v8/src/objects-inl.h
Jakob Kummerow e0f875fdec [ubsan] Port FieldType to the new design
Bug: v8:3770
Change-Id: I6e2782a7f8589c466b54987c850d41d4ff5f6489
Reviewed-on: https://chromium-review.googlesource.com/c/1316618
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#57292}
2018-11-06 17:22:17 +00:00

2037 lines
65 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "src/objects.h"
#include "src/base/atomicops.h"
#include "src/base/bits.h"
#include "src/base/tsan.h"
#include "src/builtins/builtins.h"
#include "src/contexts-inl.h"
#include "src/conversions-inl.h"
#include "src/feedback-vector-inl.h"
#include "src/field-index-inl.h"
#include "src/handles-inl.h"
#include "src/heap/factory.h"
#include "src/isolate-inl.h"
#include "src/keys.h"
#include "src/layout-descriptor-inl.h"
#include "src/lookup-cache-inl.h"
#include "src/lookup-inl.h"
#include "src/maybe-handles-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/js-proxy-inl.h"
#include "src/objects/literal-objects.h"
#include "src/objects/maybe-object-inl.h"
#include "src/objects/regexp-match-info.h"
#include "src/objects/scope-info.h"
#include "src/objects/slots-inl.h"
#include "src/objects/smi-inl.h"
#include "src/objects/template-objects.h"
#include "src/objects/templates.h"
#include "src/property-details.h"
#include "src/property.h"
#include "src/prototype-inl.h"
#include "src/roots-inl.h"
#include "src/transitions-inl.h"
#include "src/v8memory.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi smi) { value_ = smi->value(); }
Smi PropertyDetails::AsSmi() const {
// Ensure the upper 2 bits have the same value by sign extending it. This is
// necessary to be able to use the 31st bit of the property details.
int value = value_ << 1;
return Smi::FromInt(value >> 1);
}
int PropertyDetails::field_width_in_words() const {
DCHECK_EQ(location(), kField);
if (!FLAG_unbox_double_fields) return 1;
if (kDoubleSize == kPointerSize) return 1;
return representation().IsDouble() ? kDoubleSize / kPointerSize : 1;
}
namespace InstanceTypeChecker {
// Define type checkers for classes with single instance type.
INSTANCE_TYPE_CHECKERS_SINGLE(INSTANCE_TYPE_CHECKER);
#define TYPED_ARRAY_INSTANCE_TYPE_CHECKER(Type, type, TYPE, ctype) \
INSTANCE_TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE)
TYPED_ARRAYS(TYPED_ARRAY_INSTANCE_TYPE_CHECKER)
#undef TYPED_ARRAY_INSTANCE_TYPE_CHECKER
#define STRUCT_INSTANCE_TYPE_CHECKER(TYPE, Name, name) \
INSTANCE_TYPE_CHECKER(Name, TYPE)
STRUCT_LIST(STRUCT_INSTANCE_TYPE_CHECKER)
#undef STRUCT_INSTANCE_TYPE_CHECKER
// Define type checkers for classes with ranges of instance types.
#define INSTANCE_TYPE_CHECKER_RANGE(type, first_instance_type, \
last_instance_type) \
V8_INLINE bool Is##type(InstanceType instance_type) { \
return instance_type >= first_instance_type && \
instance_type <= last_instance_type; \
}
INSTANCE_TYPE_CHECKERS_RANGE(INSTANCE_TYPE_CHECKER_RANGE);
#undef INSTANCE_TYPE_CHECKER_RANGE
V8_INLINE bool IsFixedArrayBase(InstanceType instance_type) {
return IsFixedArray(instance_type) || IsFixedDoubleArray(instance_type) ||
IsFixedTypedArrayBase(instance_type);
}
V8_INLINE bool IsHeapObject(InstanceType instance_type) { return true; }
V8_INLINE bool IsInternalizedString(InstanceType instance_type) {
STATIC_ASSERT(kNotInternalizedTag != 0);
return (instance_type & (kIsNotStringMask | kIsNotInternalizedMask)) ==
(kStringTag | kInternalizedTag);
}
V8_INLINE bool IsJSObject(InstanceType instance_type) {
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
return instance_type >= FIRST_JS_OBJECT_TYPE;
}
V8_INLINE bool IsJSReceiver(InstanceType instance_type) {
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
return instance_type >= FIRST_JS_RECEIVER_TYPE;
}
} // namespace InstanceTypeChecker
// TODO(v8:7786): For instance types that have a single map instance on the
// roots, and when that map is a embedded in the binary, compare against the map
// pointer rather than looking up the instance type.
