v8/src/virtual-frame-ia32.cc
kmillikin@chromium.org 7c35a5d820 The code generator doesn't need to put the argument count in eax for
call ICs.  Refactor CallRuntime on ARM to match the structure of IA32.
Update some comments.
Review URL: http://codereview.chromium.org/42598

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1607 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-03-25 11:05:36 +00:00

957 lines
32 KiB
C++

// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "register-allocator-inl.h"
#include "scopes.h"
namespace v8 { namespace internal {
#define __ masm_->
// -------------------------------------------------------------------------
// VirtualFrame implementation.
// On entry to a function, the virtual frame already contains the receiver,
// the parameters, and a return address. All frame elements are in memory.
VirtualFrame::VirtualFrame(CodeGenerator* cgen)
: cgen_(cgen),
masm_(cgen->masm()),
elements_(0),
parameter_count_(cgen->scope()->num_parameters()),
local_count_(0),
stack_pointer_(parameter_count_ + 1), // 0-based index of TOS.
frame_pointer_(kIllegalIndex) {
for (int i = 0; i < parameter_count_ + 2; i++) {
elements_.Add(FrameElement::MemoryElement());
}
for (int i = 0; i < kNumRegisters; i++) {
register_locations_[i] = kIllegalIndex;
}
}
// Clear the dirty bit for the element at a given index if it is a
// valid element. The stack address corresponding to the element must
// be allocated on the physical stack, or the first element above the
// stack pointer so it can be allocated by a single push instruction.
void VirtualFrame::RawSyncElementAt(int index) {
FrameElement element = elements_[index];
if (!element.is_valid() || element.is_synced()) return;
if (index <= stack_pointer_) {
// Emit code to write elements below the stack pointer to their
// (already allocated) stack address.
switch (element.type()) {
case FrameElement::INVALID: // Fall through.
case FrameElement::MEMORY:
// There was an early bailout for invalid and synced elements
// (memory elements are always synced).
UNREACHABLE();
break;
case FrameElement::REGISTER:
__ mov(Operand(ebp, fp_relative(index)), element.reg());
break;
case FrameElement::CONSTANT:
if (cgen_->IsUnsafeSmi(element.handle())) {
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
cgen_->LoadUnsafeSmi(temp.reg(), element.handle());
__ mov(Operand(ebp, fp_relative(index)), temp.reg());
} else {
__ Set(Operand(ebp, fp_relative(index)),
Immediate(element.handle()));
}
break;
case FrameElement::COPY: {
int backing_index = element.index();
FrameElement backing_element = elements_[backing_index];
if (backing_element.is_memory()) {
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ mov(temp.reg(), Operand(ebp, fp_relative(backing_index)));
__ mov(Operand(ebp, fp_relative(index)), temp.reg());
} else {
ASSERT(backing_element.is_register());
__ mov(Operand(ebp, fp_relative(index)), backing_element.reg());
}
break;
}
}
} else {
// Push elements above the stack pointer to allocate space and
// sync them. Space should have already been allocated in the
// actual frame for all the elements below this one.
ASSERT(index == stack_pointer_ + 1);
stack_pointer_++;
switch (element.type()) {
case FrameElement::INVALID: // Fall through.
case FrameElement::MEMORY:
// There was an early bailout for invalid and synced elements
// (memory elements are always synced).
UNREACHABLE();
break;
case FrameElement::REGISTER:
__ push(element.reg());
break;
case FrameElement::CONSTANT:
if (cgen_->IsUnsafeSmi(element.handle())) {
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
cgen_->LoadUnsafeSmi(temp.reg(), element.handle());
__ push(temp.reg());
} else {
__ push(Immediate(element.handle()));
}
break;
case FrameElement::COPY: {
int backing_index = element.index();
FrameElement backing = elements_[backing_index];
ASSERT(backing.is_memory() || backing.is_register());
if (backing.is_memory()) {
__ push(Operand(ebp, fp_relative(backing_index)));
} else {
__ push(backing.reg());
}
break;
}
}
}
elements_[index].set_sync();
}
void VirtualFrame::MergeTo(VirtualFrame* expected) {
Comment cmnt(masm_, "[ Merge frame");
// We should always be merging the code generator's current frame to an
// expected frame.
