fd22cfc8a4
Bug: v8:8363, v8:7926 Change-Id: I9f0b9e25cf6b47c8ff32451880e348b92ab3cfaa Reviewed-on: https://chromium-review.googlesource.com/c/1309760 Commit-Queue: Toon Verwaest <verwaest@chromium.org> Reviewed-by: Igor Sheludko <ishell@chromium.org> Cr-Commit-Position: refs/heads/master@{#57172}
4096 lines
156 KiB
C++
4096 lines
156 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/parsing/parser.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
|
|
#include "src/ast/ast-function-literal-id-reindexer.h"
|
|
#include "src/ast/ast-traversal-visitor.h"
|
|
#include "src/ast/ast.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/char-predicates-inl.h"
|
|
#include "src/compiler-dispatcher/compiler-dispatcher.h"
|
|
#include "src/conversions-inl.h"
|
|
#include "src/log.h"
|
|
#include "src/message-template.h"
|
|
#include "src/objects/scope-info.h"
|
|
#include "src/parsing/expression-scope-reparenter.h"
|
|
#include "src/parsing/parse-info.h"
|
|
#include "src/parsing/rewriter.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/string-stream.h"
|
|
#include "src/tracing/trace-event.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
|
|
bool call_super, int pos,
|
|
int end_pos) {
|
|
int expected_property_count = -1;
|
|
const int parameter_count = 0;
|
|
|
|
FunctionKind kind = call_super ? FunctionKind::kDefaultDerivedConstructor
|
|
: FunctionKind::kDefaultBaseConstructor;
|
|
DeclarationScope* function_scope = NewFunctionScope(kind);
|
|
SetLanguageMode(function_scope, LanguageMode::kStrict);
|
|
// Set start and end position to the same value
|
|
function_scope->set_start_position(pos);
|
|
function_scope->set_end_position(pos);
|
|
ZonePtrList<Statement>* body = nullptr;
|
|
|
|
{
|
|
FunctionState function_state(&function_state_, &scope_, function_scope);
|
|
|
|
body = new (zone()) ZonePtrList<Statement>(call_super ? 2 : 1, zone());
|
|
if (call_super) {
|
|
// Create a SuperCallReference and handle in BytecodeGenerator.
|
|
auto constructor_args_name = ast_value_factory()->empty_string();
|
|
bool is_rest = true;
|
|
bool is_optional = false;
|
|
Variable* constructor_args = function_scope->DeclareParameter(
|
|
constructor_args_name, VariableMode::kTemporary, is_optional, is_rest,
|
|
ast_value_factory(), pos);
|
|
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
Spread* spread_args = factory()->NewSpread(
|
|
factory()->NewVariableProxy(constructor_args), pos, pos);
|
|
|
|
args.Add(spread_args);
|
|
Expression* super_call_ref = NewSuperCallReference(pos);
|
|
Expression* call = factory()->NewCall(super_call_ref, args, pos);
|
|
body->Add(factory()->NewReturnStatement(call, pos), zone());
|
|
}
|
|
|
|
expected_property_count = function_state.expected_property_count();
|
|
}
|
|
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
name, function_scope, body, expected_property_count, parameter_count,
|
|
parameter_count, FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression, default_eager_compile_hint(), pos,
|
|
true, GetNextFunctionLiteralId());
|
|
return function_literal;
|
|
}
|
|
|
|
void Parser::GetUnexpectedTokenMessage(Token::Value token,
|
|
MessageTemplate* message,
|
|
Scanner::Location* location,
|
|
const char** arg) {
|
|
switch (token) {
|
|
case Token::EOS:
|
|
*message = MessageTemplate::kUnexpectedEOS;
|
|
break;
|
|
case Token::SMI:
|
|
case Token::NUMBER:
|
|
case Token::BIGINT:
|
|
*message = MessageTemplate::kUnexpectedTokenNumber;
|
|
break;
|
|
case Token::STRING:
|
|
*message = MessageTemplate::kUnexpectedTokenString;
|
|
break;
|
|
case Token::PRIVATE_NAME:
|
|
case Token::IDENTIFIER:
|
|
*message = MessageTemplate::kUnexpectedTokenIdentifier;
|
|
break;
|
|
case Token::AWAIT:
|
|
case Token::ENUM:
|
|
*message = MessageTemplate::kUnexpectedReserved;
|
|
break;
|
|
case Token::LET:
|
|
case Token::STATIC:
|
|
case Token::YIELD:
|
|
case Token::FUTURE_STRICT_RESERVED_WORD:
|
|
*message = is_strict(language_mode())
|
|
? MessageTemplate::kUnexpectedStrictReserved
|
|
: MessageTemplate::kUnexpectedTokenIdentifier;
|
|
break;
|
|
case Token::TEMPLATE_SPAN:
|
|
case Token::TEMPLATE_TAIL:
|
|
*message = MessageTemplate::kUnexpectedTemplateString;
|
|
break;
|
|
case Token::ESCAPED_STRICT_RESERVED_WORD:
|
|
case Token::ESCAPED_KEYWORD:
|
|
*message = MessageTemplate::kInvalidEscapedReservedWord;
|
|
break;
|
|
case Token::ILLEGAL:
|
|
if (scanner()->has_error()) {
|
|
*message = scanner()->error();
|
|
*location = scanner()->error_location();
|
|
} else {
|
|
*message = MessageTemplate::kInvalidOrUnexpectedToken;
|
|
}
|
|
break;
|
|
case Token::REGEXP_LITERAL:
|
|
*message = MessageTemplate::kUnexpectedTokenRegExp;
|
|
break;
|
|
default:
|
|
const char* name = Token::String(token);
|
|
DCHECK_NOT_NULL(name);
|
|
*arg = name;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The RETURN_IF_PARSE_ERROR macro is a convenient macro to enforce error
|
|
// handling for functions that may fail (by returning if there was an parser
|
|
// error).
|
|
//
|
|
// Usage:
|
|
// foo = ParseFoo(); // may fail
|
|
// RETURN_IF_PARSE_ERROR
|
|
//
|
|
// SAFE_USE(foo);
|
|
|
|
#define RETURN_IF_PARSE_ERROR_VALUE(x) \
|
|
if (has_error()) return x;
|
|
|
|
#define RETURN_IF_PARSE_ERROR RETURN_IF_PARSE_ERROR_VALUE(nullptr)
|
|
#define RETURN_IF_PARSE_ERROR_VOID \
|
|
if (has_error()) return;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of Parser
|
|
|
|
bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
|
|
Expression* y,
|
|
Token::Value op, int pos) {
|
|
if ((*x)->IsNumberLiteral() && y->IsNumberLiteral()) {
|
|
double x_val = (*x)->AsLiteral()->AsNumber();
|
|
double y_val = y->AsLiteral()->AsNumber();
|
|
switch (op) {
|
|
case Token::ADD:
|
|
*x = factory()->NewNumberLiteral(x_val + y_val, pos);
|
|
return true;
|
|
case Token::SUB:
|
|
*x = factory()->NewNumberLiteral(x_val - y_val, pos);
|
|
return true;
|
|
case Token::MUL:
|
|
*x = factory()->NewNumberLiteral(x_val * y_val, pos);
|
|
return true;
|
|
case Token::DIV:
|
|
*x = factory()->NewNumberLiteral(x_val / y_val, pos);
|
|
return true;
|
|
case Token::BIT_OR: {
|
|
int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::BIT_AND: {
|
|
int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::BIT_XOR: {
|
|
int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::SHL: {
|
|
int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1F);
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::SHR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1F;
|
|
uint32_t value = DoubleToUint32(x_val) >> shift;
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::SAR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1F;
|
|
int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
|
|
*x = factory()->NewNumberLiteral(value, pos);
|
|
return true;
|
|
}
|
|
case Token::EXP: {
|
|
double value = Pow(x_val, y_val);
|
|
int int_value = static_cast<int>(value);
|
|
*x = factory()->NewNumberLiteral(
|
|
int_value == value && value != -0.0 ? int_value : value, pos);
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Parser::CollapseNaryExpression(Expression** x, Expression* y,
|
|
Token::Value op, int pos,
|
|
const SourceRange& range) {
|
|
// Filter out unsupported ops.
|
|
if (!Token::IsBinaryOp(op) || op == Token::EXP) return false;
|
|
|
|
// Convert *x into an nary operation with the given op, returning false if
|
|
// this is not possible.
|
|
NaryOperation* nary = nullptr;
|
|
if ((*x)->IsBinaryOperation()) {
|
|
BinaryOperation* binop = (*x)->AsBinaryOperation();
|
|
if (binop->op() != op) return false;
|
|
|
|
nary = factory()->NewNaryOperation(op, binop->left(), 2);
|
|
nary->AddSubsequent(binop->right(), binop->position());
|
|
ConvertBinaryToNaryOperationSourceRange(binop, nary);
|
|
*x = nary;
|
|
} else if ((*x)->IsNaryOperation()) {
|
|
nary = (*x)->AsNaryOperation();
|
|
if (nary->op() != op) return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Append our current expression to the nary operation.
|
|
// TODO(leszeks): Do some literal collapsing here if we're appending Smi or
|
|
// String literals.
|
|
nary->AddSubsequent(y, pos);
|
|
AppendNaryOperationSourceRange(nary, range);
|
|
|
|
return true;
|
|
}
|
|
|
|
Expression* Parser::BuildUnaryExpression(Expression* expression,
|
|
Token::Value op, int pos) {
|
|
DCHECK_NOT_NULL(expression);
|
|
const Literal* literal = expression->AsLiteral();
|
|
if (literal != nullptr) {
|
|
if (op == Token::NOT) {
|
|
// Convert the literal to a boolean condition and negate it.
|
|
return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos);
|
|
} else if (literal->IsNumberLiteral()) {
|
|
// Compute some expressions involving only number literals.
|
|
double value = literal->AsNumber();
|
|
switch (op) {
|
|
case Token::ADD:
|
|
return expression;
|
|
case Token::SUB:
|
|
return factory()->NewNumberLiteral(-value, pos);
|
|
case Token::BIT_NOT:
|
|
return factory()->NewNumberLiteral(~DoubleToInt32(value), pos);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return factory()->NewUnaryOperation(op, expression, pos);
|
|
}
|
|
|
|
Expression* Parser::NewThrowError(Runtime::FunctionId id,
|
|
MessageTemplate message,
|
|
const AstRawString* arg, int pos) {
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewSmiLiteral(static_cast<int>(message), pos));
|
|
args.Add(factory()->NewStringLiteral(arg, pos));
|
|
CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
|
|
return factory()->NewThrow(call_constructor, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperPropertyReference(int pos) {
|
|
// this_function[home_object_symbol]
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
Expression* home_object_symbol_literal = factory()->NewSymbolLiteral(
|
|
AstSymbol::kHomeObjectSymbol, kNoSourcePosition);
|
|
Expression* home_object = factory()->NewProperty(
|
|
this_function_proxy, home_object_symbol_literal, pos);
|
|
return factory()->NewSuperPropertyReference(
|
|
ThisExpression(pos)->AsVariableProxy(), home_object, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperCallReference(int pos) {
|
|
VariableProxy* new_target_proxy =
|
|
NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
return factory()->NewSuperCallReference(
|
|
ThisExpression(pos)->AsVariableProxy(), new_target_proxy,
|
|
this_function_proxy, pos);
|
|
}
|
|
|
|
Expression* Parser::NewTargetExpression(int pos) {
|
|
auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
proxy->set_is_new_target();
|
|
return proxy;
|
|
}
|
|
|
|
Expression* Parser::ImportMetaExpression(int pos) {
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
return factory()->NewCallRuntime(Runtime::kInlineGetImportMetaObject, args,
|
|
pos);
|
|
}
|
|
|
|
Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
|
|
switch (token) {
|
|
case Token::NULL_LITERAL:
|
|
return factory()->NewNullLiteral(pos);
|
|
case Token::TRUE_LITERAL:
|
|
return factory()->NewBooleanLiteral(true, pos);
|
|
case Token::FALSE_LITERAL:
|
|
return factory()->NewBooleanLiteral(false, pos);
|
|
case Token::SMI: {
|
|
uint32_t value = scanner()->smi_value();
|
|
return factory()->NewSmiLiteral(value, pos);
|
|
}
|
|
case Token::NUMBER: {
|
|
double value = scanner()->DoubleValue();
|
|
return factory()->NewNumberLiteral(value, pos);
|
|
}
|
|
case Token::BIGINT:
|
|
return factory()->NewBigIntLiteral(
|
|
AstBigInt(scanner()->CurrentLiteralAsCString(zone())), pos);
|
|
case Token::STRING: {
|
|
const AstRawString* symbol = GetSymbol();
|
|
fni_.PushLiteralName(symbol);
|
|
return factory()->NewStringLiteral(symbol, pos);
|
|
}
|
|
default:
|
|
DCHECK(false);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Expression* Parser::NewV8Intrinsic(const AstRawString* name,
|
|
const ScopedPtrList<Expression>& args,
|
|
int pos) {
|
|
if (extension_ != nullptr) {
|
|
// The extension structures are only accessible while parsing the
|
|
// very first time, not when reparsing because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
}
|
|
|
|
DCHECK(name->is_one_byte());
|
|
const Runtime::Function* function =
|
|
Runtime::FunctionForName(name->raw_data(), name->length());
|
|
|
|
if (function != nullptr) {
|
|
// Check for possible name clash.
|
|
DCHECK_EQ(Context::kNotFound,
|
|
Context::IntrinsicIndexForName(name->raw_data(), name->length()));
|
|
// Check for built-in IS_VAR macro.
|
|
if (function->function_id == Runtime::kIS_VAR) {
|
|
DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
|
|
// %IS_VAR(x) evaluates to x if x is a variable,
|
|
// leads to a parse error otherwise. Could be implemented as an
|
|
// inline function %_IS_VAR(x) to eliminate this special case.
|
|
if (args.length() == 1 && args.at(0)->AsVariableProxy() != nullptr) {
|
|
return args.at(0);
|
|
} else {
|
|
ReportMessage(MessageTemplate::kNotIsvar);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Check that the expected number of arguments are being passed.
|
|
if (function->nargs != -1 && function->nargs != args.length()) {
|
|
ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
|
|
return nullptr;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(function, args, pos);
|
|
}
|
|
|
|
int context_index =
|
|
Context::IntrinsicIndexForName(name->raw_data(), name->length());
|
|
|
|
// Check that the function is defined.
|
|
if (context_index == Context::kNotFound) {
|
|
ReportMessage(MessageTemplate::kNotDefined, name);
|
|
return nullptr;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(context_index, args, pos);
|
|
}
|
|
|
|
Parser::Parser(ParseInfo* info)
|
|
: ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(),
|
|
info->extension(), info->GetOrCreateAstValueFactory(),
|
|
info->pending_error_handler(),
|
|
info->runtime_call_stats(), info->logger(),
|
|
info->script().is_null() ? -1 : info->script()->id(),
|
|
info->is_module(), true),
|
|
info_(info),
|
|
scanner_(info->unicode_cache(), info->character_stream(),
|
|
info->is_module()),
|
|
preparser_zone_(info->zone()->allocator(), ZONE_NAME),
|
|
reusable_preparser_(nullptr),
|
|
mode_(PARSE_EAGERLY), // Lazy mode must be set explicitly.
|
|
source_range_map_(info->source_range_map()),
|
|
target_stack_(nullptr),
|
|
total_preparse_skipped_(0),
|
|
consumed_preparsed_scope_data_(info->consumed_preparsed_scope_data()),
|
|
parameters_end_pos_(info->parameters_end_pos()) {
|
|
// Even though we were passed ParseInfo, we should not store it in
|
|
// Parser - this makes sure that Isolate is not accidentally accessed via
|
|
// ParseInfo during background parsing.
|
|
DCHECK_NOT_NULL(info->character_stream());
|
|
// Determine if functions can be lazily compiled. This is necessary to
|
|
// allow some of our builtin JS files to be lazily compiled. These
|
|
// builtins cannot be handled lazily by the parser, since we have to know
|
|
// if a function uses the special natives syntax, which is something the
|
|
// parser records.
|
|
// If the debugger requests compilation for break points, we cannot be
|
|
// aggressive about lazy compilation, because it might trigger compilation
|
|
// of functions without an outer context when setting a breakpoint through
|
|
// Debug::FindSharedFunctionInfoInScript
|
|
// We also compile eagerly for kProduceExhaustiveCodeCache.
|
|
bool can_compile_lazily = FLAG_lazy && !info->is_eager();
|
|
|
|
set_default_eager_compile_hint(can_compile_lazily
|
|
? FunctionLiteral::kShouldLazyCompile
|
|
: FunctionLiteral::kShouldEagerCompile);
|
|
allow_lazy_ = FLAG_lazy && info->allow_lazy_parsing() && !info->is_native() &&
|
|
info->extension() == nullptr && can_compile_lazily;
|
|
set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
|
|
set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
|
|
set_allow_harmony_public_fields(FLAG_harmony_public_fields);
|
|
set_allow_harmony_static_fields(FLAG_harmony_static_fields);
|
|
set_allow_harmony_dynamic_import(FLAG_harmony_dynamic_import);
|
|
set_allow_harmony_import_meta(FLAG_harmony_import_meta);
|
|
set_allow_harmony_numeric_separator(FLAG_harmony_numeric_separator);
|
|
set_allow_harmony_private_fields(FLAG_harmony_private_fields);
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
use_counts_[feature] = 0;
|
|
}
|
|
}
|
|
|
|
void Parser::InitializeEmptyScopeChain(ParseInfo* info) {
|
|
DCHECK_NULL(original_scope_);
|
|
DCHECK_NULL(info->script_scope());
|
|
// TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
|
|
// context, which will have the "this" binding for script scopes.
|
|
DeclarationScope* script_scope = NewScriptScope();
|
|
info->set_script_scope(script_scope);
|
|
original_scope_ = script_scope;
|
|
}
|
|
|
|
void Parser::DeserializeScopeChain(
|
|
Isolate* isolate, ParseInfo* info,
|
|
MaybeHandle<ScopeInfo> maybe_outer_scope_info) {
|
|
InitializeEmptyScopeChain(info);
|
|
Handle<ScopeInfo> outer_scope_info;
|
|
if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) {
|
|
DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
|
|
original_scope_ = Scope::DeserializeScopeChain(
|
|
isolate, zone(), *outer_scope_info, info->script_scope(),
|
|
ast_value_factory(), Scope::DeserializationMode::kScopesOnly);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
void MaybeResetCharacterStream(ParseInfo* info, FunctionLiteral* literal) {
|
|
// Don't reset the character stream if there is an asm.js module since it will
|
|
// be used again by the asm-parser.
|
|
if (!FLAG_stress_validate_asm &&
|
|
(literal == nullptr || !literal->scope()->ContainsAsmModule())) {
|
|
info->ResetCharacterStream();
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
|
|
// TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
|
|
// see comment for HistogramTimerScope class.