INSTANCE_TYPE_CHECKERS(TYPE_CHECKER);
#define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype) \
TYPE_CHECKER(Fixed##Type##Array)
TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER)
#undef TYPED_ARRAY_TYPE_CHECKER
bool HeapObject::IsUncompiledData() const {
return IsUncompiledDataWithoutPreParsedScope() ||
IsUncompiledDataWithPreParsedScope();
}
bool HeapObject::IsSloppyArgumentsElements() const {
return IsFixedArrayExact();
}
bool HeapObject::IsJSSloppyArgumentsObject() const {
return IsJSArgumentsObject();
}
bool HeapObject::IsJSGeneratorObject() const {
return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
IsJSAsyncFunctionObject() || IsJSAsyncGeneratorObject();
}
bool HeapObject::IsDataHandler() const {
return IsLoadHandler() || IsStoreHandler();
}
bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); }
bool HeapObject::IsExternal(Isolate* isolate) const {
return map()->FindRootMap(isolate) == isolate->heap()->external_map();
}
#define IS_TYPE_FUNCTION_DEF(type_) \
bool Object::Is##type_() const { \
return IsHeapObject() && HeapObject::cast(this)->Is##type_(); \
}
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF)
#undef IS_TYPE_FUNCTION_DEF
#define IS_TYPE_FUNCTION_DEF(Type, Value) \
bool Object::Is##Type(Isolate* isolate) const { \
return Is##Type(ReadOnlyRoots(isolate->heap())); \
} \
bool Object::Is##Type(ReadOnlyRoots roots) const { \
return this == roots.Value(); \
} \
bool Object::Is##Type() const { \
return IsHeapObject() && HeapObject::cast(this)->Is##Type(); \
} \
bool HeapObject::Is##Type(Isolate* isolate) const { \
return Object::Is##Type(isolate); \
} \
bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \
return Object::Is##Type(roots); \
} \
bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); }
ODDBALL_LIST(IS_TYPE_FUNCTION_DEF)
#undef IS_TYPE_FUNCTION_DEF
bool Object::IsNullOrUndefined(Isolate* isolate) const {
return IsNullOrUndefined(ReadOnlyRoots(isolate));
}
bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const {
return IsNull(roots) || IsUndefined(roots);
}
bool Object::IsNullOrUndefined() const {
return IsHeapObject() && HeapObject::cast(this)->IsNullOrUndefined();
}
bool HeapObject::IsNullOrUndefined(Isolate* isolate) const {
return Object::IsNullOrUndefined(isolate);
}
bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const {
return Object::IsNullOrUndefined(roots);
}
bool HeapObject::IsNullOrUndefined() const {
return IsNullOrUndefined(GetReadOnlyRoots());
}
bool HeapObject::IsUniqueName() const {
return IsInternalizedString() || IsSymbol();
}
bool HeapObject::IsFunction() const {
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
return map()->instance_type() >= FIRST_FUNCTION_TYPE;
}
bool HeapObject::IsCallable() const { return map()->is_callable(); }
bool HeapObject::IsConstructor() const { return map()->is_constructor(); }
bool HeapObject::IsModuleInfo() const {
return map() == GetReadOnlyRoots().module_info_map();
}
bool HeapObject::IsTemplateInfo() const {
return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
}
bool HeapObject::IsConsString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsCons();
}
bool HeapObject::IsThinString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsThin();
}
bool HeapObject::IsSlicedString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
bool HeapObject::IsSeqString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool HeapObject::IsSeqOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsOneByteRepresentation();
}
bool HeapObject::IsSeqTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool HeapObject::IsExternalString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool HeapObject::IsExternalOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsOneByteRepresentation();
}
bool HeapObject::IsExternalTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); }
bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); }
bool HeapObject::IsFiller() const {
InstanceType instance_type = map()->instance_type();
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
}
bool HeapObject::IsJSWeakCollection() const {
return IsJSWeakMap() || IsJSWeakSet();
}
bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); }
bool HeapObject::IsPromiseReactionJobTask() const {
return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask();
}
bool HeapObject::IsEnumCache() const { return IsTuple2(); }
bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); }
bool HeapObject::IsArrayList() const {
return map() == GetReadOnlyRoots().array_list_map() ||
this == GetReadOnlyRoots().empty_fixed_array();
}
bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); }
bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); }
bool HeapObject::IsDeoptimizationData() const {
// Must be a fixed array.