ASSERT(cgen_->frame() == this);
// Adjust the stack pointer upward (toward the top of the virtual
// frame) if necessary.
if (stack_pointer_ < expected->stack_pointer_) {
int difference = expected->stack_pointer_ - stack_pointer_;
stack_pointer_ = expected->stack_pointer_;
__ sub(Operand(esp), Immediate(difference * kPointerSize));
}
MergeMoveRegistersToMemory(expected);
MergeMoveRegistersToRegisters(expected);
MergeMoveMemoryToRegisters(expected);
// Fix any sync flag problems from the bottom-up and make the copied
// flags exact. This assumes that the backing store of copies is
// always lower in the frame.
for (int i = 0; i < elements_.length(); i++) {
FrameElement source = elements_[i];
FrameElement target = expected->elements_[i];
if (source.is_synced() && !target.is_synced()) {
elements_[i].clear_sync();
} else if (!source.is_synced() && target.is_synced()) {
SyncElementAt(i);
}
elements_[i].clear_copied();
if (elements_[i].is_copy()) {
elements_[elements_[i].index()].set_copied();
}
}
// Adjust the stack point downard if necessary.
if (stack_pointer_ > expected->stack_pointer_) {
int difference = stack_pointer_ - expected->stack_pointer_;
stack_pointer_ = expected->stack_pointer_;
__ add(Operand(esp), Immediate(difference * kPointerSize));
}
// At this point, the frames should be identical.
ASSERT(Equals(expected));
}
void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) {
ASSERT(stack_pointer_ >= expected->stack_pointer_);
// Move registers, constants, and copies to memory. Perform moves
// from the top downward in the frame in order to leave the backing
// stores of copies in registers.
//
// Moving memory-backed copies to memory requires a spare register
// for the memory-to-memory moves. Since we are performing a merge,
// we use esi (which is already saved in the frame). We keep track
// of the index of the frame element esi is caching or kIllegalIndex
// if esi has not been disturbed.
int esi_caches = kIllegalIndex;
// A "singleton" memory element.
FrameElement memory_element = FrameElement::MemoryElement();
// Loop downward from the stack pointer or the top of the frame if
// the stack pointer is floating above the frame.
int start = Min(stack_pointer_, elements_.length() - 1);
for (int i = start; i >= 0; i--) {
FrameElement target = expected->elements_[i];
if (target.is_memory()) {
FrameElement source = elements_[i];
switch (source.type()) {
case FrameElement::INVALID:
// Not a legal merge move.
UNREACHABLE();
break;
case FrameElement::MEMORY:
// Already in place.
break;
case FrameElement::REGISTER:
Unuse(source.reg());
if (!source.is_synced()) {
__ mov(Operand(ebp, fp_relative(i)), source.reg());
}
break;
case FrameElement::CONSTANT:
if (!source.is_synced()) {
if (cgen_->IsUnsafeSmi(source.handle())) {
esi_caches = i;
cgen_->LoadUnsafeSmi(esi, source.handle());
__ mov(Operand(ebp, fp_relative(i)), esi);
} else {
__ Set(Operand(ebp, fp_relative(i)), Immediate(source.handle()));
}
}
break;
case FrameElement::COPY:
if (!source.is_synced()) {
int backing_index = source.index();
FrameElement backing_element = elements_[backing_index];
if (backing_element.is_memory()) {
// If we have to spill a register, we spill esi.
if (esi_caches != backing_index) {
esi_caches = backing_index;
__ mov(esi, Operand(ebp, fp_relative(backing_index)));
}
__ mov(Operand(ebp, fp_relative(i)), esi);
} else {
ASSERT(backing_element.is_register());
__ mov(Operand(ebp, fp_relative(i)), backing_element.reg());
}
}
break;
}
elements_[i] = memory_element;
}
}
if (esi_caches != kIllegalIndex) {
__ mov(esi, Operand(ebp, fp_relative(context_index())));
}
}
void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) {
// We have already done X-to-memory moves.