|
|
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
RuntimeCallTimerScope runtime_timer(
|
|
runtime_call_stats_, info->is_eval()
|
|
? RuntimeCallCounterId::kParseEval
|
|
: RuntimeCallCounterId::kParseProgram);
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram");
|
|
base::ElapsedTimer timer;
|
|
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
|
|
|
|
// Initialize parser state.
|
|
DeserializeScopeChain(isolate, info, info->maybe_outer_scope_info());
|
|
|
|
scanner_.Initialize();
|
|
FunctionLiteral* result = DoParseProgram(isolate, info);
|
|
MaybeResetCharacterStream(info, result);
|
|
|
|
HandleSourceURLComments(isolate, info->script());
|
|
|
|
if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
const char* event_name = "parse-eval";
|
|
Script* script = *info->script();
|
|
int start = -1;
|
|
int end = -1;
|
|
if (!info->is_eval()) {
|
|
event_name = "parse-script";
|
|
start = 0;
|
|
end = String::cast(script->source())->length();
|
|
}
|
|
LOG(isolate,
|
|
FunctionEvent(event_name, script->id(), ms, start, end, "", 0));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
FunctionLiteral* Parser::DoParseProgram(Isolate* isolate, ParseInfo* info) {
|
|
// Note that this function can be called from the main thread or from a
|
|
// background thread. We should not access anything Isolate / heap dependent
|
|
// via ParseInfo, and also not pass it forward. If not on the main thread
|
|
// isolate will be nullptr.
|
|
DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
|
|
DCHECK_NULL(scope_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
|
|
ResetFunctionLiteralId();
|
|
DCHECK(info->function_literal_id() == FunctionLiteral::kIdTypeTopLevel ||
|
|
info->function_literal_id() == FunctionLiteral::kIdTypeInvalid);
|
|
|
|
FunctionLiteral* result = nullptr;
|
|
{
|
|
Scope* outer = original_scope_;
|
|
DCHECK_NOT_NULL(outer);
|
|
if (info->is_eval()) {
|
|
outer = NewEvalScope(outer);
|
|
} else if (parsing_module_) {
|
|
DCHECK_EQ(outer, info->script_scope());
|
|
outer = NewModuleScope(info->script_scope());
|
|
}
|
|
|
|
DeclarationScope* scope = outer->AsDeclarationScope();
|
|
scope->set_start_position(0);
|
|
|
|
FunctionState function_state(&function_state_, &scope_, scope);
|
|
ZonePtrList<Statement>* body =
|
|
new (zone()) ZonePtrList<Statement>(16, zone());
|
|
int beg_pos = scanner()->location().beg_pos;
|
|
if (parsing_module_) {
|
|
DCHECK(info->is_module());
|
|
// Declare the special module parameter.
|
|
auto name = ast_value_factory()->empty_string();
|
|
bool is_rest = false;
|
|
bool is_optional = false;
|
|
auto var = scope->DeclareParameter(name, VariableMode::kVar, is_optional,
|
|
is_rest, ast_value_factory(), beg_pos);
|
|
var->AllocateTo(VariableLocation::PARAMETER, 0);
|
|
|
|
PrepareGeneratorVariables();
|
|
Expression* initial_yield =
|
|
BuildInitialYield(kNoSourcePosition, kGeneratorFunction);
|
|
body->Add(
|
|
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
|
|
zone());
|
|
|
|
ParseModuleItemList(body);
|
|
if (!module()->Validate(this->scope()->AsModuleScope(),
|
|
pending_error_handler(), zone())) {
|
|
scanner()->set_parser_error();
|
|
}
|
|
} else if (info->is_wrapped_as_function()) {
|
|
ParseWrapped(isolate, info, body, scope, zone());
|
|
} else {
|
|
// Don't count the mode in the use counters--give the program a chance
|
|
// to enable script-wide strict mode below.
|
|
this->scope()->SetLanguageMode(info->language_mode());
|
|
ParseStatementList(body, Token::EOS);
|
|
}
|
|
|
|
// The parser will peek but not consume EOS. Our scope logically goes all
|
|
// the way to the EOS, though.
|
|
scope->set_end_position(peek_position());
|
|
|
|
if (is_strict(language_mode())) {
|
|
CheckStrictOctalLiteral(beg_pos, end_position());
|
|
}
|
|
if (is_sloppy(language_mode())) {
|
|
// TODO(littledan): Function bindings on the global object that modify
|
|
// pre-existing bindings should be made writable, enumerable and
|
|
// nonconfigurable if possible, whereas this code will leave attributes
|
|
// unchanged if the property already exists.
|
|
InsertSloppyBlockFunctionVarBindings(scope);
|
|
}
|
|
RETURN_IF_PARSE_ERROR;
|
|
CheckConflictingVarDeclarations(scope);
|
|
|
|
if (info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
|
|
if (body->length() != 1 ||
|
|
!body->at(0)->IsExpressionStatement() ||
|
|
!body->at(0)->AsExpressionStatement()->
|
|
expression()->IsFunctionLiteral()) {
|
|
ReportMessage(MessageTemplate::kSingleFunctionLiteral);
|
|
}
|
|
}
|
|
|
|
RewriteDestructuringAssignments();
|
|
int parameter_count = parsing_module_ ? 1 : 0;
|
|
result = factory()->NewScriptOrEvalFunctionLiteral(
|
|
scope, body, function_state.expected_property_count(), parameter_count);
|
|
result->set_suspend_count(function_state.suspend_count());
|
|
}
|
|
|
|
info->set_max_function_literal_id(GetLastFunctionLiteralId());
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
RETURN_IF_PARSE_ERROR;
|
|
return result;
|
|
}
|
|
|
|
ZonePtrList<const AstRawString>* Parser::PrepareWrappedArguments(
|
|
Isolate* isolate, ParseInfo* info, Zone* zone) {
|
|
DCHECK(parsing_on_main_thread_);
|
|
DCHECK_NOT_NULL(isolate);
|
|
Handle<FixedArray> arguments(info->script()->wrapped_arguments(), isolate);
|
|
int arguments_length = arguments->length();
|
|
ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
|
|
new (zone) ZonePtrList<const AstRawString>(arguments_length, zone);
|
|
for (int i = 0; i < arguments_length; i++) {
|
|
const AstRawString* argument_string = ast_value_factory()->GetString(
|
|
Handle<String>(String::cast(arguments->get(i)), isolate));
|
|
arguments_for_wrapped_function->Add(argument_string, zone);
|
|
}
|
|
return arguments_for_wrapped_function;
|
|
}
|
|
|
|
void Parser::ParseWrapped(Isolate* isolate, ParseInfo* info,
|
|
ZonePtrList<Statement>* body,
|
|
DeclarationScope* outer_scope, Zone* zone) {
|
|
DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
|
|
DCHECK(info->is_wrapped_as_function());
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
|
|
// Set function and block state for the outer eval scope.
|
|
DCHECK(outer_scope->is_eval_scope());
|
|
FunctionState function_state(&function_state_, &scope_, outer_scope);
|
|
|
|
const AstRawString* function_name = nullptr;
|
|
Scanner::Location location(0, 0);
|
|
|
|
ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
|
|
PrepareWrappedArguments(isolate, info, zone);
|
|
|
|
FunctionLiteral* function_literal = ParseFunctionLiteral(
|
|
function_name, location, kSkipFunctionNameCheck, kNormalFunction,
|
|
kNoSourcePosition, FunctionLiteral::kWrapped, LanguageMode::kSloppy,
|
|
arguments_for_wrapped_function);
|
|
|
|
Statement* return_statement = factory()->NewReturnStatement(
|
|
function_literal, kNoSourcePosition, kNoSourcePosition);
|
|
body->Add(return_statement, zone);
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseFunction(Isolate* isolate, ParseInfo* info,
|
|
Handle<SharedFunctionInfo> shared_info) {
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
RuntimeCallTimerScope runtime_timer(runtime_call_stats_,
|
|
RuntimeCallCounterId::kParseFunction);
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction");
|
|
base::ElapsedTimer timer;
|
|
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
|
|
|
|
DeserializeScopeChain(isolate, info, info->maybe_outer_scope_info());
|
|
DCHECK_EQ(factory()->zone(), info->zone());
|
|
|
|
// Initialize parser state.
|
|
Handle<String> name(shared_info->Name(), isolate);
|
|
info->set_function_name(ast_value_factory()->GetString(name));
|
|
scanner_.Initialize();
|
|
|
|
FunctionLiteral* result =
|
|
DoParseFunction(isolate, info, info->function_name());
|
|
MaybeResetCharacterStream(info, result);
|
|
if (result != nullptr) {
|
|
Handle<String> inferred_name(shared_info->inferred_name(), isolate);
|
|
result->set_inferred_name(inferred_name);
|
|
}
|
|
|
|
if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
// We need to make sure that the debug-name is available.
|
|
ast_value_factory()->Internalize(isolate);
|
|
DeclarationScope* function_scope = result->scope();
|
|
std::unique_ptr<char[]> function_name = result->GetDebugName();
|
|
LOG(isolate,
|
|
FunctionEvent("parse-function", info->script()->id(), ms,
|
|
function_scope->start_position(),
|
|
function_scope->end_position(), function_name.get(),
|
|
strlen(function_name.get())));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) {
|
|
if (info->is_wrapped_as_function()) {
|
|
return FunctionLiteral::kWrapped;
|
|
} else if (info->is_declaration()) {
|
|
return FunctionLiteral::kDeclaration;
|
|
} else if (info->is_named_expression()) {
|
|
return FunctionLiteral::kNamedExpression;
|
|
} else if (IsConciseMethod(info->function_kind()) ||
|
|
IsAccessorFunction(info->function_kind())) {
|
|
return FunctionLiteral::kAccessorOrMethod;
|
|
}
|
|
return FunctionLiteral::kAnonymousExpression;
|
|
}
|
|
|
|
FunctionLiteral* Parser::DoParseFunction(Isolate* isolate, ParseInfo* info,
|
|
const AstRawString* raw_name) {
|
|
DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
|
|
DCHECK_NOT_NULL(raw_name);
|
|
DCHECK_NULL(scope_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
DCHECK(ast_value_factory());
|
|
fni_.PushEnclosingName(raw_name);
|
|
|
|
ResetFunctionLiteralId();
|
|
DCHECK_LT(0, info->function_literal_id());
|
|
SkipFunctionLiterals(info->function_literal_id() - 1);
|
|
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
|
|
// Place holder for the result.
|
|
FunctionLiteral* result = nullptr;
|
|
|
|
{
|
|
// Parse the function literal.
|
|
Scope* outer = original_scope_;
|
|
DeclarationScope* outer_function = outer->GetClosureScope();
|
|
DCHECK(outer);
|
|
FunctionState function_state(&function_state_, &scope_, outer_function);
|
|
BlockState block_state(&scope_, outer);
|
|
DCHECK(is_sloppy(outer->language_mode()) ||
|
|
is_strict(info->language_mode()));
|
|
FunctionLiteral::FunctionType function_type = ComputeFunctionType(info);
|
|
FunctionKind kind = info->function_kind();
|
|
|
|
if (IsArrowFunction(kind)) {
|
|
if (IsAsyncFunction(kind)) {
|
|
DCHECK(!scanner()->HasLineTerminatorAfterNext());
|
|
if (!Check(Token::ASYNC)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// TODO(adamk): We should construct this scope from the ScopeInfo.
|
|
DeclarationScope* scope = NewFunctionScope(kind);
|
|
|
|
// This bit only needs to be explicitly set because we're
|
|
// not passing the ScopeInfo to the Scope constructor.
|
|
SetLanguageMode(scope, info->language_mode());
|
|
|
|
scope->set_start_position(info->start_position());
|
|
ExpressionClassifier formals_classifier(this);
|
|
ParserFormalParameters formals(scope);
|
|
// The outer FunctionState should not contain destructuring assignments.
|
|
DCHECK_EQ(0,
|
|
function_state.destructuring_assignments_to_rewrite().size());
|
|
{
|
|
// Parsing patterns as variable reference expression creates
|
|
// NewUnresolved references in current scope. Enter arrow function
|
|
// scope for formal parameter parsing.
|
|
BlockState block_state(&scope_, scope);
|
|
if (Check(Token::LPAREN)) {
|
|
// '(' StrictFormalParameters ')'
|
|
ParseFormalParameterList(&formals);
|
|
Expect(Token::RPAREN);
|
|
} else {
|
|
// BindingIdentifier
|
|
ParseFormalParameter(&formals);
|
|
DeclareFormalParameters(&formals);
|
|
}
|
|
}
|
|
|
|
if (GetLastFunctionLiteralId() != info->function_literal_id() - 1) {
|
|
// If there were FunctionLiterals in the parameters, we need to
|
|
// renumber them to shift down so the next function literal id for
|
|
// the arrow function is the one requested.
|
|
AstFunctionLiteralIdReindexer reindexer(
|
|
stack_limit_,
|
|
(info->function_literal_id() - 1) - GetLastFunctionLiteralId());
|
|
for (auto p : formals.params) {
|
|
if (p->pattern != nullptr) reindexer.Reindex(p->pattern);
|
|
if (p->initializer() != nullptr) {
|
|
reindexer.Reindex(p->initializer());
|
|
}
|
|
}
|
|
ResetFunctionLiteralId();
|
|
SkipFunctionLiterals(info->function_literal_id() - 1);
|
|
}
|
|
|
|
// Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
|
|
// not be observable, or else the preparser would have failed.
|
|
const bool accept_IN = true;
|
|
// Any destructuring assignments in the current FunctionState
|
|
// actually belong to the arrow function itself.
|
|
const int rewritable_length = 0;
|
|
Expression* expression =
|
|
ParseArrowFunctionLiteral(accept_IN, formals, rewritable_length);
|
|
// Scanning must end at the same position that was recorded
|
|
// previously. If not, parsing has been interrupted due to a stack
|
|
// overflow, at which point the partially parsed arrow function
|
|
// concise body happens to be a valid expression. This is a problem
|
|
// only for arrow functions with single expression bodies, since there
|
|
// is no end token such as "}" for normal functions.
|
|
if (scanner()->location().end_pos == info->end_position()) {
|
|
// The pre-parser saw an arrow function here, so the full parser
|
|
// must produce a FunctionLiteral.
|
|
DCHECK(expression->IsFunctionLiteral());
|
|
result = expression->AsFunctionLiteral();
|
|
}
|
|
} else if (IsDefaultConstructor(kind)) {
|
|
DCHECK_EQ(scope(), outer);
|
|
result = DefaultConstructor(raw_name, IsDerivedConstructor(kind),
|
|
info->start_position(), info->end_position());
|
|
} else {
|
|
ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
|
|
info->is_wrapped_as_function()
|
|
? PrepareWrappedArguments(isolate, info, zone())
|
|
: nullptr;
|
|
result = ParseFunctionLiteral(
|
|
raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind,
|
|
kNoSourcePosition, function_type, info->language_mode(),
|
|
arguments_for_wrapped_function);
|
|
}
|
|
|
|
RETURN_IF_PARSE_ERROR;
|
|
result->set_requires_instance_fields_initializer(
|
|
info->requires_instance_fields_initializer());
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK_NULL(target_stack_);
|
|
DCHECK_IMPLIES(result,
|
|
info->function_literal_id() == result->function_literal_id());
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::ParseModuleItem() {
|
|
// ecma262/#prod-ModuleItem
|
|
// ModuleItem :
|
|
// ImportDeclaration
|
|
// ExportDeclaration
|
|
// StatementListItem
|
|
|
|
Token::Value next = peek();
|
|
|
|
if (next == Token::EXPORT) {
|
|
return ParseExportDeclaration();
|
|
}
|
|
|
|
if (next == Token::IMPORT) {
|
|
// We must be careful not to parse a dynamic import expression as an import
|
|
// declaration. Same for import.meta expressions.
|
|
Token::Value peek_ahead = PeekAhead();
|
|
if ((!allow_harmony_dynamic_import() || peek_ahead != Token::LPAREN) &&
|
|
(!allow_harmony_import_meta() || peek_ahead != Token::PERIOD)) {
|
|
ParseImportDeclaration();
|
|
return factory()->EmptyStatement();
|
|
}
|
|
}
|
|
|
|
return ParseStatementListItem();
|
|
}
|
|
|
|
void Parser::ParseModuleItemList(ZonePtrList<Statement>* body) {
|
|
// ecma262/#prod-Module
|
|
// Module :
|
|
// ModuleBody?
|
|
//
|
|
// ecma262/#prod-ModuleItemList
|
|
// ModuleBody :
|
|
// ModuleItem*
|
|
|
|
DCHECK(scope()->is_module_scope());
|
|
while (peek() != Token::EOS) {
|
|
Statement* stat = ParseModuleItem();
|
|
RETURN_IF_PARSE_ERROR_VOID;
|
|
if (stat->IsEmptyStatement()) continue;
|
|
body->Add(stat, zone());
|
|
}
|
|
}
|
|
|
|
const AstRawString* Parser::ParseModuleSpecifier() {
|
|
// ModuleSpecifier :
|
|
// StringLiteral
|
|
|
|
Expect(Token::STRING);
|
|
return GetSymbol();
|
|
}
|
|
|
|
ZoneChunkList<Parser::ExportClauseData>* Parser::ParseExportClause(
|
|
Scanner::Location* reserved_loc) {
|
|
// ExportClause :
|
|
// '{' '}'
|
|
// '{' ExportsList '}'
|
|
// '{' ExportsList ',' '}'
|
|
//
|
|
// ExportsList :
|
|
// ExportSpecifier
|
|
// ExportsList ',' ExportSpecifier
|
|
//
|
|
// ExportSpecifier :
|
|
// IdentifierName
|
|
// IdentifierName 'as' IdentifierName
|
|
ZoneChunkList<ExportClauseData>* export_data =
|
|
new (zone()) ZoneChunkList<ExportClauseData>(zone());
|
|
|
|
Expect(Token::LBRACE);
|
|
|
|
Token::Value name_tok;
|
|
while ((name_tok = peek()) != Token::RBRACE) {
|
|
// Keep track of the first reserved word encountered in case our
|
|
// caller needs to report an error.
|
|
if (!reserved_loc->IsValid() &&
|
|
!Token::IsIdentifier(name_tok, LanguageMode::kStrict, false,
|
|
parsing_module_)) {
|
|
*reserved_loc = scanner()->location();
|
|
}
|
|
const AstRawString* local_name = ParseIdentifierName();
|
|
const AstRawString* export_name = nullptr;
|
|
Scanner::Location location = scanner()->location();
|
|
if (CheckContextualKeyword(Token::AS)) {
|
|
export_name = ParseIdentifierName();
|
|
// Set the location to the whole "a as b" string, so that it makes sense
|
|
// both for errors due to "a" and for errors due to "b".