if (!IsFixedArrayExact()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(this)->length();
if (length == 0) return true;
length -= DeoptimizationData::kFirstDeoptEntryIndex;
return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0;
}
bool HeapObject::IsHandlerTable() const {
if (!IsFixedArrayExact()) return false;
// There's actually no way to see the difference between a fixed array and
// a handler table array.
return true;
}
bool HeapObject::IsTemplateList() const {
if (!IsFixedArrayExact()) return false;
// There's actually no way to see the difference between a fixed array and
// a template list.
if (FixedArray::cast(this)->length() < 1) return false;
return true;
}
bool HeapObject::IsDependentCode() const {
if (!IsWeakFixedArray()) return false;
// There's actually no way to see the difference between a weak fixed array
// and a dependent codes array.
return true;
}
bool HeapObject::IsAbstractCode() const {
return IsBytecodeArray() || IsCode();
}
bool HeapObject::IsStringWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
bool HeapObject::IsBooleanWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsBoolean();
}
bool HeapObject::IsScriptWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsScript();
}
bool HeapObject::IsNumberWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsNumber();
}
bool HeapObject::IsBigIntWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsBigInt();
}
bool HeapObject::IsSymbolWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsSymbol();
}
bool HeapObject::IsBoolean() const {
return IsOddball() &&
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
}
bool HeapObject::IsJSArrayBufferView() const {
return IsJSDataView() || IsJSTypedArray();
}
bool HeapObject::IsStringSet() const { return IsHashTable(); }
bool HeapObject::IsObjectHashSet() const { return IsHashTable(); }
bool HeapObject::IsNormalizedMapCache() const {
return NormalizedMapCache::IsNormalizedMapCache(this);
}
bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); }
bool HeapObject::IsMapCache() const { return IsHashTable(); }
bool HeapObject::IsObjectHashTable() const { return IsHashTable(); }
bool Object::IsSmallOrderedHashTable() const {
return IsSmallOrderedHashSet() || IsSmallOrderedHashMap();
}
bool Object::IsPrimitive() const {
return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap();
}
// static
Maybe<bool> Object::IsArray(Handle<Object> object) {
if (object->IsSmi()) return Just(false);
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
if (heap_object->IsJSArray()) return Just(true);
if (!heap_object->IsJSProxy()) return Just(false);
return JSProxy::IsArray(Handle<JSProxy>::cast(object));
}
bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); }
bool HeapObject::IsAccessCheckNeeded() const {
if (IsJSGlobalProxy()) {
const JSGlobalProxy* proxy = JSGlobalProxy::cast(this);
JSGlobalObject* global = proxy->GetIsolate()->context()->global_object();
return proxy->IsDetachedFrom(global);
}
return map()->is_access_check_needed();
}
bool HeapObject::IsStruct() const {
switch (map()->instance_type()) {