ASSERT(stack_pointer_ >= expected->stack_pointer_);
// Perform register-to-register moves.
int start = 0;
int end = elements_.length() - 1;
bool any_moves_blocked; // Did we fail to make some moves this iteration?
bool should_break_cycles = false;
bool any_moves_made; // Did we make any progress this iteration?
do {
any_moves_blocked = false;
any_moves_made = false;
int first_move_blocked = kIllegalIndex;
int last_move_blocked = kIllegalIndex;
for (int i = start; i <= end; i++) {
FrameElement source = elements_[i];
FrameElement target = expected->elements_[i];
if (source.is_register() && target.is_register()) {
if (target.reg().is(source.reg())) {
if (target.is_synced() && !source.is_synced()) {
__ mov(Operand(ebp, fp_relative(i)), source.reg());
}
elements_[i] = target;
} else {
// We need to move source to target.
if (is_used(target.reg())) {
// The move is blocked because the target contains valid data.
// If we are stuck with only cycles remaining, then we spill source.
// Otherwise, we just need more iterations.
if (should_break_cycles) {
SpillElementAt(i);
should_break_cycles = false;
} else { // Record a blocked move.
if (!any_moves_blocked) {
first_move_blocked = i;
}
last_move_blocked = i;
any_moves_blocked = true;
}
} else {
// The move is not blocked. This frame element can be moved from
// its source register to its target register.
if (target.is_synced() && !source.is_synced()) {
SyncElementAt(i);
}
Use(target.reg(), i);
Unuse(source.reg());
elements_[i] = target;
__ mov(target.reg(), source.reg());
any_moves_made = true;
}
}
}
}
// Update control flags for next iteration.
should_break_cycles = (any_moves_blocked && !any_moves_made);
if (any_moves_blocked) {
start = first_move_blocked;
end = last_move_blocked;
}
} while (any_moves_blocked);
}
void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame *expected) {
// Move memory, constants, and copies to registers. This is the
// final step and is done from the bottom up so that the backing
// elements of copies are in their correct locations when we
// encounter the copies.
for (int i = 0; i < elements_.length(); i++) {
FrameElement source = elements_[i];
FrameElement target = expected->elements_[i];
if (target.is_register() && !source.is_register()) {
switch (source.type()) {
case FrameElement::INVALID: // Fall through.
case FrameElement::REGISTER:
UNREACHABLE();
break;
case FrameElement::MEMORY:
ASSERT(i <= stack_pointer_);
__ mov(target.reg(), Operand(ebp, fp_relative(i)));
break;
case FrameElement::CONSTANT:
if (cgen_->IsUnsafeSmi(source.handle())) {
cgen_->LoadUnsafeSmi(target.reg(), source.handle());
} else {
__ Set(target.reg(), Immediate(source.handle()));
}
break;
case FrameElement::COPY: {
FrameElement backing = elements_[source.index()];
ASSERT(backing.is_memory() || backing.is_register());
if (backing.is_memory()) {
ASSERT(source.index() <= stack_pointer_);
__ mov(target.reg(), Operand(ebp, fp_relative(source.index())));
} else {
__ mov(target.reg(), backing.reg());
}
}
}
// Ensure the proper sync state. If the source was memory no
// code needs to be emitted.
if (target.is_synced() && !source.is_memory()) {
SyncElementAt(i);
}
Use(target.reg(), i);
elements_[i] = target;
}
}
}
void VirtualFrame::Enter() {
// Registers live on entry: esp, ebp, esi, edi.
Comment cmnt(masm_, "[ Enter JS frame");
#ifdef DEBUG
// Verify that edi contains a JS function. The following code
// relies on eax being available for use.