|
|
location.end_pos = scanner()->location().end_pos;
|
|
}
|
|
if (export_name == nullptr) {
|
|
export_name = local_name;
|
|
}
|
|
export_data->push_back({export_name, local_name, location});
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA);
|
|
RETURN_IF_PARSE_ERROR;
|
|
}
|
|
|
|
Expect(Token::RBRACE);
|
|
return export_data;
|
|
}
|
|
|
|
ZonePtrList<const Parser::NamedImport>* Parser::ParseNamedImports(int pos) {
|
|
// NamedImports :
|
|
// '{' '}'
|
|
// '{' ImportsList '}'
|
|
// '{' ImportsList ',' '}'
|
|
//
|
|
// ImportsList :
|
|
// ImportSpecifier
|
|
// ImportsList ',' ImportSpecifier
|
|
//
|
|
// ImportSpecifier :
|
|
// BindingIdentifier
|
|
// IdentifierName 'as' BindingIdentifier
|
|
|
|
Expect(Token::LBRACE);
|
|
|
|
auto result = new (zone()) ZonePtrList<const NamedImport>(1, zone());
|
|
while (peek() != Token::RBRACE) {
|
|
const AstRawString* import_name = ParseIdentifierName();
|
|
const AstRawString* local_name = import_name;
|
|
Scanner::Location location = scanner()->location();
|
|
// In the presence of 'as', the left-side of the 'as' can
|
|
// be any IdentifierName. But without 'as', it must be a valid
|
|
// BindingIdentifier.
|
|
if (CheckContextualKeyword(Token::AS)) {
|
|
local_name = ParseIdentifierName();
|
|
}
|
|
if (!Token::IsIdentifier(scanner()->current_token(), LanguageMode::kStrict,
|
|
false, parsing_module_)) {
|
|
ReportMessage(MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
} else if (IsEvalOrArguments(local_name)) {
|
|
ReportMessage(MessageTemplate::kStrictEvalArguments);
|
|
return nullptr;
|
|
}
|
|
|
|
RETURN_IF_PARSE_ERROR;
|
|
DeclareVariable(local_name, VariableMode::kConst, kNeedsInitialization,
|
|
position());
|
|
|
|
NamedImport* import =
|
|
new (zone()) NamedImport(import_name, local_name, location);
|
|
result->Add(import, zone());
|
|
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA);
|
|
}
|
|
|
|
Expect(Token::RBRACE);
|
|
return result;
|
|
}
|
|
|
|
void Parser::ParseImportDeclaration() {
|
|
// ImportDeclaration :
|
|
// 'import' ImportClause 'from' ModuleSpecifier ';'
|
|
// 'import' ModuleSpecifier ';'
|
|
//
|
|
// ImportClause :
|
|
// ImportedDefaultBinding
|
|
// NameSpaceImport
|
|
// NamedImports
|
|
// ImportedDefaultBinding ',' NameSpaceImport
|
|
// ImportedDefaultBinding ',' NamedImports
|
|
//
|
|
// NameSpaceImport :
|
|
// '*' 'as' ImportedBinding
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IMPORT);
|
|
|
|
Token::Value tok = peek();
|
|
|
|
// 'import' ModuleSpecifier ';'
|
|
if (tok == Token::STRING) {
|
|
Scanner::Location specifier_loc = scanner()->peek_location();
|
|
const AstRawString* module_specifier = ParseModuleSpecifier();
|
|
ExpectSemicolon();
|
|
module()->AddEmptyImport(module_specifier, specifier_loc);
|
|
return;
|
|
}
|
|
|
|
// Parse ImportedDefaultBinding if present.
|
|
const AstRawString* import_default_binding = nullptr;
|
|
Scanner::Location import_default_binding_loc;
|
|
if (tok != Token::MUL && tok != Token::LBRACE) {
|
|
import_default_binding = ParseIdentifier(kDontAllowRestrictedIdentifiers);
|
|
import_default_binding_loc = scanner()->location();
|
|
RETURN_IF_PARSE_ERROR_VOID;
|
|
DeclareVariable(import_default_binding, VariableMode::kConst,
|
|
kNeedsInitialization, pos);
|
|
}
|
|
|
|
// Parse NameSpaceImport or NamedImports if present.
|
|
const AstRawString* module_namespace_binding = nullptr;
|
|
Scanner::Location module_namespace_binding_loc;
|
|
const ZonePtrList<const NamedImport>* named_imports = nullptr;
|
|
if (import_default_binding == nullptr || Check(Token::COMMA)) {
|
|
switch (peek()) {
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(Token::AS);
|
|
module_namespace_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers);
|
|
module_namespace_binding_loc = scanner()->location();
|
|
RETURN_IF_PARSE_ERROR_VOID;
|
|
DeclareVariable(module_namespace_binding, VariableMode::kConst,
|
|
kCreatedInitialized, pos);
|
|
break;
|
|
}
|
|
|
|
case Token::LBRACE:
|
|
named_imports = ParseNamedImports(pos);
|
|
break;
|
|
|
|
default:
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return;
|
|
}
|
|
}
|
|
|
|
ExpectContextualKeyword(Token::FROM);
|
|
Scanner::Location specifier_loc = scanner()->peek_location();
|
|
const AstRawString* module_specifier = ParseModuleSpecifier();
|
|
ExpectSemicolon();
|
|
|
|
// Now that we have all the information, we can make the appropriate
|
|
// declarations.
|
|
|
|
// TODO(neis): Would prefer to call DeclareVariable for each case below rather
|
|
// than above and in ParseNamedImports, but then a possible error message
|
|
// would point to the wrong location. Maybe have a DeclareAt version of
|
|
// Declare that takes a location?
|
|
|
|
if (module_namespace_binding != nullptr) {
|
|
module()->AddStarImport(module_namespace_binding, module_specifier,
|
|
module_namespace_binding_loc, specifier_loc,
|
|
zone());
|
|
}
|
|
|
|
if (import_default_binding != nullptr) {
|
|
module()->AddImport(ast_value_factory()->default_string(),
|
|
import_default_binding, module_specifier,
|
|
import_default_binding_loc, specifier_loc, zone());
|
|
}
|
|
|
|
if (named_imports != nullptr) {
|
|
if (named_imports->length() == 0) {
|
|
module()->AddEmptyImport(module_specifier, specifier_loc);
|
|
} else {
|
|
for (int i = 0; i < named_imports->length(); ++i) {
|
|
const NamedImport* import = named_imports->at(i);
|
|
module()->AddImport(import->import_name, import->local_name,
|
|
module_specifier, import->location, specifier_loc,
|
|
zone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Statement* Parser::ParseExportDefault() {
|
|
// Supports the following productions, starting after the 'default' token:
|
|
// 'export' 'default' HoistableDeclaration
|
|
// 'export' 'default' ClassDeclaration
|
|
// 'export' 'default' AssignmentExpression[In] ';'
|
|
|
|
Expect(Token::DEFAULT);
|
|
Scanner::Location default_loc = scanner()->location();
|
|
|
|
ZonePtrList<const AstRawString> local_names(1, zone());
|
|
Statement* result = nullptr;
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&local_names, true);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&local_names, true);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
if (PeekAhead() == Token::FUNCTION &&
|
|
!scanner()->HasLineTerminatorAfterNext()) {
|
|
Consume(Token::ASYNC);
|
|
result = ParseAsyncFunctionDeclaration(&local_names, true);
|
|
break;
|
|
}
|
|
V8_FALLTHROUGH;
|
|
|
|
default: {
|
|
int pos = position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* value = ParseAssignmentExpression(true);
|
|
ValidateExpression();
|
|
RETURN_IF_PARSE_ERROR;
|
|
SetFunctionName(value, ast_value_factory()->default_string());
|
|
|
|
const AstRawString* local_name =
|
|
ast_value_factory()->star_default_star_string();
|
|
local_names.Add(local_name, zone());
|
|
|
|
// It's fine to declare this as VariableMode::kConst because the user has
|
|
// no way of writing to it.
|
|
Declaration* decl =
|
|
DeclareVariable(local_name, VariableMode::kConst, pos);
|
|
decl->proxy()->var()->set_initializer_position(position());
|
|
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), value, kNoSourcePosition);
|
|
result = IgnoreCompletion(
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition));
|
|
|
|
ExpectSemicolon();
|
|
break;
|
|
}
|
|
}
|
|
|
|
RETURN_IF_PARSE_ERROR;
|
|
DCHECK_EQ(local_names.length(), 1);
|
|
module()->AddExport(local_names.first(),
|
|
ast_value_factory()->default_string(), default_loc,
|
|
zone());
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
const AstRawString* Parser::NextInternalNamespaceExportName() {
|
|
const char* prefix = ".ns-export";
|
|
std::string s(prefix);
|
|
s.append(std::to_string(number_of_named_namespace_exports_++));
|
|
return ast_value_factory()->GetOneByteString(s.c_str());
|
|
}
|
|
|
|
void Parser::ParseExportStar() {
|
|
int pos = position();
|
|
Consume(Token::MUL);
|
|
|
|
if (!FLAG_harmony_namespace_exports || !PeekContextualKeyword(Token::AS)) {
|
|
// 'export' '*' 'from' ModuleSpecifier ';'
|
|
Scanner::Location loc = scanner()->location();
|
|
ExpectContextualKeyword(Token::FROM);
|
|
Scanner::Location specifier_loc = scanner()->peek_location();
|
|
const AstRawString* module_specifier = ParseModuleSpecifier();
|
|
ExpectSemicolon();
|
|
module()->AddStarExport(module_specifier, loc, specifier_loc, zone());
|
|
return;
|
|
}
|
|
if (!FLAG_harmony_namespace_exports) return;
|
|
|
|
// 'export' '*' 'as' IdentifierName 'from' ModuleSpecifier ';'
|
|
//
|
|
// Desugaring:
|
|
// export * as x from "...";
|
|
// ~>
|
|
// import * as .x from "..."; export {.x as x};
|
|
|
|
ExpectContextualKeyword(Token::AS);
|
|
const AstRawString* export_name = ParseIdentifierName();
|
|
Scanner::Location export_name_loc = scanner()->location();
|
|
const AstRawString* local_name = NextInternalNamespaceExportName();
|
|
Scanner::Location local_name_loc = Scanner::Location::invalid();
|
|
RETURN_IF_PARSE_ERROR_VOID;
|
|
DeclareVariable(local_name, VariableMode::kConst, kCreatedInitialized, pos);
|
|
|
|
ExpectContextualKeyword(Token::FROM);
|
|
Scanner::Location specifier_loc = scanner()->peek_location();
|
|
const AstRawString* module_specifier = ParseModuleSpecifier();
|
|
ExpectSemicolon();
|
|
|
|
module()->AddStarImport(local_name, module_specifier, local_name_loc,
|
|
specifier_loc, zone());
|
|
module()->AddExport(local_name, export_name, export_name_loc, zone());
|
|
}
|
|
|
|
Statement* Parser::ParseExportDeclaration() {
|
|
// ExportDeclaration:
|
|
// 'export' '*' 'from' ModuleSpecifier ';'
|
|
// 'export' '*' 'as' IdentifierName 'from' ModuleSpecifier ';'
|
|
// 'export' ExportClause ('from' ModuleSpecifier)? ';'
|
|
// 'export' VariableStatement
|
|
// 'export' Declaration
|
|
// 'export' 'default' ... (handled in ParseExportDefault)
|
|
|
|
Expect(Token::EXPORT);
|
|
Statement* result = nullptr;
|
|
ZonePtrList<const AstRawString> names(1, zone());
|
|
Scanner::Location loc = scanner()->peek_location();
|
|
switch (peek()) {
|
|
case Token::DEFAULT:
|
|
return ParseExportDefault();
|
|
|
|
case Token::MUL:
|
|
ParseExportStar();
|
|
return factory()->EmptyStatement();
|
|
|
|
case Token::LBRACE: {
|
|
// There are two cases here:
|
|
//
|
|
// 'export' ExportClause ';'
|
|
// and
|
|
// 'export' ExportClause FromClause ';'
|
|
//
|
|
// In the first case, the exported identifiers in ExportClause must
|
|
// not be reserved words, while in the latter they may be. We
|
|
// pass in a location that gets filled with the first reserved word
|
|
// encountered, and then throw a SyntaxError if we are in the
|
|
// non-FromClause case.
|
|
Scanner::Location reserved_loc = Scanner::Location::invalid();
|
|
ZoneChunkList<ExportClauseData>* export_data =
|
|
ParseExportClause(&reserved_loc);
|
|
const AstRawString* module_specifier = nullptr;
|
|
Scanner::Location specifier_loc;
|
|
if (CheckContextualKeyword(Token::FROM)) {
|
|
specifier_loc = scanner()->peek_location();
|
|
module_specifier = ParseModuleSpecifier();
|
|
} else if (reserved_loc.IsValid()) {
|
|
// No FromClause, so reserved words are invalid in ExportClause.
|
|
ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
}
|
|
ExpectSemicolon();
|
|
RETURN_IF_PARSE_ERROR;
|
|
if (module_specifier == nullptr) {
|
|
for (const ExportClauseData& data : *export_data) {
|
|
module()->AddExport(data.local_name, data.export_name, data.location,
|
|
zone());
|
|
}
|
|
} else if (export_data->is_empty()) {
|
|
module()->AddEmptyImport(module_specifier, specifier_loc);
|
|
} else {
|
|
for (const ExportClauseData& data : *export_data) {
|
|
module()->AddExport(data.local_name, data.export_name,
|
|
module_specifier, data.location, specifier_loc,
|
|
zone());
|
|
}
|
|
}
|
|
return factory()->EmptyStatement();
|
|
}
|
|
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&names, false);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&names, false);
|
|
break;
|
|
|
|
case Token::VAR:
|
|
case Token::LET:
|
|
case Token::CONST:
|
|
result = ParseVariableStatement(kStatementListItem, &names);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
Consume(Token::ASYNC);
|
|
if (peek() == Token::FUNCTION &&
|
|
!scanner()->HasLineTerminatorBeforeNext()) {
|
|
result = ParseAsyncFunctionDeclaration(&names, false);
|
|
break;
|
|
}
|
|
V8_FALLTHROUGH;
|
|
|
|
default:
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return nullptr;
|
|
}
|
|
loc.end_pos = scanner()->location().end_pos;
|
|
|
|
ModuleDescriptor* descriptor = module();
|
|
for (int i = 0; i < names.length(); ++i) {
|
|
descriptor->AddExport(names[i], names[i], loc, zone());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos,
|
|
VariableKind kind) {
|
|
return scope()->NewUnresolved(factory(), name, begin_pos, kind);
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name) {
|
|
return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos);
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, int pos) {
|
|
return DeclareVariable(name, mode, Variable::DefaultInitializationFlag(mode),
|
|
pos);
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, InitializationFlag init,
|
|
int pos) {
|
|
DCHECK_NOT_NULL(name);
|
|
VariableProxy* proxy = factory()->NewVariableProxy(
|
|
name, NORMAL_VARIABLE, scanner()->location().beg_pos);
|
|
Declaration* declaration;
|
|
if (mode == VariableMode::kVar && !scope()->is_declaration_scope()) {
|
|
DCHECK(scope()->is_block_scope() || scope()->is_with_scope());
|
|
declaration = factory()->NewNestedVariableDeclaration(proxy, scope(), pos);
|
|
} else {
|
|
declaration = factory()->NewVariableDeclaration(proxy, pos);
|
|
}
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, nullptr,
|
|
scanner()->location().end_pos);
|
|
return declaration;
|
|
}
|
|
|
|
Variable* Parser::Declare(Declaration* declaration,
|
|
DeclarationDescriptor::Kind declaration_kind,
|
|
VariableMode mode, InitializationFlag init,
|
|
Scope* scope, int var_end_pos) {
|
|
bool local_ok = true;
|
|
if (scope == nullptr) {
|
|
scope = this->scope();
|
|
}
|
|
bool sloppy_mode_block_scope_function_redefinition = false;
|
|
Variable* variable = scope->DeclareVariable(
|
|
declaration, mode, init, &sloppy_mode_block_scope_function_redefinition,
|
|
&local_ok);
|
|
if (!local_ok) {
|
|
// If we only have the start position of a proxy, we can't highlight the
|
|
// whole variable name. Pretend its length is 1 so that we highlight at
|
|
// least the first character.
|
|
Scanner::Location loc(declaration->proxy()->position(),
|
|
var_end_pos != kNoSourcePosition
|
|
? var_end_pos
|
|
: declaration->proxy()->position() + 1);
|
|
if (declaration_kind == DeclarationDescriptor::PARAMETER) {
|
|
ReportMessageAt(loc, MessageTemplate::kParamDupe);
|
|
} else {
|
|
ReportMessageAt(loc, MessageTemplate::kVarRedeclaration,
|
|
declaration->proxy()->raw_name());
|
|
}
|
|
} else if (sloppy_mode_block_scope_function_redefinition) {
|
|
++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
|
|
}
|
|
return variable;
|
|
}
|
|
|
|
Block* Parser::BuildInitializationBlock(
|
|
DeclarationParsingResult* parsing_result,
|
|
ZonePtrList<const AstRawString>* names) {
|
|
Block* result = factory()->NewBlock(1, true);
|
|
for (const auto& declaration : parsing_result->declarations) {
|
|
DeclareAndInitializeVariables(result, &(parsing_result->descriptor),
|
|
&declaration, names);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::DeclareFunction(const AstRawString* variable_name,
|
|
FunctionLiteral* function, VariableMode mode,
|
|
int pos, bool is_sloppy_block_function,
|
|
ZonePtrList<const AstRawString>* names) {
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(variable_name, NORMAL_VARIABLE, pos);
|
|
Declaration* declaration =
|
|
factory()->NewFunctionDeclaration(proxy, function, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode,
|
|
kCreatedInitialized);
|
|
if (names) names->Add(variable_name, zone());
|
|
if (is_sloppy_block_function) {
|
|
SloppyBlockFunctionStatement* statement =
|
|
factory()->NewSloppyBlockFunctionStatement();
|
|
GetDeclarationScope()->DeclareSloppyBlockFunction(variable_name, scope(),
|
|
statement);
|
|
return statement;
|
|
}
|
|
return factory()->EmptyStatement();
|
|
}
|
|
|
|
Statement* Parser::DeclareClass(const AstRawString* variable_name,
|
|
Expression* value,
|
|
ZonePtrList<const AstRawString>* names,
|
|
int class_token_pos, int end_pos) {
|
|
Declaration* decl =
|
|
DeclareVariable(variable_name, VariableMode::kLet, class_token_pos);
|
|
decl->proxy()->var()->set_initializer_position(end_pos);
|
|
if (names) names->Add(variable_name, zone());
|
|
|
|
Assignment* assignment = factory()->NewAssignment(Token::INIT, decl->proxy(),
|
|
value, class_token_pos);
|
|
return IgnoreCompletion(
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition));
|
|
}
|
|
|
|
Statement* Parser::DeclareNative(const AstRawString* name, int pos) {
|
|
// Make sure that the function containing the native declaration
|
|
// isn't lazily compiled. The extension structures are only
|
|
// accessible while parsing the first time not when reparsing
|
|
// because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
|
|
// TODO(1240846): It's weird that native function declarations are
|
|
// introduced dynamically when we meet their declarations, whereas
|
|
// other functions are set up when entering the surrounding scope.