#define MAKE_STRUCT_CASE(TYPE, Name, name) \
case TYPE: \
return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default:
return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() const { \
return IsHeapObject() && HeapObject::cast(this)->Is##Name(); \
} \
TYPE_CHECKER(Name)
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
double Object::Number() const {
DCHECK(IsNumber());
return IsSmi() ? static_cast<double>(Smi(this->ptr())->value())
: reinterpret_cast<const HeapNumber*>(this)->value();
}
bool Object::IsNaN() const {
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value());
}
bool Object::IsMinusZero() const {
return this->IsHeapNumber() &&
i::IsMinusZero(HeapNumber::cast(this)->value());
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(AccessorPair)
CAST_ACCESSOR(AsyncGeneratorRequest)
CAST_ACCESSOR(BigInt)
CAST_ACCESSOR(ObjectBoilerplateDescription)
CAST_ACCESSOR(Cell)
CAST_ACCESSOR(ArrayBoilerplateDescription)
CAST_ACCESSOR(DataHandler)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(EphemeronHashTable)
CAST_ACCESSOR(EnumCache)
CAST_ACCESSOR(FeedbackCell)
CAST_ACCESSOR(Foreign)
CAST_ACCESSOR(GlobalDictionary)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(HeapNumber)
CAST_ACCESSOR(LayoutDescriptor)
CAST_ACCESSOR(MutableHeapNumber)
CAST_ACCESSOR(NameDictionary)
CAST_ACCESSOR(NormalizedMapCache)
CAST_ACCESSOR(NumberDictionary)
CAST_ACCESSOR(Object)
CAST_ACCESSOR(ObjectHashSet)
CAST_ACCESSOR(ObjectHashTable)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(OrderedHashMap)
CAST_ACCESSOR(OrderedHashSet)
CAST_ACCESSOR(PropertyCell)
CAST_ACCESSOR(RegExpMatchInfo)
CAST_ACCESSOR(ScopeInfo)
CAST_ACCESSOR(SimpleNumberDictionary)
CAST_ACCESSOR(SmallOrderedHashMap)
CAST_ACCESSOR(SmallOrderedHashSet)
CAST_ACCESSOR(StringSet)
CAST_ACCESSOR(StringTable)
CAST_ACCESSOR(Struct)
CAST_ACCESSOR(TemplateObjectDescription)
CAST_ACCESSOR(Tuple2)
CAST_ACCESSOR(Tuple3)
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase();
}
bool Object::KeyEquals(Object* second) {
Object* first = this;
if (second->IsNumber()) {
if (first->IsNumber()) return first->Number() == second->Number();
Object* temp = first;
first = second;
second = temp;
}
if (first->IsNumber()) {
DCHECK_LE(0, first->Number());
uint32_t expected = static_cast<uint32_t>(first->Number());
uint32_t index;
return Name::cast(second)->AsArrayIndex(&index) && index == expected;
}
return Name::cast(first)->Equals(Name::cast(second));
}
bool Object::FilterKey(PropertyFilter filter) {
DCHECK(!IsPropertyCell());
if (IsSymbol()) {
if (filter & SKIP_SYMBOLS) return true;
if (Symbol::cast(this)->is_private()) return true;
} else {
if (filter & SKIP_STRINGS) return true;
}
return false;
}
Handle<Object> Object::NewStorageFor(Isolate* isolate, Handle<Object> object,
Representation representation) {
if (!representation.IsDouble()) return object;
auto result = isolate->factory()->NewMutableHeapNumberWithHoleNaN();
if (object->IsUninitialized(isolate)) {
result->set_value_as_bits(kHoleNanInt64);
} else if (object->IsMutableHeapNumber()) {
// Ensure that all bits of the double value are preserved.