__ test(edi, Immediate(kSmiTagMask));
__ Check(not_zero,
"VirtualFrame::Enter - edi is not a function (smi check).");
__ CmpObjectType(edi, JS_FUNCTION_TYPE, eax);
__ Check(equal,
"VirtualFrame::Enter - edi is not a function (map check).");
#endif
EmitPush(ebp);
frame_pointer_ = stack_pointer_;
__ mov(ebp, Operand(esp));
// Store the context in the frame. The context is kept in esi and a
// copy is stored in the frame. The external reference to esi
// remains.
EmitPush(esi);
// Store the function in the frame. The frame owns the register
// reference now (ie, it can keep it in edi or spill it later).
Push(edi);
SyncElementAt(elements_.length() - 1);
cgen_->allocator()->Unuse(edi);
}
void VirtualFrame::Exit() {
Comment cmnt(masm_, "[ Exit JS frame");
// Record the location of the JS exit code for patching when setting
// break point.
__ RecordJSReturn();
// Avoid using the leave instruction here, because it is too
// short. We need the return sequence to be a least the size of a
// call instruction to support patching the exit code in the
// debugger. See VisitReturnStatement for the full return sequence.
__ mov(esp, Operand(ebp));
stack_pointer_ = frame_pointer_;
for (int i = elements_.length() - 1; i > stack_pointer_; i--) {
FrameElement last = elements_.RemoveLast();
if (last.is_register()) {
Unuse(last.reg());
}
}
frame_pointer_ = kIllegalIndex;
EmitPop(ebp);
}
void VirtualFrame::AllocateStackSlots(int count) {
ASSERT(height() == 0);
local_count_ = count;
if (count > 0) {
Comment cmnt(masm_, "[ Allocate space for locals");
// The locals are initialized to a constant (the undefined value), but
// we sync them with the actual frame to allocate space for spilling
// them later. First sync everything above the stack pointer so we can
// use pushes to allocate and initialize the locals.
SyncRange(stack_pointer_ + 1, elements_.length());
Handle<Object> undefined = Factory::undefined_value();
FrameElement initial_value =
FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ Set(temp.reg(), Immediate(undefined));
for (int i = 0; i < count; i++) {
elements_.Add(initial_value);
stack_pointer_++;
__ push(temp.reg());
}
}
}
void VirtualFrame::SaveContextRegister() {
ASSERT(elements_[context_index()].is_memory());
__ mov(Operand(ebp, fp_relative(context_index())), esi);
}
void VirtualFrame::RestoreContextRegister() {
ASSERT(elements_[context_index()].is_memory());
__ mov(esi, Operand(ebp, fp_relative(context_index())));
}
void VirtualFrame::PushReceiverSlotAddress() {
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ lea(temp.reg(), ParameterAt(-1));
Push(&temp);
}
int VirtualFrame::InvalidateFrameSlotAt(int index) {
FrameElement original = elements_[index];
// Is this element the backing store of any copies?
int new_backing_index = kIllegalIndex;
if (original.is_copied()) {
// Verify it is copied, and find first copy.
for (int i = index + 1; i < elements_.length(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == index) {
new_backing_index = i;
break;
}
}
}
if (new_backing_index == kIllegalIndex) {
// No copies found, return kIllegalIndex.
if (original.is_register()) {
Unuse(original.reg());
}
elements_[index] = FrameElement::InvalidElement();
return kIllegalIndex;
}
// This is the backing store of copies.
Register backing_reg;
if (original.is_memory()) {
Result fresh = cgen_->allocator()->Allocate();
ASSERT(fresh.is_valid());
Use(fresh.reg(), new_backing_index);
backing_reg = fresh.reg();
__ mov(backing_reg, Operand(ebp, fp_relative(index)));
} else {
// The original was in a register.
backing_reg = original.reg();
register_locations_[backing_reg.code()] = new_backing_index;
}
// Invalidate the element at index.
elements_[index] = FrameElement::InvalidElement();
// Set the new backing element.
if (elements_[new_backing_index].is_synced()) {
elements_[new_backing_index] =
FrameElement::RegisterElement(backing_reg, FrameElement::SYNCED);
} else {
elements_[new_backing_index] =
FrameElement::RegisterElement(backing_reg, FrameElement::NOT_SYNCED);
}
// Update the other copies.