|
|
Declaration* decl = DeclareVariable(name, VariableMode::kVar, pos);
|
|
NativeFunctionLiteral* lit =
|
|
factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition);
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, decl->proxy(), lit,
|
|
kNoSourcePosition),
|
|
pos);
|
|
}
|
|
|
|
void Parser::DeclareLabel(ZonePtrList<const AstRawString>** labels,
|
|
ZonePtrList<const AstRawString>** own_labels,
|
|
VariableProxy* var) {
|
|
DCHECK(IsIdentifier(var));
|
|
const AstRawString* label = var->raw_name();
|
|
|
|
// TODO(1240780): We don't check for redeclaration of labels
|
|
// during preparsing since keeping track of the set of active
|
|
// labels requires nontrivial changes to the way scopes are
|
|
// structured. However, these are probably changes we want to
|
|
// make later anyway so we should go back and fix this then.
|
|
if (ContainsLabel(*labels, label) || TargetStackContainsLabel(label)) {
|
|
ReportMessage(MessageTemplate::kLabelRedeclaration, label);
|
|
return;
|
|
}
|
|
|
|
// Add {label} to both {labels} and {own_labels}.
|
|
if (*labels == nullptr) {
|
|
DCHECK_NULL(*own_labels);
|
|
*labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
|
|
*own_labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
|
|
} else {
|
|
if (*own_labels == nullptr) {
|
|
*own_labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
|
|
}
|
|
}
|
|
(*labels)->Add(label, zone());
|
|
(*own_labels)->Add(label, zone());
|
|
|
|
// Remove the "ghost" variable that turned out to be a label
|
|
// from the top scope. This way, we don't try to resolve it
|
|
// during the scope processing.
|
|
scope()->RemoveUnresolved(var);
|
|
}
|
|
|
|
bool Parser::ContainsLabel(ZonePtrList<const AstRawString>* labels,
|
|
const AstRawString* label) {
|
|
DCHECK_NOT_NULL(label);
|
|
if (labels != nullptr) {
|
|
for (int i = labels->length(); i-- > 0;) {
|
|
if (labels->at(i) == label) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Block* Parser::IgnoreCompletion(Statement* statement) {
|
|
Block* block = factory()->NewBlock(1, true);
|
|
block->statements()->Add(statement, zone());
|
|
return block;
|
|
}
|
|
|
|
Expression* Parser::RewriteReturn(Expression* return_value, int pos) {
|
|
if (IsDerivedConstructor(function_state_->kind())) {
|
|
// For subclass constructors we need to return this in case of undefined;
|
|
// other primitive values trigger an exception in the ConstructStub.
|
|
//
|
|
// return expr;
|
|
//
|
|
// Is rewritten as:
|
|
//
|
|
// return (temp = expr) === undefined ? this : temp;
|
|
|
|
// temp = expr
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
Assignment* assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
|
|
|
|
// temp === undefined
|
|
Expression* is_undefined = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, assign,
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
|
|
|
|
// is_undefined ? this : temp
|
|
return_value =
|
|
factory()->NewConditional(is_undefined, ThisExpression(pos),
|
|
factory()->NewVariableProxy(temp), pos);
|
|
}
|
|
return return_value;
|
|
}
|
|
|
|
Expression* Parser::RewriteDoExpression(Block* body, int pos) {
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
DoExpression* expr = factory()->NewDoExpression(body, result, pos);
|
|
if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) {
|
|
return nullptr;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
Statement* Parser::RewriteSwitchStatement(SwitchStatement* switch_statement,
|
|
Scope* scope) {
|
|
// In order to get the CaseClauses to execute in their own lexical scope,
|
|
// but without requiring downstream code to have special scope handling
|
|
// code for switch statements, desugar into blocks as follows:
|
|
// { // To group the statements--harmless to evaluate Expression in scope
|
|
// .tag_variable = Expression;
|
|
// { // To give CaseClauses a scope
|
|
// switch (.tag_variable) { CaseClause* }
|
|
// }
|
|
// }
|
|
DCHECK_NOT_NULL(scope);
|
|
DCHECK(scope->is_block_scope());
|
|
DCHECK_GE(switch_statement->position(), scope->start_position());
|
|
DCHECK_LT(switch_statement->position(), scope->end_position());
|
|
|
|
Block* switch_block = factory()->NewBlock(2, false);
|
|
|
|
Expression* tag = switch_statement->tag();
|
|
Variable* tag_variable =
|
|
NewTemporary(ast_value_factory()->dot_switch_tag_string());
|
|
Assignment* tag_assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
|
|
tag->position());
|
|
// Wrap with IgnoreCompletion so the tag isn't returned as the completion
|
|
// value, in case the switch statements don't have a value.
|
|
Statement* tag_statement = IgnoreCompletion(
|
|
factory()->NewExpressionStatement(tag_assign, kNoSourcePosition));
|
|
switch_block->statements()->Add(tag_statement, zone());
|
|
|
|
switch_statement->set_tag(factory()->NewVariableProxy(tag_variable));
|
|
Block* cases_block = factory()->NewBlock(1, false);
|
|
cases_block->statements()->Add(switch_statement, zone());
|
|
cases_block->set_scope(scope);
|
|
switch_block->statements()->Add(cases_block, zone());
|
|
return switch_block;
|
|
}
|
|
|
|
void Parser::RewriteCatchPattern(CatchInfo* catch_info) {
|
|
if (catch_info->name == nullptr) {
|
|
DCHECK_NOT_NULL(catch_info->pattern);
|
|
catch_info->name = ast_value_factory()->dot_catch_string();
|
|
}
|
|
Variable* catch_variable =
|
|
catch_info->scope->DeclareLocal(catch_info->name, VariableMode::kVar);
|
|
if (catch_info->pattern != nullptr) {
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
descriptor.scope = scope();
|
|
descriptor.mode = VariableMode::kLet;
|
|
descriptor.declaration_pos = catch_info->pattern->position();
|
|
descriptor.initialization_pos = catch_info->pattern->position();
|
|
|
|
// Initializer position for variables declared by the pattern.
|
|
const int initializer_position = position();
|
|
|
|
DeclarationParsingResult::Declaration decl(
|
|
catch_info->pattern, initializer_position,
|
|
factory()->NewVariableProxy(catch_variable));
|
|
|
|
catch_info->init_block = factory()->NewBlock(8, true);
|
|
DeclareAndInitializeVariables(catch_info->init_block, &descriptor, &decl,
|
|
&catch_info->bound_names);
|
|
} else {
|
|
catch_info->bound_names.Add(catch_info->name, zone());
|
|
}
|
|
}
|
|
|
|
void Parser::ValidateCatchBlock(const CatchInfo& catch_info) {
|
|
// Check for `catch(e) { let e; }` and similar errors.
|
|
Scope* inner_block_scope = catch_info.inner_block->scope();
|
|
if (inner_block_scope != nullptr) {
|
|
Declaration* decl = inner_block_scope->CheckLexDeclarationsConflictingWith(
|
|
catch_info.bound_names);
|
|
if (decl != nullptr) {
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block,
|
|
const SourceRange& catch_range,
|
|
Block* finally_block,
|
|
const SourceRange& finally_range,
|
|
const CatchInfo& catch_info, int pos) {
|
|
// Simplify the AST nodes by converting:
|
|
// 'try B0 catch B1 finally B2'
|
|
// to:
|
|
// 'try { try B0 catch B1 } finally B2'
|
|
|
|
if (catch_block != nullptr && finally_block != nullptr) {
|
|
// If we have both, create an inner try/catch.
|
|
TryCatchStatement* statement;
|
|
statement = factory()->NewTryCatchStatement(try_block, catch_info.scope,
|
|
catch_block, kNoSourcePosition);
|
|
RecordTryCatchStatementSourceRange(statement, catch_range);
|
|
|
|
try_block = factory()->NewBlock(1, false);
|
|
try_block->statements()->Add(statement, zone());
|
|
catch_block = nullptr; // Clear to indicate it's been handled.
|
|
}
|
|
|
|
if (catch_block != nullptr) {
|
|
DCHECK_NULL(finally_block);
|
|
TryCatchStatement* stmt = factory()->NewTryCatchStatement(
|
|
try_block, catch_info.scope, catch_block, pos);
|
|
RecordTryCatchStatementSourceRange(stmt, catch_range);
|
|
return stmt;
|
|
} else {
|
|
DCHECK_NOT_NULL(finally_block);
|
|
TryFinallyStatement* stmt =
|
|
factory()->NewTryFinallyStatement(try_block, finally_block, pos);
|
|
RecordTryFinallyStatementSourceRange(stmt, finally_range);
|
|
return stmt;
|
|
}
|
|
}
|
|
|
|
void Parser::ParseAndRewriteGeneratorFunctionBody(
|
|
int pos, FunctionKind kind, ZonePtrList<Statement>* body) {
|
|
// For ES6 Generators, we just prepend the initial yield.
|
|
Expression* initial_yield = BuildInitialYield(pos, kind);
|
|
body->Add(factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
|
|
zone());
|
|
ParseStatementList(body, Token::RBRACE, !has_error());
|
|
}
|
|
|
|
void Parser::ParseAndRewriteAsyncGeneratorFunctionBody(
|
|
int pos, FunctionKind kind, ZonePtrList<Statement>* body) {
|
|
// For ES2017 Async Generators, we produce:
|
|
//
|
|
// try {
|
|
// InitialYield;
|
|
// ...body...;
|
|
// return undefined; // See comment below
|
|
// } catch (.catch) {
|
|
// %AsyncGeneratorReject(generator, .catch);
|
|
// } finally {
|
|
// %_GeneratorClose(generator);
|
|
// }
|
|
//
|
|
// - InitialYield yields the actual generator object.
|
|
// - Any return statement inside the body will have its argument wrapped
|
|
// in an iterator result object with a "done" property set to `true`.
|
|
// - If the generator terminates for whatever reason, we must close it.
|
|
// Hence the finally clause.
|
|
// - BytecodeGenerator performs special handling for ReturnStatements in
|
|
// async generator functions, resolving the appropriate Promise with an
|
|
// "done" iterator result object containing a Promise-unwrapped value.
|
|
DCHECK(IsAsyncGeneratorFunction(kind));
|
|
|
|
Block* try_block = factory()->NewBlock(3, false);
|
|
Expression* initial_yield = BuildInitialYield(pos, kind);
|
|
try_block->statements()->Add(
|
|
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
|
|
zone());
|
|
ParseStatementList(try_block->statements(), Token::RBRACE, !has_error());
|
|
|
|
// Don't create iterator result for async generators, as the resume methods
|
|
// will create it.
|
|
// TODO(leszeks): This will create another suspend point, which is unnecessary
|
|
// if there is already an unconditional return in the body.
|
|
Statement* final_return = BuildReturnStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
|
|
try_block->statements()->Add(final_return, zone());
|
|
|
|
// For AsyncGenerators, a top-level catch block will reject the Promise.
|
|
Scope* catch_scope = NewHiddenCatchScope();
|
|
|
|
ScopedPtrList<Expression> reject_args(pointer_buffer());
|
|
reject_args.Add(factory()->NewVariableProxy(
|
|
function_state_->scope()->generator_object_var()));
|
|
reject_args.Add(factory()->NewVariableProxy(catch_scope->catch_variable()));
|
|
|
|
Expression* reject_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineAsyncGeneratorReject, reject_args, kNoSourcePosition);
|
|
Block* catch_block = IgnoreCompletion(
|
|
factory()->NewReturnStatement(reject_call, kNoSourcePosition));
|
|
|
|
TryStatement* try_catch = factory()->NewTryCatchStatementForAsyncAwait(
|
|
try_block, catch_scope, catch_block, kNoSourcePosition);
|
|
|
|
try_block = factory()->NewBlock(1, false);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
Block* finally_block = factory()->NewBlock(1, false);
|
|
ScopedPtrList<Expression> close_args(pointer_buffer());
|
|
VariableProxy* call_proxy = factory()->NewVariableProxy(
|
|
function_state_->scope()->generator_object_var());
|
|
close_args.Add(call_proxy);
|
|
Expression* close_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineGeneratorClose, close_args, kNoSourcePosition);
|
|
finally_block->statements()->Add(
|
|
factory()->NewExpressionStatement(close_call, kNoSourcePosition), zone());
|
|
|
|
body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
|
|
kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
void Parser::DeclareFunctionNameVar(const AstRawString* function_name,
|
|
FunctionLiteral::FunctionType function_type,
|
|
DeclarationScope* function_scope) {
|
|
if (function_type == FunctionLiteral::kNamedExpression &&
|
|
function_scope->LookupLocal(function_name) == nullptr) {
|
|
DCHECK_EQ(function_scope, scope());
|
|
function_scope->DeclareFunctionVar(function_name);
|
|
}
|
|
}
|
|
|
|
// [if (IteratorType == kNormal)]
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
// [else if (IteratorType == kAsync)]
|
|
// !%_IsJSReceiver(result = Await(iterator.next())) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
// [endif]
|
|
Expression* Parser::BuildIteratorNextResult(VariableProxy* iterator,
|
|
VariableProxy* next,
|
|
Variable* result, IteratorType type,
|
|
int pos) {
|
|
Expression* next_property = factory()->NewResolvedProperty(iterator, next);
|
|
ScopedPtrList<Expression> next_arguments(pointer_buffer());
|
|
Expression* next_call =
|
|
factory()->NewCall(next_property, next_arguments, kNoSourcePosition);
|
|
if (type == IteratorType::kAsync) {
|
|
function_state_->AddSuspend();
|
|
next_call = factory()->NewAwait(next_call, pos);
|
|
}
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
Expression* left =
|
|
factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
|
|
|
|
// %_IsJSReceiver(...)
|
|
ScopedPtrList<Expression> is_spec_object_args(pointer_buffer());
|
|
is_spec_object_args.Add(left);
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* result_proxy_again = factory()->NewVariableProxy(result);
|
|
ScopedPtrList<Expression> throw_arguments(pointer_buffer());
|
|
throw_arguments.Add(result_proxy_again);
|
|
Expression* throw_call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
|
|
|
|
return factory()->NewBinaryOperation(
|
|
Token::AND,
|
|
factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
|
|
throw_call, pos);
|
|
}
|
|
|
|
Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt,
|
|
Expression* each,
|
|
Expression* subject,
|
|
Statement* body) {
|
|
ForOfStatement* for_of = stmt->AsForOfStatement();
|
|
if (for_of != nullptr) {
|
|
const bool finalize = true;
|
|
return InitializeForOfStatement(for_of, each, subject, body, finalize,
|
|
IteratorType::kNormal, each->position());
|
|
} else {
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Expression* assign_each =
|
|
RewriteDestructuringAssignment(factory()->NewAssignment(
|
|
Token::ASSIGN, each, temp_proxy, kNoSourcePosition));
|
|
auto block = factory()->NewBlock(2, false);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assign_each, kNoSourcePosition),
|
|
zone());
|
|
block->statements()->Add(body, zone());
|
|
body = block;
|
|
each = factory()->NewVariableProxy(temp);
|
|
}
|
|
MarkExpressionAsAssigned(each);
|
|
stmt->AsForInStatement()->Initialize(each, subject, body);
|
|
}
|
|
return stmt;
|
|
}
|
|
|
|
// Special case for legacy for
|
|
//
|
|
// for (var x = initializer in enumerable) body
|
|
//
|
|
// An initialization block of the form
|
|
//
|
|
// {
|
|
// x = initializer;
|
|
// }
|
|
//
|
|
// is returned in this case. It has reserved space for two statements,
|
|
// so that (later on during parsing), the equivalent of
|
|
//
|
|
// for (x in enumerable) body
|
|
//
|
|
// is added as a second statement to it.
|
|
Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) {
|
|
const DeclarationParsingResult::Declaration& decl =
|
|
for_info.parsing_result.declarations[0];
|
|
if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) &&
|
|
decl.pattern->IsVariableProxy() && decl.initializer != nullptr) {
|
|
++use_counts_[v8::Isolate::kForInInitializer];
|
|
const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name();
|
|
VariableProxy* single_var = NewUnresolved(name);
|
|
Block* init_block = factory()->NewBlock(2, true);
|
|
init_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::ASSIGN, single_var,
|
|
decl.initializer, kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
return init_block;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Rewrite a for-in/of statement of the form
|
|
//
|
|
// for (let/const/var x in/of e) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// var temp;
|
|
// for (temp in/of e) {
|
|
// let/const/var x = temp;
|
|
// b;
|
|
// }
|
|
// let x; // for TDZ
|
|
// }
|
|
void Parser::DesugarBindingInForEachStatement(ForInfo* for_info,
|
|
Block** body_block,
|
|
Expression** each_variable) {
|
|
DCHECK_EQ(1, for_info->parsing_result.declarations.size());
|
|
DeclarationParsingResult::Declaration& decl =
|
|
for_info->parsing_result.declarations[0];
|
|
Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
|
|
auto each_initialization_block = factory()->NewBlock(1, true);
|
|
{
|
|
auto descriptor = for_info->parsing_result.descriptor;
|
|
descriptor.declaration_pos = kNoSourcePosition;
|
|
descriptor.initialization_pos = kNoSourcePosition;
|
|
descriptor.scope = scope();
|
|
decl.initializer = factory()->NewVariableProxy(temp);
|
|
|
|
bool is_for_var_of =
|
|
for_info->mode == ForEachStatement::ITERATE &&
|
|
for_info->parsing_result.descriptor.mode == VariableMode::kVar;
|
|
bool collect_names =
|
|
IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) ||
|
|
is_for_var_of;
|
|
|
|
DeclareAndInitializeVariables(
|
|
each_initialization_block, &descriptor, &decl,
|
|
collect_names ? &for_info->bound_names : nullptr);
|
|
|
|
// Annex B.3.5 prohibits the form
|
|
// `try {} catch(e) { for (var e of {}); }`
|
|
// So if we are parsing a statement like `for (var ... of ...)`
|
|
// we need to walk up the scope chain and look for catch scopes
|
|
// which have a simple binding, then compare their binding against
|
|
// all of the names declared in the init of the for-of we're
|
|
// parsing.
