = other->push_count_;
|
|
specials_count_ = other->specials_count_;
|
|
ast_id_ = other->ast_id_;
|
|
}
|
|
|
|
|
|
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
|
|
ASSERT(!block->IsLoopHeader());
|
|
ASSERT(values_.length() == other->values_.length());
|
|
|
|
int length = values_.length();
|
|
for (int i = 0; i < length; ++i) {
|
|
HValue* value = values_[i];
|
|
if (value != NULL && value->IsPhi() && value->block() == block) {
|
|
// There is already a phi for the i'th value.
|
|
HPhi* phi = HPhi::cast(value);
|
|
// Assert index is correct and that we haven't missed an incoming edge.
|
|
ASSERT(phi->merged_index() == i || !phi->HasMergedIndex());
|
|
ASSERT(phi->OperandCount() == block->predecessors()->length());
|
|
phi->AddInput(other->values_[i]);
|
|
} else if (values_[i] != other->values_[i]) {
|
|
// There is a fresh value on the incoming edge, a phi is needed.
|
|
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
|
|
HPhi* phi = block->AddNewPhi(i);
|
|
HValue* old_value = values_[i];
|
|
for (int j = 0; j < block->predecessors()->length(); j++) {
|
|
phi->AddInput(old_value);
|
|
}
|
|
phi->AddInput(other->values_[i]);
|
|
this->values_[i] = phi;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HEnvironment::Bind(int index, HValue* value) {
|
|
ASSERT(value != NULL);
|
|
assigned_variables_.Add(index, zone());
|
|
values_[index] = value;
|
|
}
|
|
|
|
|
|
bool HEnvironment::HasExpressionAt(int index) const {
|
|
return index >= parameter_count_ + specials_count_ + local_count_;
|
|
}
|
|
|
|
|
|
bool HEnvironment::ExpressionStackIsEmpty() const {
|
|
ASSERT(length() >= first_expression_index());
|
|
return length() == first_expression_index();
|
|
}
|
|
|
|
|
|
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
|
|
int count = index_from_top + 1;
|
|
int index = values_.length() - count;
|
|
ASSERT(HasExpressionAt(index));
|
|
// The push count must include at least the element in question or else
|
|
// the new value will not be included in this environment's history.
|
|
if (push_count_ < count) {
|
|
// This is the same effect as popping then re-pushing 'count' elements.
|
|
pop_count_ += (count - push_count_);
|
|
push_count_ = count;
|
|
}
|
|
values_[index] = value;
|
|
}
|
|
|
|
|
|
void HEnvironment::Drop(int count) {
|
|
for (int i = 0; i < count; ++i) {
|
|
Pop();
|
|
}
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::Copy() const {
|
|
return new(zone()) HEnvironment(this, zone());
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyWithoutHistory() const {
|
|
HEnvironment* result = Copy();
|
|
result->ClearHistory();
|
|
return result;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
|
|
HEnvironment* new_env = Copy();
|
|
for (int i = 0; i < values_.length(); ++i) {
|
|
HPhi* phi = loop_header->AddNewPhi(i);
|
|
phi->AddInput(values_[i]);
|
|
new_env->values_[i] = phi;
|
|
}
|
|
new_env->ClearHistory();
|
|
return new_env;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
|
|
Handle<JSFunction> target,
|
|
FrameType frame_type,
|
|
int arguments) const {
|
|
HEnvironment* new_env =
|
|
new(zone()) HEnvironment(outer, target, frame_type,
|
|
arguments + 1, zone());
|
|
for (int i = 0; i <= arguments; ++i) { // Include receiver.
|
|
new_env->Push(ExpressionStackAt(arguments - i));
|
|
}
|
|
new_env->ClearHistory();
|
|
return new_env;
|
|
}
|
|
|
|
|
|
HEnvironment* HEnvironment::CopyForInlining(
|
|
Handle<JSFunction> target,
|
|
int arguments,
|
|
FunctionLiteral* function,
|
|
HConstant* undefined,
|
|
InliningKind inlining_kind) const {
|
|
ASSERT(frame_type() == JS_FUNCTION);
|
|
|
|
// Outer environment is a copy of this one without the arguments.
|
|
int arity = function->scope()->num_parameters();
|
|
|
|
HEnvironment* outer = Copy();
|
|
outer->Drop(arguments + 1); // Including receiver.
|
|
outer->ClearHistory();
|
|
|
|
if (inlining_kind == CONSTRUCT_CALL_RETURN) {
|
|
// Create artificial constructor stub environment. The receiver should
|
|
// actually be the constructor function, but we pass the newly allocated
|
|
// object instead, DoComputeConstructStubFrame() relies on that.