for (int i = new_backing_index + 1; i < elements_.length(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == index) {
elements_[i].set_index(new_backing_index);
elements_[new_backing_index].set_copied();
}
}
return new_backing_index;
}
void VirtualFrame::TakeFrameSlotAt(int index) {
ASSERT(index >= 0);
ASSERT(index <= elements_.length());
FrameElement original = elements_[index];
int new_backing_store_index = InvalidateFrameSlotAt(index);
if (new_backing_store_index != kIllegalIndex) {
elements_.Add(CopyElementAt(new_backing_store_index));
return;
}
switch (original.type()) {
case FrameElement::MEMORY: {
// Emit code to load the original element's data into a register.
// Push that register as a FrameElement on top of the frame.
Result fresh = cgen_->allocator()->Allocate();
ASSERT(fresh.is_valid());
FrameElement new_element =
FrameElement::RegisterElement(fresh.reg(),
FrameElement::NOT_SYNCED);
Use(fresh.reg(), elements_.length());
elements_.Add(new_element);
__ mov(fresh.reg(), Operand(ebp, fp_relative(index)));
break;
}
case FrameElement::REGISTER:
Use(original.reg(), elements_.length());
// Fall through.
case FrameElement::CONSTANT:
case FrameElement::COPY:
original.clear_sync();
elements_.Add(original);
break;
case FrameElement::INVALID:
UNREACHABLE();
break;
}
}
void VirtualFrame::StoreToFrameSlotAt(int index) {
// Store the value on top of the frame to the virtual frame slot at
// a given index. The value on top of the frame is left in place.
// This is a duplicating operation, so it can create copies.
ASSERT(index >= 0);
ASSERT(index < elements_.length());
int top_index = elements_.length() - 1;
FrameElement top = elements_[top_index];
FrameElement original = elements_[index];
if (top.is_copy() && top.index() == index) return;
ASSERT(top.is_valid());
InvalidateFrameSlotAt(index);
if (top.is_copy()) {
// There are two cases based on the relative positions of the
// stored-to slot and the backing slot of the top element.
int backing_index = top.index();
ASSERT(backing_index != index);
if (backing_index < index) {
// 1. The top element is a copy of a slot below the stored-to
// slot. The stored-to slot becomes an unsynced copy of that
// same backing slot.
elements_[index] = CopyElementAt(backing_index);
} else {
// 2. The top element is a copy of a slot above the stored-to
// slot. The stored-to slot becomes the new (unsynced) backing
// slot and both the top element and the element at the former
// backing slot become copies of it. The sync state of the top
// and former backing elements is preserved.
FrameElement backing_element = elements_[backing_index];
ASSERT(backing_element.is_memory() || backing_element.is_register());
if (backing_element.is_memory()) {
// Because sets of copies are canonicalized to be backed by
// their lowest frame element, and because memory frame
// elements are backed by the corresponding stack address, we
// have to move the actual value down in the stack.
//
// TODO(209): considering allocating the stored-to slot to the
// temp register. Alternatively, allow copies to appear in
// any order in the frame and lazily move the value down to
// the slot.
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ mov(temp.reg(), Operand(ebp, fp_relative(backing_index)));
__ mov(Operand(ebp, fp_relative(index)), temp.reg());
} else {
register_locations_[backing_element.reg().code()] = index;
if (backing_element.is_synced()) {
// If the element is a register, we will not actually move
// anything on the stack but only update the virtual frame
// element.
backing_element.clear_sync();
}
}
elements_[index] = backing_element;
// The old backing element becomes a copy of the new backing
// element.