|
|
if (is_for_var_of) {
|
|
Scope* catch_scope = scope();
|
|
while (catch_scope != nullptr && !catch_scope->is_declaration_scope()) {
|
|
if (catch_scope->is_catch_scope()) {
|
|
auto name = catch_scope->catch_variable()->raw_name();
|
|
// If it's a simple binding and the name is declared in the for loop.
|
|
if (name != ast_value_factory()->dot_catch_string() &&
|
|
for_info->bound_names.Contains(name)) {
|
|
ReportMessageAt(for_info->parsing_result.bindings_loc,
|
|
MessageTemplate::kVarRedeclaration, name);
|
|
return;
|
|
}
|
|
}
|
|
catch_scope = catch_scope->outer_scope();
|
|
}
|
|
}
|
|
}
|
|
|
|
*body_block = factory()->NewBlock(3, false);
|
|
(*body_block)->statements()->Add(each_initialization_block, zone());
|
|
*each_variable = factory()->NewVariableProxy(temp, for_info->position);
|
|
}
|
|
|
|
// Create a TDZ for any lexically-bound names in for in/of statements.
|
|
Block* Parser::CreateForEachStatementTDZ(Block* init_block,
|
|
const ForInfo& for_info) {
|
|
if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
|
|
DCHECK_NULL(init_block);
|
|
|
|
init_block = factory()->NewBlock(1, false);
|
|
|
|
for (int i = 0; i < for_info.bound_names.length(); ++i) {
|
|
// TODO(adamk): This needs to be some sort of special
|
|
// INTERNAL variable that's invisible to the debugger
|
|
// but visible to everything else.
|
|
Declaration* tdz_decl = DeclareVariable(
|
|
for_info.bound_names[i], VariableMode::kLet, kNoSourcePosition);
|
|
tdz_decl->proxy()->var()->set_initializer_position(position());
|
|
}
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
Statement* Parser::InitializeForOfStatement(
|
|
ForOfStatement* for_of, Expression* each, Expression* iterable,
|
|
Statement* body, bool finalize, IteratorType type, int next_result_pos) {
|
|
// Create the auxiliary expressions needed for iterating over the iterable,
|
|
// and initialize the given ForOfStatement with them.
|
|
// If finalize is true, also instrument the loop with code that performs the
|
|
// proper ES6 iterator finalization. In that case, the result is not
|
|
// immediately a ForOfStatement.
|
|
const int nopos = kNoSourcePosition;
|
|
auto avfactory = ast_value_factory();
|
|
|
|
Variable* iterator = NewTemporary(avfactory->dot_iterator_string());
|
|
Variable* next = NewTemporary(avfactory->empty_string());
|
|
Variable* result = NewTemporary(avfactory->dot_result_string());
|
|
Variable* completion = NewTemporary(avfactory->empty_string());
|
|
|
|
// iterator = GetIterator(iterable, type)
|
|
Expression* assign_iterator;
|
|
{
|
|
assign_iterator = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(iterator),
|
|
factory()->NewGetIterator(iterable, type, iterable->position()),
|
|
iterable->position());
|
|
}
|
|
|
|
Expression* assign_next;
|
|
{
|
|
assign_next = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(next),
|
|
factory()->NewProperty(factory()->NewVariableProxy(iterator),
|
|
factory()->NewStringLiteral(
|
|
avfactory->next_string(), kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
// [if (IteratorType == kNormal)]
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
// [else if (IteratorType == kAsync)]
|
|
// !%_IsJSReceiver(result = Await(iterator.next())) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
// [endif]
|
|
Expression* next_result;
|
|
{
|
|
VariableProxy* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
VariableProxy* next_proxy = factory()->NewVariableProxy(next);
|
|
next_result = BuildIteratorNextResult(iterator_proxy, next_proxy, result,
|
|
type, next_result_pos);
|
|
}
|
|
|
|
// result.done
|
|
Expression* result_done;
|
|
{
|
|
Expression* done_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->done_string(), kNoSourcePosition);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_done =
|
|
factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition);
|
|
}
|
|
|
|
// result.value
|
|
Expression* result_value;
|
|
{
|
|
Expression* value_literal =
|
|
factory()->NewStringLiteral(avfactory->value_string(), nopos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_value = factory()->NewProperty(result_proxy, value_literal, nopos);
|
|
}
|
|
|
|
// {{tmp = #result_value, completion = kAbruptCompletion, tmp}}
|
|
// Expression* result_value (gets overwritten)
|
|
if (finalize) {
|
|
Variable* tmp = NewTemporary(avfactory->empty_string());
|
|
Expression* save_result = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(tmp), result_value, nopos);
|
|
|
|
Expression* set_completion_abrupt = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(completion),
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
result_value = factory()->NewBinaryOperation(Token::COMMA, save_result,
|
|
set_completion_abrupt, nopos);
|
|
result_value = factory()->NewBinaryOperation(
|
|
Token::COMMA, result_value, factory()->NewVariableProxy(tmp), nopos);
|
|
}
|
|
|
|
// each = #result_value;
|
|
Expression* assign_each;
|
|
{
|
|
assign_each =
|
|
factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos);
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
assign_each = RewriteDestructuringAssignment(assign_each->AsAssignment());
|
|
}
|
|
}
|
|
|
|
// {{completion = kNormalCompletion;}}
|
|
Statement* set_completion_normal;
|
|
if (finalize) {
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
|
|
set_completion_normal =
|
|
IgnoreCompletion(factory()->NewExpressionStatement(assignment, nopos));
|
|
}
|
|
|
|
// { #loop-body; #set_completion_normal }
|
|
// Statement* body (gets overwritten)
|
|
if (finalize) {
|
|
Block* block = factory()->NewBlock(2, false);
|
|
block->statements()->Add(body, zone());
|
|
block->statements()->Add(set_completion_normal, zone());
|
|
body = block;
|
|
}
|
|
|
|
for_of->Initialize(body, iterator, assign_iterator, assign_next, next_result,
|
|
result_done, assign_each);
|
|
return finalize ? FinalizeForOfStatement(for_of, completion, type, nopos)
|
|
: for_of;
|
|
}
|
|
|
|
Statement* Parser::DesugarLexicalBindingsInForStatement(
|
|
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
|
|
Statement* body, Scope* inner_scope, const ForInfo& for_info) {
|
|
// ES6 13.7.4.8 specifies that on each loop iteration the let variables are
|
|
// copied into a new environment. Moreover, the "next" statement must be
|
|
// evaluated not in the environment of the just completed iteration but in
|
|
// that of the upcoming one. We achieve this with the following desugaring.
|
|
// Extra care is needed to preserve the completion value of the original loop.
|
|
//
|
|
// We are given a for statement of the form
|
|
//
|
|
// labels: for (let/const x = i; cond; next) body
|
|
//
|
|
// and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie.,
|
|
// blocks whose ignore_completion_value_ flag is set.
|
|
//
|
|
// {
|
|
// let/const x = i;
|
|
// temp_x = x;
|
|
// first = 1;
|
|
// undefined;
|
|
// outer: for (;;) {
|
|
// let/const x = temp_x;
|
|
// {{ if (first == 1) {
|
|
// first = 0;
|
|
// } else {
|
|
// next;
|
|
// }
|
|
// flag = 1;
|
|
// if (!cond) break;
|
|
// }}
|
|
// labels: for (; flag == 1; flag = 0, temp_x = x) {
|
|
// body
|
|
// }
|
|
// {{ if (flag == 1) // Body used break.
|
|
// break;
|
|
// }}
|
|
// }
|
|
// }
|
|
|
|
DCHECK_GT(for_info.bound_names.length(), 0);
|
|
ZonePtrList<Variable> temps(for_info.bound_names.length(), zone());
|
|
|
|
Block* outer_block =
|
|
factory()->NewBlock(for_info.bound_names.length() + 4, false);
|
|
|
|
// Add statement: let/const x = i.
|
|
outer_block->statements()->Add(init, zone());
|
|
|
|
const AstRawString* temp_name = ast_value_factory()->dot_for_string();
|
|
|
|
// For each lexical variable x:
|
|
// make statement: temp_x = x.
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
VariableProxy* proxy = NewUnresolved(for_info.bound_names[i]);
|
|
Variable* temp = NewTemporary(temp_name);
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
|
|
proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
temps.Add(temp, zone());
|
|
}
|
|
|
|
Variable* first = nullptr;
|
|
// Make statement: first = 1.
|
|
if (next) {
|
|
first = NewTemporary(temp_name);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// make statement: undefined;
|
|
outer_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
|
|
// Make statement: outer: for (;;)
|
|
// Note that we don't actually create the label, or set this loop up as an
|
|
// explicit break target, instead handing it directly to those nodes that
|
|
// need to know about it. This should be safe because we don't run any code
|
|
// in this function that looks up break targets.
|
|
ForStatement* outer_loop =
|
|
factory()->NewForStatement(nullptr, nullptr, kNoSourcePosition);
|
|
outer_block->statements()->Add(outer_loop, zone());
|
|
outer_block->set_scope(scope());
|
|
|
|
Block* inner_block = factory()->NewBlock(3, false);
|
|
{
|
|
BlockState block_state(&scope_, inner_scope);
|
|
|
|
Block* ignore_completion_block =
|
|
factory()->NewBlock(for_info.bound_names.length() + 3, true);
|
|
ZonePtrList<Variable> inner_vars(for_info.bound_names.length(), zone());
|
|
// For each let variable x:
|
|
// make statement: let/const x = temp_x.
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
Declaration* decl = DeclareVariable(
|
|
for_info.bound_names[i], for_info.parsing_result.descriptor.mode,
|
|
kNoSourcePosition);
|
|
inner_vars.Add(decl->proxy()->var(), zone());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
int declaration_pos = for_info.parsing_result.descriptor.declaration_pos;
|
|
DCHECK_NE(declaration_pos, kNoSourcePosition);
|
|
decl->proxy()->var()->set_initializer_position(declaration_pos);
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (first == 1) { first = 0; } else { next; }
|
|
if (next) {
|
|
DCHECK(first);
|
|
Expression* compare = nullptr;
|
|
// Make compare expression: first == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* clear_first = nullptr;
|
|
// Make statement: first = 0.
|
|
{
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
|
|
clear_first =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
}
|
|
Statement* clear_first_or_next = factory()->NewIfStatement(
|
|
compare, clear_first, next, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(clear_first_or_next, zone());
|
|
}
|
|
|
|
Variable* flag = NewTemporary(temp_name);
|
|
// Make statement: flag = 1.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (!cond) break.
|
|
if (cond) {
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* noop = factory()->EmptyStatement();
|
|
ignore_completion_block->statements()->Add(
|
|
factory()->NewIfStatement(cond, noop, stop, cond->position()),
|
|
zone());
|
|
}
|
|
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
// Make cond expression for main loop: flag == 1.
|
|
Expression* flag_cond = nullptr;
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
// Create chain of expressions "flag = 0, temp_x = x, ..."
|
|
Statement* compound_next_statement = nullptr;
|
|
{
|
|
Expression* compound_next = nullptr;
|
|
// Make expression: flag = 0.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
|
|
const0, kNoSourcePosition);
|
|
}
|
|
|
|
// Make the comma-separated list of temp_x = x assignments.
|
|
int inner_var_proxy_pos = scanner()->location().beg_pos;
|
|
for (int i = 0; i < for_info.bound_names.length(); i++) {
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
|
|
compound_next = factory()->NewBinaryOperation(
|
|
Token::COMMA, compound_next, assignment, kNoSourcePosition);
|
|
}
|
|
|
|
compound_next_statement =
|
|
factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
|
|
}
|
|
|
|
// Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
|
|
// Note that we re-use the original loop node, which retains its labels
|
|
// and ensures that any break or continue statements in body point to
|
|
// the right place.
|
|
loop->Initialize(nullptr, flag_cond, compound_next_statement, body);
|
|
inner_block->statements()->Add(loop, zone());
|
|
|
|
// Make statement: {{if (flag == 1) break;}}
|
|
{
|
|
Expression* compare = nullptr;
|
|
// Make compare expresion: flag == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* empty = factory()->EmptyStatement();
|
|
Statement* if_flag_break =
|
|
factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
|
|
inner_block->statements()->Add(IgnoreCompletion(if_flag_break), zone());
|
|
}
|
|
|
|
inner_block->set_scope(inner_scope);
|
|
}
|
|
|
|
outer_loop->Initialize(nullptr, nullptr, nullptr, inner_block);
|
|
|
|
return outer_block;
|
|
}
|
|
|
|
void Parser::AddArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr, int end_pos) {
|
|
// ArrowFunctionFormals ::
|
|
// Nary(Token::COMMA, VariableProxy*, Tail)
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
|
|
// Tail
|
|
// NonTailArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
|
|
// VariableProxy
|
|
// Tail ::
|
|
// VariableProxy
|
|
// Spread(VariableProxy)
|
|
//
|
|
// We need to visit the parameters in left-to-right order
|
|
//
|
|
|
|
// For the Nary case, we simply visit the parameters in a loop.
|
|
if (expr->IsNaryOperation()) {
|
|
NaryOperation* nary = expr->AsNaryOperation();
|
|
// The classifier has already run, so we know that the expression is a valid
|
|
// arrow function formals production.
|
|
DCHECK_EQ(nary->op(), Token::COMMA);
|
|
// Each op position is the end position of the *previous* expr, with the
|
|
// second (i.e. first "subsequent") op position being the end position of
|
|
// the first child expression.
|
|
Expression* next = nary->first();
|
|
for (size_t i = 0; i < nary->subsequent_length(); ++i) {
|
|
AddArrowFunctionFormalParameters(parameters, next,
|
|
nary->subsequent_op_position(i));
|
|
next = nary->subsequent(i);
|
|
}
|
|
AddArrowFunctionFormalParameters(parameters, next, end_pos);
|
|
return;
|
|
}
|
|
|
|
// For the binary case, we recurse on the left-hand side of binary comma
|
|
// expressions.
|
|
if (expr->IsBinaryOperation()) {
|
|
BinaryOperation* binop = expr->AsBinaryOperation();
|
|
// The classifier has already run, so we know that the expression is a valid
|
|
// arrow function formals production.
|
|
DCHECK_EQ(binop->op(), Token::COMMA);
|
|
Expression* left = binop->left();
|
|
Expression* right = binop->right();
|
|
int comma_pos = binop->position();
|
|
AddArrowFunctionFormalParameters(parameters, left, comma_pos);
|
|
// LHS of comma expression should be unparenthesized.
|
|
expr = right;
|
|
}
|
|
|
|
// Only the right-most expression may be a rest parameter.
|
|
DCHECK(!parameters->has_rest);
|
|
|
|
bool is_rest = expr->IsSpread();
|
|
if (is_rest) {
|
|
expr = expr->AsSpread()->expression();
|
|
parameters->has_rest = true;
|
|
}
|
|
DCHECK_IMPLIES(parameters->is_simple, !is_rest);
|
|
DCHECK_IMPLIES(parameters->is_simple, expr->IsVariableProxy());
|
|
|
|
Expression* initializer = nullptr;
|
|
if (expr->IsAssignment()) {
|
|
if (expr->IsRewritableExpression()) {
|
|
// This expression was parsed as a possible destructuring assignment.
|
|
// Mark it as already-rewritten to avoid an unnecessary visit later.
|
|
expr->AsRewritableExpression()->set_rewritten();
|
|
}
|
|
Assignment* assignment = expr->AsAssignment();
|
|
DCHECK(!assignment->IsCompoundAssignment());
|
|
initializer = assignment->value();
|
|
expr = assignment->target();
|
|
}
|
|
|
|
AddFormalParameter(parameters, expr, initializer,
|
|
end_pos, is_rest);
|
|
}
|
|
|
|
void Parser::DeclareArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr,
|
|
const Scanner::Location& params_loc) {
|
|
if (expr->IsEmptyParentheses() || has_error()) return;
|
|
|
|
AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos);
|
|
|
|
if (parameters->arity > Code::kMaxArguments) {
|
|
ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
|
|
return;
|
|
}
|
|
|
|
DeclareFormalParameters(parameters);
|
|
DCHECK_IMPLIES(parameters->is_simple,
|
|
parameters->scope->has_simple_parameters());
|
|
}
|
|
|
|
void Parser::PrepareGeneratorVariables() {
|
|
// Calling a generator returns a generator object. That object is stored
|
|
// in a temporary variable, a definition that is used by "yield"
|
|
// expressions.
|
|
function_state_->scope()->DeclareGeneratorObjectVar(
|
|
ast_value_factory()->dot_generator_object_string());
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseFunctionLiteral(
|
|
const AstRawString* function_name, Scanner::Location function_name_location,
|
|
FunctionNameValidity function_name_validity, FunctionKind kind,
|
|
int function_token_pos, FunctionLiteral::FunctionType function_type,
|
|
LanguageMode language_mode,
|
|
ZonePtrList<const AstRawString>* arguments_for_wrapped_function) {
|
|
// Function ::
|
|
// '(' FormalParameterList? ')' '{' FunctionBody '}'
|
|
//
|
|
// Getter ::
|
|
// '(' ')' '{' FunctionBody '}'
|
|
//
|
|
// Setter ::
|
|
// '(' PropertySetParameterList ')' '{' FunctionBody '}'
|
|
|
|
bool is_wrapped = function_type == FunctionLiteral::kWrapped;
|
|
DCHECK_EQ(is_wrapped, arguments_for_wrapped_function != nullptr);
|
|
|
|
int pos = function_token_pos == kNoSourcePosition ? peek_position()
|
|
: function_token_pos;
|
|
DCHECK_NE(kNoSourcePosition, pos);
|
|
|
|
// Anonymous functions were passed either the empty symbol or a null
|
|
// handle as the function name. Remember if we were passed a non-empty
|
|
// handle to decide whether to invoke function name inference.
|
|
bool should_infer_name = function_name == nullptr;
|
|
|
|
// We want a non-null handle as the function name by default. We will handle
|
|
// the "function does not have a shared name" case later.
|
|
if (should_infer_name) {
|
|
function_name = ast_value_factory()->empty_string();
|
|
}
|
|
|
|
FunctionLiteral::EagerCompileHint eager_compile_hint =
|
|
function_state_->next_function_is_likely_called() || is_wrapped
|
|
? FunctionLiteral::kShouldEagerCompile
|
|
: default_eager_compile_hint();
|
|
|
|
// Determine if the function can be parsed lazily. Lazy parsing is
|
|
// different from lazy compilation; we need to parse more eagerly than we
|
|
// compile.
|
|
|
|
// We can only parse lazily if we also compile lazily. The heuristics for lazy
|
|
// compilation are:
|
|
// - It must not have been prohibited by the caller to Parse (some callers
|
|
// need a full AST).
|
|
// - The outer scope must allow lazy compilation of inner functions.
|
|
// - The function mustn't be a function expression with an open parenthesis
|
|
// before; we consider that a hint that the function will be called
|
|
// immediately, and it would be a waste of time to make it lazily
|
|
// compiled.