|
|
outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
|
|
} else if (inlining_kind == GETTER_CALL_RETURN) {
|
|
// We need an additional StackFrame::INTERNAL frame for restoring the
|
|
// correct context.
|
|
outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
|
|
} else if (inlining_kind == SETTER_CALL_RETURN) {
|
|
// We need an additional StackFrame::INTERNAL frame for temporarily saving
|
|
// the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
|
|
outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
|
|
}
|
|
|
|
if (arity != arguments) {
|
|
// Create artificial arguments adaptation environment.
|
|
outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
|
|
}
|
|
|
|
HEnvironment* inner =
|
|
new(zone()) HEnvironment(outer, function->scope(), target, zone());
|
|
// Get the argument values from the original environment.
|
|
for (int i = 0; i <= arity; ++i) { // Include receiver.
|
|
HValue* push = (i <= arguments) ?
|
|
ExpressionStackAt(arguments - i) : undefined;
|
|
inner->SetValueAt(i, push);
|
|
}
|
|
inner->SetValueAt(arity + 1, context());
|
|
for (int i = arity + 2; i < inner->length(); ++i) {
|
|
inner->SetValueAt(i, undefined);
|
|
}
|
|
|
|
inner->set_ast_id(BailoutId::FunctionEntry());
|
|
return inner;
|
|
}
|
|
|
|
|
|
void HEnvironment::PrintTo(StringStream* stream) {
|
|
for (int i = 0; i < length(); i++) {
|
|
if (i == 0) stream->Add("parameters\n");
|
|
if (i == parameter_count()) stream->Add("specials\n");
|
|
if (i == parameter_count() + specials_count()) stream->Add("locals\n");
|
|
if (i == parameter_count() + specials_count() + local_count()) {
|
|
stream->Add("expressions\n");
|
|
}
|
|
HValue* val = values_.at(i);
|
|
stream->Add("%d: ", i);
|
|
if (val != NULL) {
|
|
val->PrintNameTo(stream);
|
|
} else {
|
|
stream->Add("NULL");
|
|
}
|
|
stream->Add("\n");
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
|
|
|
|
void HEnvironment::PrintToStd() {
|
|
HeapStringAllocator string_allocator;
|
|
StringStream trace(&string_allocator);
|
|
PrintTo(&trace);
|
|
PrintF("%s", trace.ToCString().get());
|
|
}
|
|
|
|
|
|
void HTracer::TraceCompilation(CompilationInfo* info) {
|
|
Tag tag(this, "compilation");
|
|
if (info->IsOptimizing()) {
|
|
Handle<String> name = info->function()->debug_name();
|
|
PrintStringProperty("name", name->ToCString().get());
|
|
PrintStringProperty("method", name->ToCString().get());
|
|
} else {
|
|
CodeStub::Major major_key = info->code_stub()->MajorKey();
|
|
PrintStringProperty("name", CodeStub::MajorName(major_key, false));
|
|
PrintStringProperty("method", "stub");
|
|
}
|
|
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
|
|
}
|
|
|
|
|
|
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
|
|
ASSERT(!chunk->isolate()->concurrent_recompilation_enabled());
|
|
AllowHandleDereference allow_deref;
|
|
AllowDeferredHandleDereference allow_deferred_deref;
|
|
Trace(name, chunk->graph(), chunk);
|
|
}
|
|
|
|
|
|
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
|
|
ASSERT(!graph->isolate()->concurrent_recompilation_enabled());
|
|
AllowHandleDereference allow_deref;
|
|
AllowDeferredHandleDereference allow_deferred_deref;
|
|
Trace(name, graph, NULL);
|
|
}
|
|
|
|
|
|
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
|
|
Tag tag(this, "cfg");
|
|
PrintStringProperty("name", name);
|
|
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
|
|
for (int i = 0; i < blocks->length(); i++) {
|
|
HBasicBlock* current = blocks->at(i);
|
|
Tag block_tag(this, "block");
|
|
PrintBlockProperty("name", current->block_id());
|
|
PrintIntProperty("from_bci", -1);
|
|
PrintIntProperty("to_bci", -1);
|
|
|
|
if (!current->predecessors()->is_empty()) {
|
|
PrintIndent();
|
|
trace_.Add("predecessors");
|
|
for (int j = 0; j < current->predecessors()->length(); ++j) {
|
|
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
|
|
}
|
|
trace_.Add("\n");
|
|
} else {
|
|
PrintEmptyProperty("predecessors");
|
|
}
|
|
|
|