FrameElement new_element = CopyElementAt(index);
elements_[backing_index] = new_element;
if (backing_element.is_synced()) {
elements_[backing_index].set_sync();
}
// All the copies of the old backing element (including the top
// element) become copies of the new backing element.
for (int i = backing_index + 1; i < elements_.length(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
elements_[i].set_index(index);
}
}
}
return;
}
// Move the top element to the stored-to slot and replace it (the
// top element) with a copy.
elements_[index] = top;
if (top.is_memory()) {
// TODO(209): consider allocating the stored-to slot to the temp
// register. Alternatively, allow copies to appear in any order
// in the frame and lazily move the value down to the slot.
FrameElement new_top = CopyElementAt(index);
new_top.set_sync();
elements_[top_index] = new_top;
// The sync state of the former top element is correct (synced).
// Emit code to move the value down in the frame.
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ mov(temp.reg(), Operand(esp, 0));
__ mov(Operand(ebp, fp_relative(index)), temp.reg());
} else if (top.is_register()) {
register_locations_[top.reg().code()] = index;
// The stored-to slot has the (unsynced) register reference and
// the top element becomes a copy. The sync state of the top is
// preserved.
FrameElement new_top = CopyElementAt(index);
if (top.is_synced()) {
new_top.set_sync();
elements_[index].clear_sync();
}
elements_[top_index] = new_top;
} else {
// The stored-to slot holds the same value as the top but
// unsynced. (We do not have copies of constants yet.)
ASSERT(top.is_constant());
elements_[index].clear_sync();
}
}
void VirtualFrame::PushTryHandler(HandlerType type) {
ASSERT(cgen_->HasValidEntryRegisters());
// Grow the expression stack by handler size less two (the return address
// is already pushed by a call instruction, and PushTryHandler from the
// macro assembler will leave the top of stack in the eax register to be
// pushed separately).
Adjust(kHandlerSize - 2);
__ PushTryHandler(IN_JAVASCRIPT, type);
// TODO(1222589): remove the reliance of PushTryHandler on a cached TOS
EmitPush(eax);
}
Result VirtualFrame::RawCallStub(CodeStub* stub, int frame_arg_count) {
ASSERT(cgen_->HasValidEntryRegisters());
__ CallStub(stub);
Result result = cgen_->allocator()->Allocate(eax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::CallRuntime(Runtime::Function* f,
int frame_arg_count) {
PrepareForCall(frame_arg_count, frame_arg_count);
ASSERT(cgen_->HasValidEntryRegisters());
__ CallRuntime(f, frame_arg_count);
Result result = cgen_->allocator()->Allocate(eax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::CallRuntime(Runtime::FunctionId id,
int frame_arg_count) {
PrepareForCall(frame_arg_count, frame_arg_count);
ASSERT(cgen_->HasValidEntryRegisters());
__ CallRuntime(id, frame_arg_count);
Result result = cgen_->allocator()->Allocate(eax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
int frame_arg_count) {
PrepareForCall(frame_arg_count, frame_arg_count);
ASSERT(cgen_->HasValidEntryRegisters());
__ InvokeBuiltin(id, flag);
Result result = cgen_->allocator()->Allocate(eax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::RawCallCodeObject(Handle<Code> code,
RelocInfo::Mode rmode) {
ASSERT(cgen_->HasValidEntryRegisters());
__ call(code, rmode);
Result result = cgen_->allocator()->Allocate(eax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::CallCodeObject(Handle<Code> code,
RelocInfo::Mode rmode,
Result* arg,
int dropped_args) {
int spilled_args = 0;
switch (code->kind()) {
case Code::LOAD_IC:
ASSERT(arg->reg().is(ecx));
ASSERT(dropped_args == 0);
spilled_args = 1;
break;
case Code::KEYED_STORE_IC:
ASSERT(arg->reg().is(eax));
ASSERT(dropped_args == 0);
spilled_args = 2;
break;
default:
// No other types of code objects are called with values
// in exactly one register.
