v8/test/cctest/heap/test-mark-compact.cc
Omer Katz 7626202118 [heap] Merge marking states
MinorMC maintained a separate marking state to support interleaved GCs.
Since MinorMC now assumes that interleaving is not possible, MinorMC can
use the same marking state as the full GC.

Bug: v8:12612
Change-Id: Ibeb7df2eb24e448f811b497c9d16b3b132f87ec2
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3735163
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Omer Katz <omerkatz@chromium.org>
Cr-Commit-Position: refs/heads/main@{#81468}
2022-06-30 14:16:48 +00:00

486 lines
17 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#ifdef __linux__
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <utility>
#include "include/v8-locker.h"
#include "src/handles/global-handles.h"
#include "src/heap/mark-compact-inl.h"
#include "src/heap/mark-compact.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace heap {
TEST(Promotion) {
if (FLAG_single_generation) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
{
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
int array_length = heap::FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
Handle<FixedArray> array = isolate->factory()->NewFixedArray(array_length);
// Array should be in the new space.
CHECK(heap->InSpace(*array, NEW_SPACE));
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
CHECK(heap->InSpace(*array, OLD_SPACE));
}
}
// This is the same as Factory::NewMap, except it doesn't retry on
// allocation failure.
AllocationResult HeapTester::AllocateMapForTest(Isolate* isolate) {
Heap* heap = isolate->heap();
HeapObject obj;
AllocationResult alloc = heap->AllocateRaw(Map::kSize, AllocationType::kMap);
if (!alloc.To(&obj)) return alloc;
obj.set_map_after_allocation(ReadOnlyRoots(heap).meta_map(),
SKIP_WRITE_BARRIER);
return AllocationResult::FromObject(isolate->factory()->InitializeMap(
Map::cast(obj), JS_OBJECT_TYPE, JSObject::kHeaderSize,
TERMINAL_FAST_ELEMENTS_KIND, 0, heap));
}
// This is the same as Factory::NewFixedArray, except it doesn't retry
// on allocation failure.
AllocationResult HeapTester::AllocateFixedArrayForTest(
Heap* heap, int length, AllocationType allocation) {
DCHECK(length >= 0 && length <= FixedArray::kMaxLength);
int size = FixedArray::SizeFor(length);
HeapObject obj;
{
AllocationResult result = heap->AllocateRaw(size, allocation);
if (!result.To(&obj)) return result;
}
obj.set_map_after_allocation(ReadOnlyRoots(heap).fixed_array_map(),
SKIP_WRITE_BARRIER);
FixedArray array = FixedArray::cast(obj);
array.set_length(length);
MemsetTagged(array.data_start(), ReadOnlyRoots(heap).undefined_value(),
length);
return AllocationResult::FromObject(array);
}
HEAP_TEST(MarkCompactCollector) {
FLAG_incremental_marking = false;
FLAG_retain_maps_for_n_gc = 0;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<JSGlobalObject> global(isolate->context().global_object(), isolate);
// call mark-compact when heap is empty
CcTest::CollectGarbage(OLD_SPACE);
AllocationResult allocation;
if (!FLAG_single_generation) {
// keep allocating garbage in new space until it fails
const int arraysize = 100;
do {
allocation =
AllocateFixedArrayForTest(heap, arraysize, AllocationType::kYoung);
} while (!allocation.IsFailure());
CcTest::CollectGarbage(NEW_SPACE);
AllocateFixedArrayForTest(heap, arraysize, AllocationType::kYoung)
.ToObjectChecked();
}
// keep allocating maps until it fails
do {
allocation = AllocateMapForTest(isolate);
} while (!allocation.IsFailure());
CcTest::CollectGarbage(MAP_SPACE);
AllocateMapForTest(isolate).ToObjectChecked();
{ HandleScope scope(isolate);
// allocate a garbage
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunctionForTesting(func_name);
Object::SetProperty(isolate, global, func_name, function).Check();
factory->NewJSObject(function);
}
CcTest::CollectGarbage(OLD_SPACE);
{ HandleScope scope(isolate);
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
CHECK(Just(true) == JSReceiver::HasOwnProperty(isolate, global, func_name));
Handle<Object> func_value =
Object::GetProperty(isolate, global, func_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
Handle<JSObject> obj = factory->NewJSObject(function);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
Object::SetProperty(isolate, global, obj_name, obj).Check();
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
}
CcTest::CollectGarbage(OLD_SPACE);
{ HandleScope scope(isolate);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
CHECK(Just(true) == JSReceiver::HasOwnProperty(isolate, global, obj_name));
Handle<Object> object =
Object::GetProperty(isolate, global, obj_name).ToHandleChecked();
CHECK(object->IsJSObject());
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
CHECK_EQ(*Object::GetProperty(isolate, object, prop_name).ToHandleChecked(),
Smi::FromInt(23));
}
}
HEAP_TEST(DoNotEvacuatePinnedPages) {
if (!FLAG_compact || !FLAG_single_generation) return;
FLAG_compact_on_every_full_gc = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
auto handles = heap::CreatePadding(
heap, static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
AllocationType::kOld);
Page* page = Page::FromHeapObject(*handles.front());
CHECK(heap->InSpace(*handles.front(), OLD_SPACE));
page->SetFlag(MemoryChunk::PINNED);
CcTest::CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted(
MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only);
// The pinned flag should prevent the page from moving.