if (current->end()->SuccessorCount() == 0) {
|
|
PrintEmptyProperty("successors");
|
|
} else {
|
|
PrintIndent();
|
|
trace_.Add("successors");
|
|
for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
|
|
trace_.Add(" \"B%d\"", it.Current()->block_id());
|
|
}
|
|
trace_.Add("\n");
|
|
}
|
|
|
|
PrintEmptyProperty("xhandlers");
|
|
|
|
{
|
|
PrintIndent();
|
|
trace_.Add("flags");
|
|
if (current->IsLoopSuccessorDominator()) {
|
|
trace_.Add(" \"dom-loop-succ\"");
|
|
}
|
|
if (current->IsUnreachable()) {
|
|
trace_.Add(" \"dead\"");
|
|
}
|
|
if (current->is_osr_entry()) {
|
|
trace_.Add(" \"osr\"");
|
|
}
|
|
trace_.Add("\n");
|
|
}
|
|
|
|
if (current->dominator() != NULL) {
|
|
PrintBlockProperty("dominator", current->dominator()->block_id());
|
|
}
|
|
|
|
PrintIntProperty("loop_depth", current->LoopNestingDepth());
|
|
|
|
if (chunk != NULL) {
|
|
int first_index = current->first_instruction_index();
|
|
int last_index = current->last_instruction_index();
|
|
PrintIntProperty(
|
|
"first_lir_id",
|
|
LifetimePosition::FromInstructionIndex(first_index).Value());
|
|
PrintIntProperty(
|
|
"last_lir_id",
|
|
LifetimePosition::FromInstructionIndex(last_index).Value());
|
|
}
|
|
|
|
{
|
|
Tag states_tag(this, "states");
|
|
Tag locals_tag(this, "locals");
|
|
int total = current->phis()->length();
|
|
PrintIntProperty("size", current->phis()->length());
|
|
PrintStringProperty("method", "None");
|
|
for (int j = 0; j < total; ++j) {
|
|
HPhi* phi = current->phis()->at(j);
|
|
PrintIndent();
|
|
trace_.Add("%d ", phi->merged_index());
|
|
phi->PrintNameTo(&trace_);
|
|
trace_.Add(" ");
|
|
phi->PrintTo(&trace_);
|
|
trace_.Add("\n");
|
|
}
|
|
}
|
|
|
|
{
|
|
Tag HIR_tag(this, "HIR");
|
|
for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
|
|
HInstruction* instruction = it.Current();
|
|
int bci = FLAG_emit_opt_code_positions && instruction->has_position() ?
|
|
instruction->position() : 0;
|
|
int uses = instruction->UseCount();
|
|
PrintIndent();
|
|
trace_.Add("%d %d ", bci, uses);
|
|
instruction->PrintNameTo(&trace_);
|
|
trace_.Add(" ");
|
|
instruction->PrintTo(&trace_);
|
|
trace_.Add(" <|@\n");
|
|
}
|
|
}
|
|
|
|
|
|
if (chunk != NULL) {
|
|
Tag LIR_tag(this, "LIR");
|
|
int first_index = current->first_instruction_index();
|
|
int last_index = current->last_instruction_index();
|
|
if (first_index != -1 && last_index != -1) {
|
|
const ZoneList<LInstruction*>* instructions = chunk->instructions();
|
|
for (int i = first_index; i <= last_index; ++i) {
|
|
LInstruction* linstr = instructions->at(i);
|
|
if (linstr != NULL) {
|
|
PrintIndent();
|
|
trace_.Add("%d ",
|
|
LifetimePosition::FromInstructionIndex(i).Value());
|
|
linstr->PrintTo(&trace_);
|
|
trace_.Add(" [hir:");
|
|
linstr->hydrogen_value()->PrintNameTo(&trace_);
|
|
trace_.Add("]");
|
|
trace_.Add(" <|@\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
|
|
Tag tag(this, "intervals");
|
|
PrintStringProperty("name", name);
|
|
|
|
const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
|
|
for (int i = 0; i < fixed_d->length(); ++i) {
|
|
TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
|
|
}
|
|
|
|
const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
|
|
for (int i = 0; i < fixed->length(); ++i) {
|
|
TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
|
|
}
|
|
|
|
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
|
|
for (int i = 0; i < live_ranges->length(); ++i) {
|
|
TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::TraceLiveRange(LiveRange* range, const char* type,
|
|
Zone* zone) {
|
|
if (range != NULL && !range->IsEmpty()) {
|
|
PrintIndent();
|
|
trace_.Add("%d %s", range->id(), type);
|
|
if (range->HasRegisterAssigned()) {
|
|
LOperand* op = range->CreateAssignedOperand(zone);
|
|
int assigned_reg = op->index();
|
|
if (op->IsDoubleRegister()) {
|
|
trace_.Add(" \"%s\"",
|
|
DoubleRegister::AllocationIndexToString(assigned_reg));
|
|
} else {
|
|
ASSERT(op->IsRegister());
|
|