|
|
// These are all things we can know at this point, without looking at the
|
|
// function itself.
|
|
|
|
// We separate between lazy parsing top level functions and lazy parsing inner
|
|
// functions, because the latter needs to do more work. In particular, we need
|
|
// to track unresolved variables to distinguish between these cases:
|
|
// (function foo() {
|
|
// bar = function() { return 1; }
|
|
// })();
|
|
// and
|
|
// (function foo() {
|
|
// var a = 1;
|
|
// bar = function() { return a; }
|
|
// })();
|
|
|
|
// Now foo will be parsed eagerly and compiled eagerly (optimization: assume
|
|
// parenthesis before the function means that it will be called
|
|
// immediately). bar can be parsed lazily, but we need to parse it in a mode
|
|
// that tracks unresolved variables.
|
|
DCHECK_IMPLIES(parse_lazily(), FLAG_lazy);
|
|
DCHECK_IMPLIES(parse_lazily(), allow_lazy_);
|
|
DCHECK_IMPLIES(parse_lazily(), extension_ == nullptr);
|
|
|
|
const bool is_lazy =
|
|
eager_compile_hint == FunctionLiteral::kShouldLazyCompile;
|
|
const bool is_top_level = AllowsLazyParsingWithoutUnresolvedVariables();
|
|
const bool is_eager_top_level_function = !is_lazy && is_top_level;
|
|
const bool is_lazy_top_level_function = is_lazy && is_top_level;
|
|
const bool is_lazy_inner_function = is_lazy && !is_top_level;
|
|
|
|
RuntimeCallTimerScope runtime_timer(
|
|
runtime_call_stats_,
|
|
parsing_on_main_thread_
|
|
? RuntimeCallCounterId::kParseFunctionLiteral
|
|
: RuntimeCallCounterId::kParseBackgroundFunctionLiteral);
|
|
base::ElapsedTimer timer;
|
|
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
|
|
|
|
// Determine whether we can still lazy parse the inner function.
|
|
// The preconditions are:
|
|
// - Lazy compilation has to be enabled.
|
|
// - Neither V8 natives nor native function declarations can be allowed,
|
|
// since parsing one would retroactively force the function to be
|
|
// eagerly compiled.
|
|
// - The invoker of this parser can't depend on the AST being eagerly
|
|
// built (either because the function is about to be compiled, or
|
|
// because the AST is going to be inspected for some reason).
|
|
// - Because of the above, we can't be attempting to parse a
|
|
// FunctionExpression; even without enclosing parentheses it might be
|
|
// immediately invoked.
|
|
// - The function literal shouldn't be hinted to eagerly compile.
|
|
|
|
// Inner functions will be parsed using a temporary Zone. After parsing, we
|
|
// will migrate unresolved variable into a Scope in the main Zone.
|
|
|
|
const bool should_preparse_inner = parse_lazily() && is_lazy_inner_function;
|
|
|
|
// If parallel compile tasks are enabled, and the function is an eager
|
|
// top level function, then we can pre-parse the function and parse / compile
|
|
// in a parallel task on a worker thread.
|
|
bool should_post_parallel_task =
|
|
parse_lazily() && is_eager_top_level_function &&
|
|
FLAG_parallel_compile_tasks && info()->parallel_tasks() &&
|
|
scanner()->stream()->can_be_cloned_for_parallel_access();
|
|
|
|
// This may be modified later to reflect preparsing decision taken
|
|
bool should_preparse = (parse_lazily() && is_lazy_top_level_function) ||
|
|
should_preparse_inner || should_post_parallel_task;
|
|
|
|
ZonePtrList<Statement>* body = nullptr;
|
|
int expected_property_count = -1;
|
|
int suspend_count = -1;
|
|
int num_parameters = -1;
|
|
int function_length = -1;
|
|
bool has_duplicate_parameters = false;
|
|
int function_literal_id = GetNextFunctionLiteralId();
|
|
ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr;
|
|
|
|
// This Scope lives in the main zone. We'll migrate data into that zone later.
|
|
Zone* parse_zone = should_preparse ? &preparser_zone_ : zone();
|
|
DeclarationScope* scope = NewFunctionScope(kind, parse_zone);
|
|
SetLanguageMode(scope, language_mode);
|
|
#ifdef DEBUG
|
|
scope->SetScopeName(function_name);
|
|
#endif
|
|
|
|
if (!is_wrapped) {
|
|
Expect(Token::LPAREN);
|
|
RETURN_IF_PARSE_ERROR;
|
|
}
|
|
scope->set_start_position(position());
|
|
|
|
// Eager or lazy parse? If is_lazy_top_level_function, we'll parse
|
|
// lazily. We'll call SkipFunction, which may decide to
|
|
// abort lazy parsing if it suspects that wasn't a good idea. If so (in
|
|
// which case the parser is expected to have backtracked), or if we didn't
|
|
// try to lazy parse in the first place, we'll have to parse eagerly.
|
|
bool did_preparse_successfully =
|
|
should_preparse &&
|
|
SkipFunction(function_name, kind, function_type, scope, &num_parameters,
|
|
&produced_preparsed_scope_data, is_lazy_top_level_function,
|
|
&eager_compile_hint);
|
|
if (!did_preparse_successfully) {
|
|
should_post_parallel_task = false;
|
|
body = ParseFunction(function_name, pos, kind, function_type, scope,
|
|
&num_parameters, &function_length,
|
|
&has_duplicate_parameters, &expected_property_count,
|
|
&suspend_count, arguments_for_wrapped_function);
|
|
}
|
|
|
|
if (V8_UNLIKELY(FLAG_log_function_events)) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
const char* event_name =
|
|
should_preparse
|
|
? (is_top_level ? "preparse-no-resolution" : "preparse-resolution")
|
|
: "full-parse";
|
|
logger_->FunctionEvent(
|
|
event_name, script_id(), ms, scope->start_position(),
|
|
scope->end_position(),
|
|
reinterpret_cast<const char*>(function_name->raw_data()),
|
|
function_name->byte_length());
|
|
}
|
|
if (V8_UNLIKELY(FLAG_runtime_stats) && did_preparse_successfully) {
|
|
const RuntimeCallCounterId counters[2] = {
|
|
RuntimeCallCounterId::kPreParseBackgroundWithVariableResolution,
|
|
RuntimeCallCounterId::kPreParseWithVariableResolution};
|
|
if (runtime_call_stats_) {
|
|
runtime_call_stats_->CorrectCurrentCounterId(
|
|
counters[parsing_on_main_thread_]);
|
|
}
|
|
}
|
|
|
|
RETURN_IF_PARSE_ERROR;
|
|
|
|
// Validate function name. We can do this only after parsing the function,
|
|
// since the function can declare itself strict.
|
|
language_mode = scope->language_mode();
|
|
CheckFunctionName(language_mode, function_name, function_name_validity,
|
|
function_name_location);
|
|
|
|
if (is_strict(language_mode)) {
|
|
CheckStrictOctalLiteral(scope->start_position(), scope->end_position());
|
|
}
|
|
CheckConflictingVarDeclarations(scope);
|
|
|
|
FunctionLiteral::ParameterFlag duplicate_parameters =
|
|
has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
|
|
: FunctionLiteral::kNoDuplicateParameters;
|
|
|
|
// Note that the FunctionLiteral needs to be created in the main Zone again.
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
function_name, scope, body, expected_property_count, num_parameters,
|
|
function_length, duplicate_parameters, function_type, eager_compile_hint,
|
|
pos, true, function_literal_id, produced_preparsed_scope_data);
|
|
function_literal->set_function_token_position(function_token_pos);
|
|
function_literal->set_suspend_count(suspend_count);
|
|
|
|
if (should_post_parallel_task) {
|
|
// Start a parallel parse / compile task on the compiler dispatcher.
|
|
info()->parallel_tasks()->Enqueue(info(), function_name, function_literal);
|
|
}
|
|
|
|
if (should_infer_name) {
|
|
fni_.AddFunction(function_literal);
|
|
}
|
|
return function_literal;
|
|
}
|
|
|
|
bool Parser::SkipFunction(
|
|
const AstRawString* function_name, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type,
|
|
DeclarationScope* function_scope, int* num_parameters,
|
|
ProducedPreParsedScopeData** produced_preparsed_scope_data, bool may_abort,
|
|
FunctionLiteral::EagerCompileHint* hint) {
|
|
FunctionState function_state(&function_state_, &scope_, function_scope);
|
|
function_scope->set_zone(&preparser_zone_);
|
|
|
|
DCHECK_NE(kNoSourcePosition, function_scope->start_position());
|
|
DCHECK_EQ(kNoSourcePosition, parameters_end_pos_);
|
|
|
|
DCHECK_IMPLIES(IsArrowFunction(kind),
|
|
scanner()->current_token() == Token::ARROW);
|
|
|
|
// FIXME(marja): There are 2 ways to skip functions now. Unify them.
|
|
if (consumed_preparsed_scope_data_) {
|
|
int end_position;
|
|
LanguageMode language_mode;
|
|
int num_inner_functions;
|
|
bool uses_super_property;
|
|
if (stack_overflow()) {
|
|
return true;
|
|
}
|
|
*produced_preparsed_scope_data =
|
|
consumed_preparsed_scope_data_->GetDataForSkippableFunction(
|
|
main_zone(), function_scope->start_position(), &end_position,
|
|
num_parameters, &num_inner_functions, &uses_super_property,
|
|
&language_mode);
|
|
|
|
function_scope->outer_scope()->SetMustUsePreParsedScopeData();
|
|
function_scope->set_is_skipped_function(true);
|
|
function_scope->set_end_position(end_position);
|
|
scanner()->SeekForward(end_position - 1);
|
|
Expect(Token::RBRACE);
|
|
SetLanguageMode(function_scope, language_mode);
|
|
if (uses_super_property) {
|
|
function_scope->RecordSuperPropertyUsage();
|
|
}
|
|
SkipFunctionLiterals(num_inner_functions);
|
|
function_scope->ResetAfterPreparsing(ast_value_factory_, false);
|
|
return true;
|
|
}
|
|
|
|
Scanner::BookmarkScope bookmark(scanner());
|
|
bookmark.Set();
|
|
|
|
// With no cached data, we partially parse the function, without building an
|
|
// AST. This gathers the data needed to build a lazy function.
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
|
|
|
|
PreParser::PreParseResult result = reusable_preparser()->PreParseFunction(
|
|
function_name, kind, function_type, function_scope, may_abort,
|
|
use_counts_, produced_preparsed_scope_data, this->script_id());
|
|
|
|
// Return immediately if pre-parser decided to abort parsing.
|
|
if (result == PreParser::kPreParseAbort) {
|
|
bookmark.Apply();
|
|
function_scope->ResetAfterPreparsing(ast_value_factory(), true);
|
|
*hint = FunctionLiteral::kShouldEagerCompile;
|
|
return false;
|
|
}
|
|
|
|
if (result == PreParser::kPreParseStackOverflow) {
|
|
// Propagate stack overflow.
|
|
set_stack_overflow();
|
|
} else if (pending_error_handler()->has_error_unidentifiable_by_preparser()) {
|
|
DCHECK(!pending_error_handler()->stack_overflow());
|
|
// If we encounter an error that the preparser can not identify we reset to
|
|
// the state before preparsing. The caller may then fully parse the function
|
|
// to identify the actual error.
|
|
bookmark.Apply();
|
|
function_scope->ResetAfterPreparsing(ast_value_factory(), true);
|
|
pending_error_handler()->clear_unidentifiable_error();
|
|
return false;
|
|
} else if (pending_error_handler()->has_pending_error()) {
|
|
DCHECK(!pending_error_handler()->stack_overflow());
|
|
DCHECK(has_error());
|
|
} else {
|
|
DCHECK(!pending_error_handler()->stack_overflow());
|
|
set_allow_eval_cache(reusable_preparser()->allow_eval_cache());
|
|
|
|
PreParserLogger* logger = reusable_preparser()->logger();
|
|
function_scope->set_end_position(logger->end());
|
|
Expect(Token::RBRACE);
|
|
total_preparse_skipped_ +=
|
|
function_scope->end_position() - function_scope->start_position();
|
|
*num_parameters = logger->num_parameters();
|
|
SkipFunctionLiterals(logger->num_inner_functions());
|
|
function_scope->AnalyzePartially(factory());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Statement* Parser::BuildAssertIsCoercible(Variable* var,
|
|
ObjectLiteral* pattern) {
|
|
// if (var === null || var === undefined)
|
|
// throw /* type error kNonCoercible) */;
|
|
auto source_position = pattern->position();
|
|
const AstRawString* property = ast_value_factory()->empty_string();
|
|
MessageTemplate msg = MessageTemplate::kNonCoercible;
|
|
for (ObjectLiteralProperty* literal_property : *pattern->properties()) {
|
|
Expression* key = literal_property->key();
|
|
if (key->IsPropertyName()) {
|
|
property = key->AsLiteral()->AsRawPropertyName();
|
|
msg = MessageTemplate::kNonCoercibleWithProperty;
|
|
source_position = key->position();
|
|
break;
|
|
}
|
|
}
|
|
|
|
Expression* condition = factory()->NewBinaryOperation(
|
|
Token::OR,
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewNullLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
Expression* throw_type_error =
|
|
NewThrowTypeError(msg, property, source_position);
|
|
IfStatement* if_statement = factory()->NewIfStatement(
|
|
condition,
|
|
factory()->NewExpressionStatement(throw_type_error, kNoSourcePosition),
|
|
factory()->EmptyStatement(), kNoSourcePosition);
|
|
return if_statement;
|
|
}
|
|
|
|
class InitializerRewriter final
|
|
: public AstTraversalVisitor<InitializerRewriter> {
|
|
public:
|
|
InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser)
|
|
: AstTraversalVisitor(stack_limit, root), parser_(parser) {}
|
|
|
|
private:
|
|
// This is required so that the overriden Visit* methods can be
|
|
// called by the base class (template).
|
|
friend class AstTraversalVisitor<InitializerRewriter>;
|
|
|
|
// Just rewrite destructuring assignments wrapped in RewritableExpressions.
|
|
void VisitRewritableExpression(RewritableExpression* to_rewrite) {
|
|
if (to_rewrite->is_rewritten()) return;
|
|
parser_->RewriteDestructuringAssignment(to_rewrite);
|
|
AstTraversalVisitor::VisitRewritableExpression(to_rewrite);
|
|
}
|
|
|
|
// Code in function literals does not need to be eagerly rewritten, it will be
|
|
// rewritten when scheduled.
|
|
void VisitFunctionLiteral(FunctionLiteral* expr) {}
|
|
|
|
Parser* parser_;
|
|
};
|
|
|
|
void Parser::RewriteParameterInitializer(Expression* expr) {
|
|
InitializerRewriter rewriter(stack_limit_, expr, this);
|
|
rewriter.Run();
|
|
}
|
|
|
|
Block* Parser::BuildParameterInitializationBlock(
|
|
const ParserFormalParameters& parameters) {
|
|
DCHECK(!parameters.is_simple);
|
|
DCHECK(scope()->is_function_scope());
|
|
DCHECK_EQ(scope(), parameters.scope);
|
|
Block* init_block = factory()->NewBlock(parameters.num_parameters(), true);
|
|
int index = 0;
|
|
for (auto parameter : parameters.params) {
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
|
|
descriptor.scope = scope();
|
|
descriptor.mode = VariableMode::kLet;
|
|
descriptor.declaration_pos = parameter->pattern->position();
|
|
// The position that will be used by the AssignmentExpression
|
|
// which copies from the temp parameter to the pattern.
|
|
//
|
|
// TODO(adamk): Should this be kNoSourcePosition, since
|
|
// it's just copying from a temp var to the real param var?
|
|
descriptor.initialization_pos = parameter->pattern->position();
|
|
Expression* initial_value =
|
|
factory()->NewVariableProxy(parameters.scope->parameter(index));
|
|
if (parameter->initializer() != nullptr) {
|
|
// IS_UNDEFINED($param) ? initializer : $param
|
|
|
|
// Ensure initializer is rewritten
|
|
RewriteParameterInitializer(parameter->initializer());
|
|
|
|
auto condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT,
|
|
factory()->NewVariableProxy(parameters.scope->parameter(index)),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
|
|
initial_value =
|
|
factory()->NewConditional(condition, parameter->initializer(),
|
|
initial_value, kNoSourcePosition);
|
|
descriptor.initialization_pos = parameter->initializer()->position();
|
|
}
|
|
|
|
Scope* param_scope = scope();
|
|
Block* param_block = init_block;
|
|
if (!parameter->is_simple() &&
|
|
scope()->AsDeclarationScope()->calls_sloppy_eval()) {
|
|
param_scope = NewVarblockScope();
|
|
param_scope->set_start_position(descriptor.initialization_pos);
|
|
param_scope->set_end_position(parameter->initializer_end_position);
|
|
param_scope->RecordEvalCall();
|
|
param_block = factory()->NewBlock(8, true);
|
|
param_block->set_scope(param_scope);
|
|
// Pass the appropriate scope in so that PatternRewriter can appropriately
|
|
// rewrite inner initializers of the pattern to param_scope
|
|
descriptor.scope = param_scope;
|
|
// Rewrite the outer initializer to point to param_scope
|
|
ReparentExpressionScope(stack_limit(), initial_value, param_scope);
|
|
}
|
|
|
|
BlockState block_state(&scope_, param_scope);
|
|
DeclarationParsingResult::Declaration decl(
|
|
parameter->pattern, parameter->initializer_end_position, initial_value);
|
|
DeclareAndInitializeVariables(param_block, &descriptor, &decl, nullptr);
|
|
|
|
if (param_block != init_block) {
|
|
param_scope = param_scope->FinalizeBlockScope();
|
|
if (param_scope != nullptr) {
|
|
CheckConflictingVarDeclarations(param_scope);
|
|
}
|
|
init_block->statements()->Add(param_block, zone());
|
|
}
|
|
++index;
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
Scope* Parser::NewHiddenCatchScope() {
|
|
Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(),
|
|
VariableMode::kVar);
|
|
catch_scope->set_is_hidden();
|
|
return catch_scope;
|
|
}
|
|
|
|
Block* Parser::BuildRejectPromiseOnException(Block* inner_block) {
|
|
// try {
|
|
// <inner_block>
|
|
// } catch (.catch) {
|
|
// return %_AsyncFunctionReject(.generator_object, .catch, can_suspend);
|
|
// }
|
|
Block* result = factory()->NewBlock(1, true);
|
|
|
|
// catch (.catch) {
|
|
// return %_AsyncFunctionReject(.generator_object, .catch, can_suspend)
|
|
// }
|
|
Scope* catch_scope = NewHiddenCatchScope();
|
|
|
|
Expression* reject_promise;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(
|
|
function_state_->scope()->generator_object_var()));
|
|
args.Add(factory()->NewVariableProxy(catch_scope->catch_variable()));
|
|
args.Add(factory()->NewBooleanLiteral(function_state_->CanSuspend(),
|
|
kNoSourcePosition));
|
|
reject_promise = factory()->NewCallRuntime(
|
|
Runtime::kInlineAsyncFunctionReject, args, kNoSourcePosition);
|
|
}
|
|
Block* catch_block = IgnoreCompletion(
|
|
factory()->NewReturnStatement(reject_promise, kNoSourcePosition));
|
|
|
|
TryStatement* try_catch_statement =
|
|
factory()->NewTryCatchStatementForAsyncAwait(
|
|
inner_block, catch_scope, catch_block, kNoSourcePosition);
|
|
result->statements()->Add(try_catch_statement, zone());
|
|
return result;
|
|
}
|
|
|
|
Expression* Parser::BuildInitialYield(int pos, FunctionKind kind) {
|
|
Expression* yield_result = factory()->NewVariableProxy(
|
|
function_state_->scope()->generator_object_var());
|
|
// The position of the yield is important for reporting the exception
|
|
// caused by calling the .throw method on a generator suspended at the
|
|
// initial yield (i.e. right after generator instantiation).
