v8/test/unittests/wasm/loop-assignment-analysis-unittest.cc
ddchen fd2bf837a5 [wasm] improve handling of malformed inputs
When reading malformed input, the length of variable-length types can be very large. Computing operand length with this and adding it to PC will overflow and screw up decode.

This patch switches to unsigned int for arity and lengths, terminates loop analysis on error, adds overflow checking to BranchTableOperand, and adds a unit test.

Review-Url: https://codereview.chromium.org/2052623003
Cr-Commit-Position: refs/heads/master@{#37301}
2016-06-27 20:37:28 +00:00

194 lines
5.8 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/v8.h"
#include "test/cctest/wasm/test-signatures.h"
#include "src/bit-vector.h"
#include "src/objects.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-module.h"
#define WASM_SET_ZERO(i) WASM_SET_LOCAL(i, WASM_ZERO)
namespace v8 {
namespace internal {
namespace wasm {
class WasmLoopAssignmentAnalyzerTest : public TestWithZone {
public:
WasmLoopAssignmentAnalyzerTest() : num_locals(0) {}
TestSignatures sigs;
uint32_t num_locals;
BitVector* Analyze(const byte* start, const byte* end) {
return AnalyzeLoopAssignmentForTesting(zone(), num_locals, start, end);
}
};
TEST_F(WasmLoopAssignmentAnalyzerTest, Empty0) {
byte code[] = { 0 };
BitVector* assigned = Analyze(code, code);
CHECK_NULL(assigned);
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Empty1) {
byte code[] = {kExprLoop, 0};
for (int i = 0; i < 5; i++) {
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
CHECK_EQ(false, assigned->Contains(j));
}
num_locals++;
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, One) {
num_locals = 5;
for (int i = 0; i < 5; i++) {
byte code[] = {WASM_LOOP(1, WASM_SET_ZERO(i))};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
CHECK_EQ(j == i, assigned->Contains(j));
}
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, OneBeyond) {
num_locals = 5;
for (int i = 0; i < 5; i++) {
byte code[] = {WASM_LOOP(1, WASM_SET_ZERO(i)), WASM_SET_ZERO(1)};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
CHECK_EQ(j == i, assigned->Contains(j));
}
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Two) {
num_locals = 5;
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
byte code[] = {WASM_LOOP(2, WASM_SET_ZERO(i), WASM_SET_ZERO(j))};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int k = 0; k < assigned->length(); k++) {
bool expected = k == i || k == j;
CHECK_EQ(expected, assigned->Contains(k));
}
}
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, NestedIf) {
num_locals = 5;
for (int i = 0; i < 5; i++) {
byte code[] = {WASM_LOOP(
1, WASM_IF_ELSE(WASM_SET_ZERO(0), WASM_SET_ZERO(i), WASM_SET_ZERO(1)))};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
bool expected = i == j || j == 0 || j == 1;
CHECK_EQ(expected, assigned->Contains(j));
}
}
}
static byte LEBByte(uint32_t val, byte which) {
byte b = (val >> (which * 7)) & 0x7F;
if (val >> ((which + 1) * 7)) b |= 0x80;
return b;
}
TEST_F(WasmLoopAssignmentAnalyzerTest, BigLocal) {
num_locals = 65000;
for (int i = 13; i < 65000; i = static_cast<int>(i * 1.5)) {
byte code[] = {kExprLoop,
1,
kExprSetLocal,
LEBByte(i, 0),
LEBByte(i, 1),
LEBByte(i, 2),
11,
12,
13};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
bool expected = i == j;
CHECK_EQ(expected, assigned->Contains(j));
}
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Break) {
num_locals = 3;
byte code[] = {
WASM_LOOP(1, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_SET_ZERO(1)))),
WASM_SET_ZERO(0)};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
bool expected = j == 1;
CHECK_EQ(expected, assigned->Contains(j));
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Loop1) {
num_locals = 5;
byte code[] = {
WASM_LOOP(1, WASM_IF(WASM_GET_LOCAL(0),
WASM_BRV(0, WASM_SET_LOCAL(
3, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))))),
WASM_GET_LOCAL(0)};
BitVector* assigned = Analyze(code, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
bool expected = j == 3;
CHECK_EQ(expected, assigned->Contains(j));
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Loop2) {
num_locals = 6;
const byte kIter = 0;
const byte kSum = 3;
byte code[] = {WASM_BLOCK(
3,
WASM_WHILE(
WASM_GET_LOCAL(kIter),
WASM_BLOCK(2, WASM_SET_LOCAL(
kSum, WASM_F32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Float32(),
WASM_GET_LOCAL(kIter)))),
WASM_SET_LOCAL(kIter, WASM_I32_SUB(WASM_GET_LOCAL(kIter),
WASM_I8(4))))),
WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_GET_LOCAL(kSum)),
WASM_GET_LOCAL(kIter))};
BitVector* assigned = Analyze(code + 1, code + arraysize(code));
for (int j = 0; j < assigned->length(); j++) {
bool expected = j == kIter || j == kSum;
CHECK_EQ(expected, assigned->Contains(j));
}
}
TEST_F(WasmLoopAssignmentAnalyzerTest, Malformed) {
byte code[] = {kExprLoop, kExprF32Neg, kExprBrTable, 0x0e, 'h', 'e',
'l', 'l', 'o', ',', ' ', 'w',
'o', 'r', 'l', 'd', '!'};
BitVector* assigned = Analyze(code, code + arraysize(code));
CHECK_NULL(assigned);
}
} // namespace wasm
} // namespace internal
} // namespace v8