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
|
|
}
|
|
} else if (range->IsSpilled()) {
|
|
LOperand* op = range->TopLevel()->GetSpillOperand();
|
|
if (op->IsDoubleStackSlot()) {
|
|
trace_.Add(" \"double_stack:%d\"", op->index());
|
|
} else {
|
|
ASSERT(op->IsStackSlot());
|
|
trace_.Add(" \"stack:%d\"", op->index());
|
|
}
|
|
}
|
|
int parent_index = -1;
|
|
if (range->IsChild()) {
|
|
parent_index = range->parent()->id();
|
|
} else {
|
|
parent_index = range->id();
|
|
}
|
|
LOperand* op = range->FirstHint();
|
|
int hint_index = -1;
|
|
if (op != NULL && op->IsUnallocated()) {
|
|
hint_index = LUnallocated::cast(op)->virtual_register();
|
|
}
|
|
trace_.Add(" %d %d", parent_index, hint_index);
|
|
UseInterval* cur_interval = range->first_interval();
|
|
while (cur_interval != NULL && range->Covers(cur_interval->start())) {
|
|
trace_.Add(" [%d, %d[",
|
|
cur_interval->start().Value(),
|
|
cur_interval->end().Value());
|
|
cur_interval = cur_interval->next();
|
|
}
|
|
|
|
UsePosition* current_pos = range->first_pos();
|
|
while (current_pos != NULL) {
|
|
if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
|
|
trace_.Add(" %d M", current_pos->pos().Value());
|
|
}
|
|
current_pos = current_pos->next();
|
|
}
|
|
|
|
trace_.Add(" \"\"\n");
|
|
}
|
|
}
|
|
|
|
|
|
void HTracer::FlushToFile() {
|
|
AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
|
|
false);
|
|
trace_.Reset();
|
|
}
|
|
|
|
|
|
void HStatistics::Initialize(CompilationInfo* info) {
|
|
if (info->shared_info().is_null()) return;
|
|
source_size_ += info->shared_info()->SourceSize();
|
|
}
|
|
|
|
|
|
void HStatistics::Print() {
|
|
PrintF("Timing results:\n");
|
|
TimeDelta sum;
|
|
for (int i = 0; i < times_.length(); ++i) {
|
|
sum += times_[i];
|
|
}
|
|
|
|
for (int i = 0; i < names_.length(); ++i) {
|
|
PrintF("%32s", names_[i]);
|
|
double ms = times_[i].InMillisecondsF();
|
|
double percent = times_[i].PercentOf(sum);
|
|
PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
|
|
|
|
unsigned size = sizes_[i];
|
|
double size_percent = static_cast<double>(size) * 100 / total_size_;
|
|
PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
|
|
}
|
|
|
|
PrintF("----------------------------------------"
|
|
"---------------------------------------\n");
|
|
TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
|
|
PrintF("%32s %8.3f ms / %4.1f %% \n",
|
|
"Create graph",
|
|
create_graph_.InMillisecondsF(),
|
|
create_graph_.PercentOf(total));
|
|
PrintF("%32s %8.3f ms / %4.1f %% \n",
|
|
"Optimize graph",
|
|
optimize_graph_.InMillisecondsF(),
|
|
optimize_graph_.PercentOf(total));
|
|
PrintF("%32s %8.3f ms / %4.1f %% \n",
|
|
"Generate and install code",
|
|
generate_code_.InMillisecondsF(),
|
|
generate_code_.PercentOf(total));
|
|
PrintF("----------------------------------------"
|
|
"---------------------------------------\n");
|
|
PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
|
|
"Total",
|
|
total.InMillisecondsF(),
|
|
total.TimesOf(full_code_gen_));
|
|
|
|
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
|
|
double normalized_time = source_size_in_kb > 0
|
|
? total.InMillisecondsF() / source_size_in_kb
|
|
: 0;
|
|
double normalized_size_in_kb = source_size_in_kb > 0
|
|
? total_size_ / 1024 / source_size_in_kb
|
|
: 0;
|
|
PrintF("%32s %8.3f ms %7.3f kB allocated\n",
|
|
"Average per kB source",
|
|
normalized_time, normalized_size_in_kb);
|
|
}
|
|
|
|
|
|
void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
|
|
total_size_ += size;
|
|
for (int i = 0; i < names_.length(); ++i) {
|
|
if (strcmp(names_[i], name) == 0) {
|
|
times_[i] += time;
|
|
sizes_[i] += size;
|
|
return;
|
|
}
|
|
}
|
|
names_.Add(name);
|
|
times_.Add(time);
|
|
sizes_.Add(size);
|
|
}
|
|
|
|
|
|
HPhase::~HPhase() {
|
|
if (ShouldProduceTraceOutput()) {
|
|
isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
graph_->Verify(false); // No full verify.
|
|
#endif
|
|
}
|
|
|
|
} } // namespace v8::internal
|