|
|
function_state_->AddSuspend();
|
|
return factory()->NewYield(yield_result, scope()->start_position(),
|
|
Suspend::kOnExceptionThrow);
|
|
}
|
|
|
|
ZonePtrList<Statement>* Parser::ParseFunction(
|
|
const AstRawString* function_name, int pos, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type,
|
|
DeclarationScope* function_scope, int* num_parameters, int* function_length,
|
|
bool* has_duplicate_parameters, int* expected_property_count,
|
|
int* suspend_count,
|
|
ZonePtrList<const AstRawString>* arguments_for_wrapped_function) {
|
|
ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
|
|
|
|
FunctionState function_state(&function_state_, &scope_, function_scope);
|
|
|
|
bool is_wrapped = function_type == FunctionLiteral::kWrapped;
|
|
|
|
ExpressionClassifier formals_classifier(this);
|
|
|
|
int expected_parameters_end_pos = parameters_end_pos_;
|
|
if (expected_parameters_end_pos != kNoSourcePosition) {
|
|
// This is the first function encountered in a CreateDynamicFunction eval.
|
|
parameters_end_pos_ = kNoSourcePosition;
|
|
// The function name should have been ignored, giving us the empty string
|
|
// here.
|
|
DCHECK_EQ(function_name, ast_value_factory()->empty_string());
|
|
}
|
|
|
|
ParserFormalParameters formals(function_scope);
|
|
|
|
if (is_wrapped) {
|
|
// For a function implicitly wrapped in function header and footer, the
|
|
// function arguments are provided separately to the source, and are
|
|
// declared directly here.
|
|
int arguments_length = arguments_for_wrapped_function->length();
|
|
for (int i = 0; i < arguments_length; i++) {
|
|
const bool is_rest = false;
|
|
Expression* argument = ExpressionFromIdentifier(
|
|
arguments_for_wrapped_function->at(i), kNoSourcePosition);
|
|
AddFormalParameter(&formals, argument, NullExpression(),
|
|
kNoSourcePosition, is_rest);
|
|
}
|
|
DCHECK_EQ(arguments_length, formals.num_parameters());
|
|
DeclareFormalParameters(&formals);
|
|
} else {
|
|
// For a regular function, the function arguments are parsed from source.
|
|
DCHECK_NULL(arguments_for_wrapped_function);
|
|
ParseFormalParameterList(&formals);
|
|
if (expected_parameters_end_pos != kNoSourcePosition) {
|
|
// Check for '(' or ')' shenanigans in the parameter string for dynamic
|
|
// functions.
|
|
int position = peek_position();
|
|
if (position < expected_parameters_end_pos) {
|
|
ReportMessageAt(Scanner::Location(position, position + 1),
|
|
MessageTemplate::kArgStringTerminatesParametersEarly);
|
|
return nullptr;
|
|
} else if (position > expected_parameters_end_pos) {
|
|
ReportMessageAt(Scanner::Location(expected_parameters_end_pos - 2,
|
|
expected_parameters_end_pos),
|
|
MessageTemplate::kUnexpectedEndOfArgString);
|
|
return nullptr;
|
|
}
|
|
}
|
|
Expect(Token::RPAREN);
|
|
int formals_end_position = scanner()->location().end_pos;
|
|
|
|
CheckArityRestrictions(formals.arity, kind, formals.has_rest,
|
|
function_scope->start_position(),
|
|
formals_end_position);
|
|
Expect(Token::LBRACE);
|
|
}
|
|
*num_parameters = formals.num_parameters();
|
|
*function_length = formals.function_length;
|
|
|
|
ZonePtrList<Statement>* body = new (zone()) ZonePtrList<Statement>(8, zone());
|
|
ParseFunctionBody(body, function_name, pos, formals, kind, function_type,
|
|
FunctionBodyType::kBlock, true);
|
|
|
|
RewriteDestructuringAssignments();
|
|
|
|
*has_duplicate_parameters =
|
|
!classifier()->is_valid_formal_parameter_list_without_duplicates();
|
|
|
|
*expected_property_count = function_state.expected_property_count();
|
|
*suspend_count = function_state.suspend_count();
|
|
return body;
|
|
}
|
|
|
|
void Parser::DeclareClassVariable(const AstRawString* name,
|
|
ClassInfo* class_info, int class_token_pos) {
|
|
#ifdef DEBUG
|
|
scope()->SetScopeName(name);
|
|
#endif
|
|
|
|
if (name != nullptr) {
|
|
VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, class_token_pos);
|
|
class_info->variable = Declare(
|
|
declaration, DeclarationDescriptor::NORMAL, VariableMode::kConst,
|
|
Variable::DefaultInitializationFlag(VariableMode::kConst));
|
|
}
|
|
}
|
|
|
|
// TODO(gsathya): Ideally, this should just bypass scope analysis and
|
|
// allocate a slot directly on the context. We should just store this
|
|
// index in the AST, instead of storing the variable.
|
|
Variable* Parser::CreateSyntheticContextVariable(const AstRawString* name) {
|
|
VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, kNoSourcePosition);
|
|
Variable* var =
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, VariableMode::kConst,
|
|
Variable::DefaultInitializationFlag(VariableMode::kConst));
|
|
var->ForceContextAllocation();
|
|
return var;
|
|
}
|
|
|
|
// This method declares a property of the given class. It updates the
|
|
// following fields of class_info, as appropriate:
|
|
// - constructor
|
|
// - properties
|
|
void Parser::DeclareClassProperty(const AstRawString* class_name,
|
|
ClassLiteralProperty* property,
|
|
const AstRawString* property_name,
|
|
ClassLiteralProperty::Kind kind,
|
|
bool is_static, bool is_constructor,
|
|
bool is_computed_name, bool is_private,
|
|
ClassInfo* class_info) {
|
|
if (is_constructor) {
|
|
DCHECK(!class_info->constructor);
|
|
class_info->constructor = property->value()->AsFunctionLiteral();
|
|
DCHECK_NOT_NULL(class_info->constructor);
|
|
class_info->constructor->set_raw_name(
|
|
class_name != nullptr ? ast_value_factory()->NewConsString(class_name)
|
|
: nullptr);
|
|
return;
|
|
}
|
|
|
|
if (kind != ClassLiteralProperty::FIELD) {
|
|
class_info->properties->Add(property, zone());
|
|
return;
|
|
}
|
|
|
|
DCHECK(allow_harmony_public_fields() || allow_harmony_private_fields());
|
|
|
|
if (is_static) {
|
|
DCHECK(allow_harmony_static_fields());
|
|
DCHECK_EQ(kind, ClassLiteralProperty::FIELD);
|
|
DCHECK(!is_private);
|
|
class_info->static_fields->Add(property, zone());
|
|
} else {
|
|
class_info->instance_fields->Add(property, zone());
|
|
}
|
|
|
|
if (is_computed_name) {
|
|
DCHECK_EQ(kind, ClassLiteralProperty::FIELD);
|
|
DCHECK(!is_private);
|
|
// We create a synthetic variable name here so that scope
|
|
// analysis doesn't dedupe the vars.
|
|
Variable* computed_name_var =
|
|
CreateSyntheticContextVariable(ClassFieldVariableName(
|
|
ast_value_factory(), class_info->computed_field_count));
|
|
property->set_computed_name_var(computed_name_var);
|
|
class_info->properties->Add(property, zone());
|
|
}
|
|
|
|
if (kind == ClassLiteralProperty::FIELD && is_private) {
|
|
Variable* private_field_name_var =
|
|
CreateSyntheticContextVariable(property_name);
|
|
property->set_private_field_name_var(private_field_name_var);
|
|
class_info->properties->Add(property, zone());
|
|
}
|
|
}
|
|
|
|
FunctionLiteral* Parser::CreateInitializerFunction(
|
|
const char* name, DeclarationScope* scope,
|
|
ZonePtrList<ClassLiteral::Property>* fields) {
|
|
DCHECK_EQ(scope->function_kind(),
|
|
FunctionKind::kClassFieldsInitializerFunction);
|
|
// function() { .. class fields initializer .. }
|
|
ZonePtrList<Statement>* statements = NewStatementList(1);
|
|
InitializeClassFieldsStatement* static_fields =
|
|
factory()->NewInitializeClassFieldsStatement(fields, kNoSourcePosition);
|
|
statements->Add(static_fields, zone());
|
|
return factory()->NewFunctionLiteral(
|
|
ast_value_factory()->GetOneByteString(name), scope, statements, 0, 0, 0,
|
|
FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression,
|
|
FunctionLiteral::kShouldEagerCompile, scope->start_position(), false,
|
|
GetNextFunctionLiteralId());
|
|
}
|
|
|
|
// This method generates a ClassLiteral AST node.
|
|
// It uses the following fields of class_info:
|
|
// - constructor (if missing, it updates it with a default constructor)
|
|
// - proxy
|
|
// - extends
|
|
// - properties
|
|
// - has_name_static_property
|
|
// - has_static_computed_names
|
|
Expression* Parser::RewriteClassLiteral(Scope* block_scope,
|
|
const AstRawString* name,
|
|
ClassInfo* class_info, int pos,
|
|
int end_pos) {
|
|
DCHECK_NOT_NULL(block_scope);
|
|
DCHECK_EQ(block_scope->scope_type(), BLOCK_SCOPE);
|
|
DCHECK_EQ(block_scope->language_mode(), LanguageMode::kStrict);
|
|
|
|
bool has_extends = class_info->extends != nullptr;
|
|
bool has_default_constructor = class_info->constructor == nullptr;
|
|
if (has_default_constructor) {
|
|
class_info->constructor =
|
|
DefaultConstructor(name, has_extends, pos, end_pos);
|
|
}
|
|
|
|
if (name != nullptr) {
|
|
DCHECK_NOT_NULL(class_info->variable);
|
|
class_info->variable->set_initializer_position(end_pos);
|
|
}
|
|
|
|
FunctionLiteral* static_fields_initializer = nullptr;
|
|
if (class_info->has_static_class_fields) {
|
|
static_fields_initializer = CreateInitializerFunction(
|
|
"<static_fields_initializer>", class_info->static_fields_scope,
|
|
class_info->static_fields);
|
|
}
|
|
|
|
FunctionLiteral* instance_fields_initializer_function = nullptr;
|
|
if (class_info->has_instance_class_fields) {
|
|
instance_fields_initializer_function = CreateInitializerFunction(
|
|
"<instance_fields_initializer>", class_info->instance_fields_scope,
|
|
class_info->instance_fields);
|
|
class_info->constructor->set_requires_instance_fields_initializer(true);
|
|
}
|
|
|
|
ClassLiteral* class_literal = factory()->NewClassLiteral(
|
|
block_scope, class_info->variable, class_info->extends,
|
|
class_info->constructor, class_info->properties,
|
|
static_fields_initializer, instance_fields_initializer_function, pos,
|
|
end_pos, class_info->has_name_static_property,
|
|
class_info->has_static_computed_names, class_info->is_anonymous);
|
|
|
|
AddFunctionForNameInference(class_info->constructor);
|
|
return class_literal;
|
|
}
|
|
|
|
void Parser::CheckConflictingVarDeclarations(Scope* scope) {
|
|
Declaration* decl = scope->CheckConflictingVarDeclarations();
|
|
if (decl != nullptr) {
|
|
// In ES6, conflicting variable bindings are early errors.
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
}
|
|
}
|
|
|
|
bool Parser::IsPropertyWithPrivateFieldKey(Expression* expression) {
|
|
if (!expression->IsProperty()) return false;
|
|
Property* property = expression->AsProperty();
|
|
|
|
if (!property->key()->IsVariableProxy()) return false;
|
|
VariableProxy* key = property->key()->AsVariableProxy();
|
|
|
|
return key->is_private_field();
|
|
}
|
|
|
|
void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
|
|
// For each var-binding that shadows a parameter, insert an assignment
|
|
// initializing the variable with the parameter.
|
|
Scope* inner_scope = inner_block->scope();
|
|
DCHECK(inner_scope->is_declaration_scope());
|
|
Scope* function_scope = inner_scope->outer_scope();
|
|
DCHECK(function_scope->is_function_scope());
|
|
BlockState block_state(&scope_, inner_scope);
|
|
for (Declaration* decl : *inner_scope->declarations()) {
|
|
if (decl->proxy()->var()->mode() != VariableMode::kVar ||
|
|
!decl->IsVariableDeclaration()) {
|
|
continue;
|
|
}
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
Variable* parameter = function_scope->LookupLocal(name);
|
|
if (parameter == nullptr) continue;
|
|
VariableProxy* to = NewUnresolved(name);
|
|
VariableProxy* from = factory()->NewVariableProxy(parameter);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
|
|
Statement* statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
inner_block->statements()->InsertAt(0, statement, zone());
|
|
}
|
|
}
|
|
|
|
void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
|
|
// For the outermost eval scope, we cannot hoist during parsing: let
|
|
// declarations in the surrounding scope may prevent hoisting, but the
|
|
// information is unaccessible during parsing. In this case, we hoist later in
|
|
// DeclarationScope::Analyze.
|
|
if (scope->is_eval_scope() && scope->outer_scope() == original_scope_) {
|
|
return;
|
|
}
|
|
scope->HoistSloppyBlockFunctions(factory());
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parser support
|
|
|
|
bool Parser::TargetStackContainsLabel(const AstRawString* label) {
|
|
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
|
|
if (ContainsLabel(t->statement()->labels(), label)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label) {
|
|
bool anonymous = label == nullptr;
|
|
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
|
|
BreakableStatement* stat = t->statement();
|
|
if ((anonymous && stat->is_target_for_anonymous()) ||
|
|
(!anonymous && ContainsLabel(stat->labels(), label))) {
|
|
return stat;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
IterationStatement* Parser::LookupContinueTarget(const AstRawString* label) {
|
|
bool anonymous = label == nullptr;
|
|
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
|
|
IterationStatement* stat = t->statement()->AsIterationStatement();
|
|
if (stat == nullptr) continue;
|
|
|
|
DCHECK(stat->is_target_for_anonymous());
|
|
if (anonymous || ContainsLabel(stat->own_labels(), label)) {
|
|
return stat;
|
|
}
|
|
if (ContainsLabel(stat->labels(), label)) break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
|
|
Handle<String> source_url = scanner_.SourceUrl(isolate);
|
|
if (!source_url.is_null()) {
|
|
script->set_source_url(*source_url);
|
|
}
|
|
Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
|
|
if (!source_mapping_url.is_null()) {
|
|
script->set_source_mapping_url(*source_mapping_url);
|
|
}
|
|
}
|
|
|
|
void Parser::UpdateStatistics(Isolate* isolate, Handle<Script> script) {
|
|
// Move statistics to Isolate.
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
if (use_counts_[feature] > 0) {
|
|
isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
|
|
}
|
|
}
|
|
if (scanner_.FoundHtmlComment()) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlComment);
|
|
if (script->line_offset() == 0 && script->column_offset() == 0) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
|
|
}
|
|
}
|
|
isolate->counters()->total_preparse_skipped()->Increment(
|
|
total_preparse_skipped_);
|
|
}
|
|
|
|
void Parser::ParseOnBackground(ParseInfo* info) {
|
|
RuntimeCallTimerScope runtimeTimer(
|
|
runtime_call_stats_, RuntimeCallCounterId::kParseBackgroundProgram);
|
|
parsing_on_main_thread_ = false;
|
|
set_script_id(info->script_id());
|
|
|
|
DCHECK_NULL(info->literal());
|
|
FunctionLiteral* result = nullptr;
|
|
|
|
scanner_.Initialize();
|
|
DCHECK(info->maybe_outer_scope_info().is_null());
|
|
|
|
DCHECK(original_scope_);
|
|
|
|
// When streaming, we don't know the length of the source until we have parsed
|
|
// it. The raw data can be UTF-8, so we wouldn't know the source length until
|
|
// we have decoded it anyway even if we knew the raw data length (which we
|
|
// don't). We work around this by storing all the scopes which need their end
|
|
// position set at the end of the script (the top scope and possible eval
|
|
// scopes) and set their end position after we know the script length.
|
|
if (info->is_toplevel()) {
|
|
result = DoParseProgram(/* isolate = */ nullptr, info);
|
|
} else {
|
|
result =
|
|
DoParseFunction(/* isolate = */ nullptr, info, info->function_name());
|
|
}
|
|
MaybeResetCharacterStream(info, result);
|
|
|
|
info->set_literal(result);
|
|
|
|
// We cannot internalize on a background thread; a foreground task will take
|
|
// care of calling AstValueFactory::Internalize just before compilation.