result->set_value_as_bits(
MutableHeapNumber::cast(*object)->value_as_bits());
} else {
result->set_value(object->Number());
}
return result;
}
Handle<Object> Object::WrapForRead(Isolate* isolate, Handle<Object> object,
Representation representation) {
DCHECK(!object->IsUninitialized(isolate));
if (!representation.IsDouble()) {
DCHECK(object->FitsRepresentation(representation));
return object;
}
return isolate->factory()->NewHeapNumber(
MutableHeapNumber::cast(*object)->value());
}
Representation Object::OptimalRepresentation() {
if (!FLAG_track_fields) return Representation::Tagged();
if (IsSmi()) {
return Representation::Smi();
} else if (FLAG_track_double_fields && IsHeapNumber()) {
return Representation::Double();
} else if (FLAG_track_computed_fields && IsUninitialized()) {
return Representation::None();
} else if (FLAG_track_heap_object_fields) {
DCHECK(IsHeapObject());
return Representation::HeapObject();
} else {
return Representation::Tagged();
}
}
ElementsKind Object::OptimalElementsKind() {
if (IsSmi()) return PACKED_SMI_ELEMENTS;
if (IsNumber()) return PACKED_DOUBLE_ELEMENTS;
return PACKED_ELEMENTS;
}
bool Object::FitsRepresentation(Representation representation) {
if (FLAG_track_fields && representation.IsSmi()) {
return IsSmi();
} else if (FLAG_track_double_fields && representation.IsDouble()) {
return IsMutableHeapNumber() || IsNumber();
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
return IsHeapObject();
} else if (FLAG_track_fields && representation.IsNone()) {
return false;
}
return true;
}
bool Object::ToUint32(uint32_t* value) const {
if (IsSmi()) {
int num = Smi::ToInt(this);
if (num < 0) return false;
*value = static_cast<uint32_t>(num);
return true;
}
if (IsHeapNumber()) {
double num = HeapNumber::cast(this)->value();
return DoubleToUint32IfEqualToSelf(num, value);
}
return false;
}
// static
MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
Handle<Object> object,
const char* method_name) {
if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
return ToObject(isolate, object, isolate->native_context(), method_name);
}
// static
MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) {
if (input->IsName()) return Handle<Name>::cast(input);
return ConvertToName(isolate, input);
}
// static
MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
Handle<Object> value) {
if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value;
return ConvertToPropertyKey(isolate, value);
}
// static
MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input,
ToPrimitiveHint hint) {
if (input->IsPrimitive()) return input;
return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint);
}
// static
MaybeHandle<Object> Object::ToNumber(Isolate* isolate, Handle<Object> input) {
if (input->IsNumber()) return input; // Shortcut.
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber);
}
// static
MaybeHandle<Object> Object::ToNumeric(Isolate* isolate, Handle<Object> input) {
if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut.
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric);
}
// static
MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return input;
return ConvertToInteger(isolate, input);
}
// static
MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return input;
return ConvertToInt32(isolate, input);
}
// static
MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate);
return ConvertToUint32(isolate, input);
}
// static
MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
if (input->IsString()) return Handle<String>::cast(input);
return ConvertToString(isolate, input);
}
// static
MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) {
int value = std::max(Smi::ToInt(*input), 0);