UNREACHABLE();
break;
}
PrepareForCall(spilled_args, dropped_args);
arg->Unuse();
return RawCallCodeObject(code, rmode);
}
Result VirtualFrame::CallCodeObject(Handle<Code> code,
RelocInfo::Mode rmode,
Result* arg0,
Result* arg1,
int dropped_args) {
int spilled_args = 1;
switch (code->kind()) {
case Code::STORE_IC:
ASSERT(arg0->reg().is(eax));
ASSERT(arg1->reg().is(ecx));
ASSERT(dropped_args == 0);
spilled_args = 1;
break;
case Code::BUILTIN:
ASSERT(*code == Builtins::builtin(Builtins::JSConstructCall));
ASSERT(arg0->reg().is(eax));
ASSERT(arg1->reg().is(edi));
spilled_args = dropped_args + 1;
break;
default:
// No other types of code objects are called with values
// in exactly two registers.
UNREACHABLE();
break;
}
PrepareForCall(spilled_args, dropped_args);
arg0->Unuse();
arg1->Unuse();
return RawCallCodeObject(code, rmode);
}
void VirtualFrame::Drop(int count) {
ASSERT(height() >= count);
int num_virtual_elements = (elements_.length() - 1) - stack_pointer_;
// Emit code to lower the stack pointer if necessary.
if (num_virtual_elements < count) {
int num_dropped = count - num_virtual_elements;
stack_pointer_ -= num_dropped;
__ add(Operand(esp), Immediate(num_dropped * kPointerSize));
}
// Discard elements from the virtual frame and free any registers.
for (int i = 0; i < count; i++) {
FrameElement dropped = elements_.RemoveLast();
if (dropped.is_register()) {
Unuse(dropped.reg());
}
}
}
Result VirtualFrame::Pop() {
FrameElement element = elements_.RemoveLast();
int index = elements_.length();
ASSERT(element.is_valid());
bool pop_needed = (stack_pointer_ == index);
if (pop_needed) {
stack_pointer_--;
if (element.is_memory()) {
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
__ pop(temp.reg());
return temp;
}
__ add(Operand(esp), Immediate(kPointerSize));
}
ASSERT(!element.is_memory());
// The top element is a register, constant, or a copy. Unuse
// registers and follow copies to their backing store.
if (element.is_register()) {
Unuse(element.reg());
} else if (element.is_copy()) {
ASSERT(element.index() < index);
index = element.index();
element = elements_[index];
}
ASSERT(!element.is_copy());
// The element is memory, a register, or a constant.
if (element.is_memory()) {
// Memory elements could only be the backing store of a copy.
// Allocate the original to a register.
ASSERT(index <= stack_pointer_);
Result temp = cgen_->allocator()->Allocate();
ASSERT(temp.is_valid());
Use(temp.reg(), index);
FrameElement new_element =
FrameElement::RegisterElement(temp.reg(), FrameElement::SYNCED);
elements_[index] = new_element;
__ mov(temp.reg(), Operand(ebp, fp_relative(index)));
return Result(temp.reg(), cgen_);
} else if (element.is_register()) {
return Result(element.reg(), cgen_);
} else {
ASSERT(element.is_constant());
return Result(element.handle(), cgen_);
}
}
void VirtualFrame::EmitPop(Register reg) {
ASSERT(stack_pointer_ == elements_.length() - 1);
stack_pointer_--;
elements_.RemoveLast();
__ pop(reg);
}
void VirtualFrame::EmitPop(Operand operand) {
ASSERT(stack_pointer_ == elements_.length() - 1);
stack_pointer_--;
elements_.RemoveLast();
__ pop(operand);
}
void VirtualFrame::EmitPush(Register reg) {
ASSERT(stack_pointer_ == elements_.length() - 1);
elements_.Add(FrameElement::MemoryElement());
stack_pointer_++;
__ push(reg);
}
void VirtualFrame::EmitPush(Operand operand) {
ASSERT(stack_pointer_ == elements_.length() - 1);
elements_.Add(FrameElement::MemoryElement());
stack_pointer_++;
__ push(operand);
}
void VirtualFrame::EmitPush(Immediate immediate) {
ASSERT(stack_pointer_ == elements_.length() - 1);
elements_.Add(FrameElement::MemoryElement());
stack_pointer_++;
__ push(immediate);
}
#undef __
} } // namespace v8::internal