for (Handle<FixedArray> object : handles) {
CHECK_EQ(page, Page::FromHeapObject(*object));
}
page->ClearFlag(MemoryChunk::PINNED);
CcTest::CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted(
MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only);
// `compact_on_every_full_gc` ensures that this page is an evacuation
// candidate, so with the pin flag cleared compaction should now move it.
for (Handle<FixedArray> object : handles) {
CHECK_NE(page, Page::FromHeapObject(*object));
}
}
HEAP_TEST(ObjectStartBitmap) {
#ifdef V8_ENABLE_INNER_POINTER_RESOLUTION_OSB
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
auto* factory = isolate->factory();
Handle<HeapObject> h1 = factory->NewStringFromStaticChars("hello");
Handle<HeapObject> h2 = factory->NewStringFromStaticChars("world");
HeapObject obj1 = *h1;
HeapObject obj2 = *h2;
Page* page1 = Page::FromHeapObject(obj1);
Page* page2 = Page::FromHeapObject(obj2);
CHECK(page1->object_start_bitmap()->CheckBit(obj1.address()));
CHECK(page2->object_start_bitmap()->CheckBit(obj2.address()));
{
// We need a safepoint for calling FindBasePtr.
SafepointScope scope(heap);
for (int k = 0; k < obj1.Size(); ++k) {
Address obj1_inner_ptr = obj1.address() + k;
CHECK_EQ(obj1.address(),
page1->object_start_bitmap()->FindBasePtr(obj1_inner_ptr));
}
for (int k = 0; k < obj2.Size(); ++k) {
Address obj2_inner_ptr = obj2.address() + k;
CHECK_EQ(obj2.address(),
page2->object_start_bitmap()->FindBasePtr(obj2_inner_ptr));
}
}
// TODO(v8:12851): Patch the location of handle h2 with an inner pointer.
// For now, garbage collection doesn't work with inner pointers in handles,
// so we're sticking to a zero offset.
const size_t offset = 0;
h2.PatchValue(String::FromAddress(h2->address() + offset));
CcTest::CollectAllGarbage();
obj1 = *h1;
obj2 = HeapObject::FromAddress(h2->address() - offset);
page1 = Page::FromHeapObject(obj1);
page2 = Page::FromHeapObject(obj2);
CHECK(obj1.IsString());
CHECK(obj2.IsString());
// Bits set in the object_start_bitmap are not preserved when objects are
// evacuated.
CHECK(!page1->object_start_bitmap()->CheckBit(obj1.address()));
CHECK(!page2->object_start_bitmap()->CheckBit(obj2.address()));
{
// We need a safepoint for calling FindBasePtr.
SafepointScope scope(heap);
// After FindBasePtr, the bits should be properly set again.
for (int k = 0; k < obj1.Size(); ++k) {
Address obj1_inner_ptr = obj1.address() + k;
CHECK_EQ(obj1.address(),
page1->object_start_bitmap()->FindBasePtr(obj1_inner_ptr));
}
CHECK(page1->object_start_bitmap()->CheckBit(obj1.address()));
for (int k = obj2.Size() - 1; k >= 0; --k) {
Address obj2_inner_ptr = obj2.address() + k;
CHECK_EQ(obj2.address(),
page2->object_start_bitmap()->FindBasePtr(obj2_inner_ptr));
}
CHECK(page2->object_start_bitmap()->CheckBit(obj2.address()));
}
#endif // V8_ENABLE_INNER_POINTER_RESOLUTION_OSB
}
// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap(Isolate* isolate) {
return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = factory->NewJSObjectFromMap(map);
} while (CcTest::heap()->map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
CcTest::CollectAllGarbage(Heap::kForceCompactionMask);
// And now map pointers should be encodable again.
CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
}
#endif
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define V8_WITH_ASAN 1
#endif
#endif
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes. Testing with ASAN doesn't make sense, either.
#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
char* end_address = buffer + *position;
uintptr_t result = strtoul(buffer + *position, &end_address, base);
CHECK(result != ULONG_MAX || errno != ERANGE);
CHECK(end_address > buffer + *position);
*position = end_address - buffer;
return result;
}
// The memory use computed this way is not entirely accurate and depends on
// the way malloc allocates memory. That's why the memory use may seem to
// increase even though the sum of the allocated object sizes decreases. It
// also means that the memory use depends on the kernel and stdlib.
static intptr_t MemoryInUse() {
intptr_t memory_use = 0;
int fd = open("/proc/self/maps", O_RDONLY);
if (fd < 0) return -1;
const int kBufSize = 20000;
char buffer[kBufSize];
ssize_t length = read(fd, buffer, kBufSize);
intptr_t line_start = 0;
CHECK_LT(length, kBufSize); // Make the buffer bigger.
CHECK_GT(length, 0); // We have to find some data in the file.
while (line_start < length) {
if (buffer[line_start] == '\n') {
line_start++;
continue;
}
intptr_t position = line_start;
uintptr_t start = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], '-');
uintptr_t end = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], ' ');
CHECK(buffer[position] == '-' || buffer[position] == 'r');
bool read_permission = (buffer[position++] == 'r');
CHECK(buffer[position] == '-' || buffer[position] == 'w');
bool write_permission = (buffer[position++] == 'w');
CHECK(buffer[position] == '-' || buffer[position] == 'x');
bool execute_permission = (buffer[position++] == 'x');
CHECK(buffer[position] == 's' || buffer[position] == 'p');
bool private_mapping = (buffer[position++] == 'p');
CHECK_EQ(buffer[position++], ' ');
uintptr_t offset = ReadLong(buffer, &position, 16);
USE(offset);
CHECK_EQ(buffer[position++], ' ');
uintptr_t major = ReadLong(buffer, &position, 16);
USE(major);
CHECK_EQ(buffer[position++], ':');
uintptr_t minor = ReadLong(buffer, &position, 16);
USE(minor);
CHECK_EQ(buffer[position++], ' ');
uintptr_t inode = ReadLong(buffer, &position, 10);
while (position < length && buffer[position] != '\n') position++;
if ((read_permission || write_permission || execute_permission) &&
private_mapping && inode == 0) {
memory_use += (end - start);
}
line_start = position;
}
close(fd);
return memory_use;
}
intptr_t ShortLivingIsolate() {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{ v8::Isolate::Scope isolate_scope(isolate);
v8::Locker lock(isolate);
v8::HandleScope handle_scope(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
CHECK(!context.IsEmpty());
}
isolate->Dispose();
return MemoryInUse();
}
UNINITIALIZED_TEST(RegressJoinThreadsOnIsolateDeinit) {
// Memory is measured, do not allocate in background thread.
FLAG_stress_concurrent_allocation = false;
intptr_t size_limit = ShortLivingIsolate() * 2;
for (int i = 0; i < 10; i++) {
CHECK_GT(size_limit, ShortLivingIsolate());
}
}
TEST(Regress5829) {
if (!FLAG_incremental_marking) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
i::MarkCompactCollector* collector = heap->mark_compact_collector();
i::IncrementalMarking* marking = heap->incremental_marking();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted(
MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only);
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
marking->StartBlackAllocationForTesting();
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
Address old_end = array->address() + array->Size();
// Right trim the array without clearing the mark bits.
array->set_length(9);
heap->CreateFillerObjectAt(old_end - kTaggedSize, kTaggedSize);
heap->old_space()->FreeLinearAllocationArea();
Page* page = Page::FromAddress(array->address());
MarkingState* marking_state = marking->marking_state();
for (auto object_and_size :
LiveObjectRange<kGreyObjects>(page, marking_state->bitmap(page))) {
CHECK(!object_and_size.first.IsFreeSpaceOrFiller());
}
}
#endif // __linux__ and !USE_SIMULATOR
} // namespace heap
} // namespace internal
} // namespace v8