|
|
}
|
|
|
|
Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
|
|
return new (zone()) TemplateLiteral(zone(), pos);
|
|
}
|
|
|
|
void Parser::AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
|
|
bool tail) {
|
|
int end = scanner()->location().end_pos - (tail ? 1 : 2);
|
|
const AstRawString* raw = scanner()->CurrentRawSymbol(ast_value_factory());
|
|
if (should_cook) {
|
|
const AstRawString* cooked = scanner()->CurrentSymbol(ast_value_factory());
|
|
(*state)->AddTemplateSpan(cooked, raw, end, zone());
|
|
} else {
|
|
(*state)->AddTemplateSpan(nullptr, raw, end, zone());
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateExpression(TemplateLiteralState* state,
|
|
Expression* expression) {
|
|
(*state)->AddExpression(expression, zone());
|
|
}
|
|
|
|
|
|
Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
|
|
Expression* tag) {
|
|
TemplateLiteral* lit = *state;
|
|
int pos = lit->position();
|
|
const ZonePtrList<const AstRawString>* cooked_strings = lit->cooked();
|
|
const ZonePtrList<const AstRawString>* raw_strings = lit->raw();
|
|
const ZonePtrList<Expression>* expressions = lit->expressions();
|
|
DCHECK_EQ(cooked_strings->length(), raw_strings->length());
|
|
DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
|
|
|
|
if (!tag) {
|
|
if (cooked_strings->length() == 1) {
|
|
return factory()->NewStringLiteral(cooked_strings->first(), pos);
|
|
}
|
|
return factory()->NewTemplateLiteral(cooked_strings, expressions, pos);
|
|
} else {
|
|
// GetTemplateObject
|
|
Expression* template_object =
|
|
factory()->NewGetTemplateObject(cooked_strings, raw_strings, pos);
|
|
|
|
// Call TagFn
|
|
ScopedPtrList<Expression> call_args(pointer_buffer());
|
|
call_args.Add(template_object);
|
|
call_args.AddAll(*expressions);
|
|
return factory()->NewTaggedTemplate(tag, call_args, pos);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
bool OnlyLastArgIsSpread(const ScopedPtrList<Expression>& args) {
|
|
for (int i = 0; i < args.length() - 1; i++) {
|
|
if (args.at(i)->IsSpread()) {
|
|
return false;
|
|
}
|
|
}
|
|
return args.at(args.length() - 1)->IsSpread();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ArrayLiteral* Parser::ArrayLiteralFromListWithSpread(
|
|
const ScopedPtrList<Expression>& list) {
|
|
// If there's only a single spread argument, a fast path using CallWithSpread
|
|
// is taken.
|
|
DCHECK_LT(1, list.length());
|
|
|
|
// The arguments of the spread call become a single ArrayLiteral.
|
|
int first_spread = 0;
|
|
for (; first_spread < list.length() && !list.at(first_spread)->IsSpread();
|
|
++first_spread) {
|
|
}
|
|
|
|
DCHECK_LT(first_spread, list.length());
|
|
return factory()->NewArrayLiteral(list, first_spread, kNoSourcePosition);
|
|
}
|
|
|
|
Expression* Parser::SpreadCall(Expression* function,
|
|
const ScopedPtrList<Expression>& args_list,
|
|
int pos, Call::PossiblyEval is_possibly_eval) {
|
|
// Handle this case in BytecodeGenerator.
|
|
if (OnlyLastArgIsSpread(args_list) || function->IsSuperCallReference()) {
|
|
return factory()->NewCall(function, args_list, pos);
|
|
}
|
|
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
if (function->IsProperty()) {
|
|
// Method calls
|
|
if (function->AsProperty()->IsSuperAccess()) {
|
|
Expression* home = ThisExpression(kNoSourcePosition);
|
|
args.Add(function);
|
|
args.Add(home);
|
|
} else {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* obj = factory()->NewVariableProxy(temp);
|
|
Assignment* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, obj, function->AsProperty()->obj(), kNoSourcePosition);
|
|
function = factory()->NewProperty(
|
|
assign_obj, function->AsProperty()->key(), kNoSourcePosition);
|
|
args.Add(function);
|
|
obj = factory()->NewVariableProxy(temp);
|
|
args.Add(obj);
|
|
}
|
|
} else {
|
|
// Non-method calls
|
|
args.Add(function);
|
|
args.Add(factory()->NewUndefinedLiteral(kNoSourcePosition));
|
|
}
|
|
args.Add(ArrayLiteralFromListWithSpread(args_list));
|
|
return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
|
|
}
|
|
|
|
Expression* Parser::SpreadCallNew(Expression* function,
|
|
const ScopedPtrList<Expression>& args_list,
|
|
int pos) {
|
|
if (OnlyLastArgIsSpread(args_list)) {
|
|
// Handle in BytecodeGenerator.
|
|
return factory()->NewCallNew(function, args_list, pos);
|
|
}
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(function);
|
|
args.Add(ArrayLiteralFromListWithSpread(args_list));
|
|
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
}
|
|
|
|
|
|
void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
|
|
v8::Isolate::UseCounterFeature feature;
|
|
if (is_sloppy(mode))
|
|
feature = v8::Isolate::kSloppyMode;
|
|
else if (is_strict(mode))
|
|
feature = v8::Isolate::kStrictMode;
|
|
else
|
|
UNREACHABLE();
|
|
++use_counts_[feature];
|
|
scope->SetLanguageMode(mode);
|
|
}
|
|
|
|
void Parser::SetAsmModule() {
|
|
// Store the usage count; The actual use counter on the isolate is
|
|
// incremented after parsing is done.
|
|
++use_counts_[v8::Isolate::kUseAsm];
|
|
DCHECK(scope()->is_declaration_scope());
|
|
scope()->AsDeclarationScope()->set_asm_module();
|
|
}
|
|
|
|
Expression* Parser::ExpressionListToExpression(
|
|
const ScopedPtrList<Expression>& args) {
|
|
Expression* expr = args.at(0);
|
|
if (args.length() == 1) return expr;
|
|
if (args.length() == 2) {
|
|
return factory()->NewBinaryOperation(Token::COMMA, expr, args.at(1),
|
|
expr->position());
|
|
}
|
|
NaryOperation* result =
|
|
factory()->NewNaryOperation(Token::COMMA, expr, args.length() - 1);
|
|
for (int i = 1; i < args.length(); i++) {
|
|
result->AddSubsequent(args.at(i), expr->position());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// This method completes the desugaring of the body of async_function.
|
|
void Parser::RewriteAsyncFunctionBody(ZonePtrList<Statement>* body,
|
|
Block* block, Expression* return_value) {
|
|
// function async_function() {
|
|
// .generator_object = %_AsyncFunctionEnter();
|
|
// BuildRejectPromiseOnException({
|
|
// ... block ...
|
|
// return %_AsyncFunctionResolve(.generator_object, expr);
|
|
// })
|
|
// }
|
|
|
|
block->statements()->Add(factory()->NewAsyncReturnStatement(
|
|
return_value, return_value->position()),
|
|
zone());
|
|
block = BuildRejectPromiseOnException(block);
|
|
body->Add(block, zone());
|
|
}
|
|
|
|
void Parser::RewriteDestructuringAssignments() {
|
|
const auto& assignments =
|
|
function_state_->destructuring_assignments_to_rewrite();
|
|
auto it = assignments.rbegin();
|
|
for (; it != assignments.rend(); ++it) {
|
|
// Rewrite list in reverse, so that nested assignment patterns are rewritten
|
|
// correctly.
|
|
RewritableExpression* to_rewrite = *it;
|
|
DCHECK_NOT_NULL(to_rewrite);
|
|
if (!to_rewrite->is_rewritten()) {
|
|
// Since this function is called at the end of parsing the program,
|
|
// pair.scope may already have been removed by FinalizeBlockScope in the
|
|
// meantime.
|
|
Scope* scope = to_rewrite->scope()->GetUnremovedScope();
|
|
// Scope at the time of the rewriting and the original parsing
|
|
// should be in the same function.
|
|
DCHECK(scope->GetClosureScope() == scope_->GetClosureScope());
|
|
BlockState block_state(&scope_, scope);
|
|
RewriteDestructuringAssignment(to_rewrite);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Parser::QueueDestructuringAssignmentForRewriting(
|
|
RewritableExpression* expr) {
|
|
function_state_->AddDestructuringAssignment(expr);
|
|
}
|
|
|
|
void Parser::SetFunctionNameFromPropertyName(LiteralProperty* property,
|
|
const AstRawString* name,
|
|
const AstRawString* prefix) {
|
|
if (has_error()) return;
|
|
// Ensure that the function we are going to create has shared name iff
|
|
// we are not going to set it later.
|
|
if (property->NeedsSetFunctionName()) {
|
|
name = nullptr;
|
|
prefix = nullptr;
|
|
} else {
|
|
// If the property value is an anonymous function or an anonymous class or
|
|
// a concise method or an accessor function which doesn't require the name
|
|
// to be set then the shared name must be provided.
|
|
DCHECK_IMPLIES(property->value()->IsAnonymousFunctionDefinition() ||
|
|
property->value()->IsConciseMethodDefinition() ||
|
|
property->value()->IsAccessorFunctionDefinition(),
|
|
name != nullptr);
|
|
}
|
|
|
|
Expression* value = property->value();
|
|
SetFunctionName(value, name, prefix);
|
|
}
|
|
|
|
void Parser::SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
|
|
const AstRawString* name,
|
|
const AstRawString* prefix) {
|
|
// Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
|
|
// of an object literal.
|
|
// See ES #sec-__proto__-property-names-in-object-initializers.
|
|
if (property->IsPrototype() || has_error()) return;
|
|
|
|
DCHECK(!property->value()->IsAnonymousFunctionDefinition() ||
|
|
property->kind() == ObjectLiteralProperty::COMPUTED);
|
|
|
|
SetFunctionNameFromPropertyName(static_cast<LiteralProperty*>(property), name,
|
|
prefix);
|
|
}
|
|
|
|
void Parser::SetFunctionNameFromIdentifierRef(Expression* value,
|
|
Expression* identifier) {
|
|
if (has_error() || !identifier->IsVariableProxy()) return;
|
|
SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
|
|
}
|
|
|
|
void Parser::SetFunctionName(Expression* value, const AstRawString* name,
|
|
const AstRawString* prefix) {
|
|
if (!value->IsAnonymousFunctionDefinition() &&
|
|
!value->IsConciseMethodDefinition() &&
|
|
!value->IsAccessorFunctionDefinition()) {
|
|
return;
|
|
}
|
|
auto function = value->AsFunctionLiteral();
|
|
if (value->IsClassLiteral()) {
|
|
function = value->AsClassLiteral()->constructor();
|
|
}
|
|
if (function != nullptr) {
|
|
AstConsString* cons_name = nullptr;
|
|
if (name != nullptr) {
|
|
if (prefix != nullptr) {
|
|
cons_name = ast_value_factory()->NewConsString(prefix, name);
|
|
} else {
|
|
cons_name = ast_value_factory()->NewConsString(name);
|
|
}
|
|
} else {
|
|
DCHECK_NULL(prefix);
|
|
}
|
|
function->set_raw_name(cons_name);
|
|
}
|
|
}
|
|
|
|
Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
|
|
const int nopos = kNoSourcePosition;
|
|
Statement* validate_var;
|
|
{
|
|
Expression* type_of = factory()->NewUnaryOperation(
|
|
Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
|
|
Expression* function_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->function_string(), nopos);
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, type_of, function_literal, nopos);
|
|
|
|
Statement* throw_call = factory()->NewExpressionStatement(error, pos);
|
|
|
|
validate_var = factory()->NewIfStatement(
|
|
condition, factory()->EmptyStatement(), throw_call, nopos);
|
|
}
|
|
return validate_var;
|
|
}
|
|
|
|
void Parser::BuildIteratorClose(ZonePtrList<Statement>* statements,
|
|
Variable* iterator, Variable* input,
|
|
Variable* var_output, IteratorType type) {
|
|
//
|
|
// This function adds four statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = var_output; // Reusing the output variable.
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
Statement* check_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
Expression* value = factory()->NewVariableProxy(input);
|
|
|
|
Statement* return_input = BuildReturnStatement(value, nopos);
|
|
|
|
check_return = factory()->NewIfStatement(
|
|
condition, return_input, factory()->EmptyStatement(), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
Statement* call_return;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_return));
|
|
args.Add(factory()->NewVariableProxy(iterator));
|
|
args.Add(factory()->NewVariableProxy(input));
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
if (type == IteratorType::kAsync) {
|
|
function_state_->AddSuspend();
|
|
call = factory()->NewAwait(call, nopos);
|
|
}
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
|
|
Statement* validate_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_output));
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_output));
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->EmptyStatement(), throw_call, nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(check_return, zone());
|
|
statements->Add(call_return, zone());
|
|
statements->Add(validate_output, zone());
|
|
}
|
|
|
|
void Parser::FinalizeIteratorUse(Variable* completion, Expression* condition,
|
|
Variable* iter, Block* iterator_use,
|
|
Block* target, IteratorType type) {
|
|
//
|
|
// This function adds two statements to [target], corresponding to the
|
|
// following code:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// iterator_use
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// completion = kNormalCompletion;
|
|
Statement* initialize_completion;
|
|
{
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
initialize_completion =
|
|
factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
Statement* set_completion_throw;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(completion),
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
Statement* statement = factory()->NewExpressionStatement(assignment, nopos);
|
|
set_completion_throw = factory()->NewIfStatement(
|
|
condition, statement, factory()->EmptyStatement(), nopos);
|
|
}
|
|
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
Block* maybe_close;
|
|
{
|
|
Block* block = factory()->NewBlock(2, true);
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
BuildIteratorCloseForCompletion(block->statements(), iter, proxy, type);
|
|
DCHECK_EQ(block->statements()->length(), 2);
|
|
|
|
maybe_close = IgnoreCompletion(factory()->NewIfStatement(
|
|
condition, block, factory()->EmptyStatement(), nopos));
|
|
}
|
|
|
|
// try { #try_block }
|
|
// catch(e) {
|
|
// #set_completion_throw;
|
|
// %ReThrow(e);
|
|
// }
|
|
Statement* try_catch;
|
|
{
|
|
Scope* catch_scope = NewHiddenCatchScope();
|
|
|
|
Statement* rethrow;
|
|
// We use %ReThrow rather than the ordinary throw because we want to
|
|
// preserve the original exception message. This is also why we create a
|
|
// TryCatchStatementForReThrow below (which does not clear the pending
|
|
// message), rather than a TryCatchStatement.
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(catch_scope->catch_variable()));
|
|
rethrow = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos);
|
|
}
|
|
|
|
Block* catch_block = factory()->NewBlock(2, false);
|
|
catch_block->statements()->Add(set_completion_throw, zone());
|
|
catch_block->statements()->Add(rethrow, zone());
|
|
|
|
try_catch = factory()->NewTryCatchStatementForReThrow(
|
|
iterator_use, catch_scope, catch_block, nopos);
|
|
}
|
|
|
|
// try { #try_catch } finally { #maybe_close }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory()->NewBlock(1, false);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
try_finally =
|
|
factory()->NewTryFinallyStatement(try_block, maybe_close, nopos);
|
|
}
|
|
|
|
target->statements()->Add(initialize_completion, zone());
|
|
target->statements()->Add(try_finally, zone());
|
|
}
|
|
|
|
void Parser::BuildIteratorCloseForCompletion(ZonePtrList<Statement>* statements,
|
|
Variable* iterator,
|
|
Expression* completion,
|
|
IteratorType type) {
|
|
//
|
|
// This function adds two statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// if (completion === kThrowCompletion) {
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
// [if (IteratorType == kAsync)]
|
|
// try { Await(%_Call(iteratorReturn, iterator) } catch (_) { }
|
|
// [else]
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
// [endif]
|
|
// } else {
|
|
// [if (IteratorType == kAsync)]
|
|
// let output = Await(%_Call(iteratorReturn, iterator));
|
|
// [else]
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// [endif]
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
Statement* check_return_callable;
|
|
{
|
|
Expression* throw_expr =
|
|
NewThrowTypeError(MessageTemplate::kReturnMethodNotCallable,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
check_return_callable = CheckCallable(var_return, throw_expr, nopos);
|
|
}
|
|
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
Statement* try_call_return;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_return));
|
|
args.Add(factory()->NewVariableProxy(iterator));
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
if (type == IteratorType::kAsync) {
|
|
function_state_->AddSuspend();
|
|
call = factory()->NewAwait(call, nopos);
|
|
}
|
|
|
|
Block* try_block = factory()->NewBlock(1, false);
|
|
try_block->statements()->Add(factory()->NewExpressionStatement(call, nopos),
|
|
zone());
|
|
|
|
Block* catch_block = factory()->NewBlock(0, false);
|
|
try_call_return =
|
|
factory()->NewTryCatchStatement(try_block, nullptr, catch_block, nopos);
|
|
}
|
|
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIteratorResultNotAnObject(output);
|
|
// }
|
|
Block* validate_return;
|
|
{
|
|
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* call_return;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_return));
|
|
args.Add(factory()->NewVariableProxy(iterator));
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
if (type == IteratorType::kAsync) {
|
|
function_state_->AddSuspend();
|
|
call = factory()->NewAwait(call, nopos);
|
|
}
|
|
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
Expression* is_receiver_call;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_output));
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
ScopedPtrList<Expression> args(pointer_buffer());
|
|
args.Add(factory()->NewVariableProxy(var_output));
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
Statement* check_return = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->EmptyStatement(), throw_call, nopos);
|
|
|
|
validate_return = factory()->NewBlock(2, false);
|
|
validate_return->statements()->Add(call_return, zone());
|
|
validate_return->statements()->Add(check_return, zone());
|
|
}
|
|
|
|
// if (completion === kThrowCompletion) {
|
|
// #check_return_callable;
|
|
// #try_call_return;
|
|
// } else {
|
|
// #validate_return;
|
|
// }
|
|
Statement* call_return_carefully;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, completion,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
|
|
Block* then_block = factory()->NewBlock(2, false);
|
|
then_block->statements()->Add(check_return_callable, zone());
|
|
then_block->statements()->Add(try_call_return, zone());
|
|
|
|
call_return_carefully = factory()->NewIfStatement(condition, then_block,
|
|
validate_return, nopos);
|
|
}
|
|
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
|
|
Statement* maybe_call_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
maybe_call_return = factory()->NewIfStatement(
|
|
condition, factory()->EmptyStatement(), call_return_carefully, nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(maybe_call_return, zone());
|
|
}
|
|
|
|
Statement* Parser::FinalizeForOfStatement(ForOfStatement* loop,
|
|
Variable* var_completion,
|
|
IteratorType type, int pos) {
|
|
//
|
|
// This function replaces the loop with the following wrapping:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// #loop;
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (!(completion === kNormalCompletion)) {
|
|
// #BuildIteratorCloseForCompletion(#iterator, completion)
|
|
// }
|
|
// }
|
|
//
|
|
// Note that the loop's body and its assign_each already contain appropriate
|
|
// assignments to completion (see InitializeForOfStatement).
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// !(completion === kNormalCompletion)
|
|
Expression* closing_condition;
|
|
{
|
|
Expression* cmp = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var_completion),
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
closing_condition = factory()->NewUnaryOperation(Token::NOT, cmp, nopos);
|
|
}
|
|
|
|
Block* final_loop = factory()->NewBlock(2, false);
|
|
{
|
|
Block* try_block = factory()->NewBlock(1, false);
|
|
try_block->statements()->Add(loop, zone());
|
|
|
|
FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
|
|
try_block, final_loop, type);
|
|
}
|
|
|
|
return final_loop;
|
|
}
|
|
|
|
#undef RETURN_IF_PARSE_ERROR_VOID
|
|
#undef RETURN_IF_PARSE_ERROR
|
|
#undef RETURN_IF_PARSE_ERROR_VALUE
|
|
} // namespace internal
|
|
} // namespace v8
|