return handle(Smi::FromInt(value), isolate);
}
return ConvertToLength(isolate, input);
}
// static
MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input,
MessageTemplate error_index) {
if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input;
return ConvertToIndex(isolate, input, error_index);
}
MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object,
Handle<Name> name) {
LookupIterator it(isolate, object, name);
if (!it.IsFound()) return it.factory()->undefined_value();
return GetProperty(&it);
}
MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object,
uint32_t index) {
LookupIterator it(isolate, object, index);
if (!it.IsFound()) return it.factory()->undefined_value();
return GetProperty(&it);
}
MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object,
uint32_t index, Handle<Object> value,
LanguageMode language_mode) {
LookupIterator it(isolate, object, index);
MAYBE_RETURN_NULL(
SetProperty(&it, value, language_mode, StoreOrigin::kMaybeKeyed));
return value;
}
ObjectSlot HeapObject::RawField(int byte_offset) const {
return ObjectSlot(FIELD_ADDR(this, byte_offset));
}
ObjectSlot HeapObject::RawField(const HeapObject* obj, int byte_offset) {
return ObjectSlot(FIELD_ADDR(obj, byte_offset));
}
MaybeObjectSlot HeapObject::RawMaybeWeakField(int byte_offset) const {
return MaybeObjectSlot(FIELD_ADDR(this, byte_offset));
}
MaybeObjectSlot HeapObject::RawMaybeWeakField(HeapObject* obj,
int byte_offset) {
return MaybeObjectSlot(FIELD_ADDR(obj, byte_offset));
}
MapWord MapWord::FromMap(const Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() const { return reinterpret_cast<Map*>(value_); }
bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(value_); }
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(static_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
DCHECK(IsForwardingAddress());
return HeapObject::FromAddress(static_cast<Address>(value_));
}
#ifdef VERIFY_HEAP
void HeapObject::VerifyObjectField(Isolate* isolate, int offset) {
VerifyPointer(isolate, READ_FIELD(this, offset));
}
void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) {
MaybeObject::VerifyMaybeObjectPointer(isolate, READ_WEAK_FIELD(this, offset));
}
void HeapObject::VerifySmiField(int offset) {
CHECK(READ_FIELD(this, offset)->IsSmi());
}
#endif
ReadOnlyRoots HeapObject::GetReadOnlyRoots() const {
// TODO(v8:7464): When RO_SPACE is embedded, this will access a global
// variable instead.
return ReadOnlyRoots(MemoryChunk::FromHeapObject(this)->heap());
}
Heap* NeverReadOnlySpaceObject::GetHeap() const {
MemoryChunk* chunk =
MemoryChunk::FromAddress(reinterpret_cast<Address>(this));
// Make sure we are not accessing an object in RO space.
SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE);
Heap* heap = chunk->heap();
SLOW_DCHECK(heap != nullptr);
return heap;
}
Isolate* NeverReadOnlySpaceObject::GetIsolate() const {
return GetHeap()->isolate();
}
Map* HeapObject::map() const {
return map_word().ToMap();
}
void HeapObject::set_map(Map* value) {
if (value != nullptr) {
#ifdef VERIFY_HEAP
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
#endif
}
set_map_word(MapWord::FromMap(value));
if (value != nullptr) {
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(this, ObjectSlot(kNullAddress), value);
}
}
Map* HeapObject::synchronized_map() const {
return synchronized_map_word().ToMap();
}
void HeapObject::synchronized_set_map(Map* value) {
if (value != nullptr) {
#ifdef VERIFY_HEAP
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
#endif
}
synchronized_set_map_word(MapWord::FromMap(value));
if (value != nullptr) {
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(this, ObjectSlot(kNullAddress), value);
}
}
// Unsafe accessor omitting write barrier.
void HeapObject::set_map_no_write_barrier(Map* value) {
if (value != nullptr) {
#ifdef VERIFY_HEAP
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
#endif
}
set_map_word(MapWord::FromMap(value));
}
void HeapObject::set_map_after_allocation(Map* value, WriteBarrierMode mode) {
set_map_word(MapWord::FromMap(value));
if (mode != SKIP_WRITE_BARRIER) {
DCHECK_NOT_NULL(value);
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(this, ObjectSlot(kNullAddress), value);
}
}
ObjectSlot HeapObject::map_slot() {
return ObjectSlot(FIELD_ADDR(this, kMapOffset));
}
MapWord HeapObject::map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(RELAXED_READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
RELAXED_WRITE_FIELD(this, kMapOffset,
reinterpret_cast<Object*>(map_word.value_));
}
MapWord HeapObject::synchronized_map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset)));
}
void HeapObject::synchronized_set_map_word(MapWord map_word) {
RELEASE_WRITE_FIELD(
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
int HeapObject::Size() const { return SizeFromMap(map()); }
double HeapNumberBase::value() const {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumberBase::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
uint64_t HeapNumberBase::value_as_bits() const {
return READ_UINT64_FIELD(this, kValueOffset);
}
void HeapNumberBase::set_value_as_bits(uint64_t bits) {
WRITE_UINT64_FIELD(this, kValueOffset, bits);
}
int HeapNumberBase::get_exponent() {
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
kExponentShift) - kExponentBias;
}
int HeapNumberBase::get_sign() {
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
}
double Oddball::to_number_raw() const {
return READ_DOUBLE_FIELD(this, kToNumberRawOffset);
}
void Oddball::set_to_number_raw(double value) {
WRITE_DOUBLE_FIELD(this, kToNumberRawOffset, value);
}
void Oddball::set_to_number_raw_as_bits(uint64_t bits) {
WRITE_UINT64_FIELD(this, kToNumberRawOffset, bits);
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
ACCESSORS(Oddball, type_of, String, kTypeOfOffset)
byte Oddball::kind() const { return Smi::ToInt(READ_FIELD(this, kKindOffset)); }
void Oddball::set_kind(byte value) {
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
}
// static
Handle<Object> Oddball::ToNumber(Isolate* isolate, Handle<Oddball> input) {
return handle(input->to_number(), isolate);
}
ACCESSORS(Cell, value, Object, kValueOffset)
ACCESSORS(FeedbackCell, value, HeapObject, kValueOffset)
ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset)
ACCESSORS(PropertyCell, name, Name, kNameOffset)
ACCESSORS(PropertyCell, value, Object, kValueOffset)
ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset)
PropertyDetails PropertyCell::property_details() const {
return PropertyDetails(Smi::cast(property_details_raw()));
}
void PropertyCell::set_property_details(PropertyDetails details) {
set_property_details_raw(details.AsSmi());
}
inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) {
return instance_type <= LAST_SPECIAL_RECEIVER_TYPE;
}
// This should be in objects/map-inl.h, but can't, because of a cyclic
// dependency.
bool Map::IsSpecialReceiverMap() const {
bool result = IsSpecialReceiverInstanceType(instance_type());
DCHECK_IMPLIES(!result,
!has_named_interceptor() && !is_access_check_needed());
return result;
}
inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) {
return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER;
}
// This should be in objects/map-inl.h, but can't, because of a cyclic
// dependency.
bool Map::IsCustomElementsReceiverMap() const {
return IsCustomElementsReceiverInstanceType(instance_type());
}
void Struct::InitializeBody(int object_size) {
Object* value = GetReadOnlyRoots().undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool Object::ToArrayLength(uint32_t* index) const {
return Object::ToUint32(index);
}
bool Object::ToArrayIndex(uint32_t* index) const {
return Object::ToUint32(index) && *index != kMaxUInt32;
}
void Object::VerifyApiCallResultType() {
#if DEBUG
if (IsSmi()) return;
DCHECK(IsHeapObject());
if (!(IsString() || IsSymbol() || IsJSReceiver() || IsHeapNumber() ||
IsBigInt() || IsUndefined() || IsTrue() || IsFalse() || IsNull())) {
FATAL("API call returned invalid object");
}
#endif // DEBUG
}
int RegExpMatchInfo::NumberOfCaptureRegisters() {
DCHECK_GE(length(), kLastMatchOverhead);
Object* obj = get(kNumberOfCapturesIndex);
return Smi::ToInt(obj);
}
void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kNumberOfCapturesIndex, Smi::FromInt(value));
}
String* RegExpMatchInfo::LastSubject() {
DCHECK_GE(length(), kLastMatchOverhead);
Object* obj = get(kLastSubjectIndex);
return String::cast(obj);
}
void RegExpMatchInfo::SetLastSubject(String* value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kLastSubjectIndex, value);
}
Object* RegExpMatchInfo::LastInput() {
DCHECK_GE(length(), kLastMatchOverhead);
return get(kLastInputIndex);
}
void RegExpMatchInfo::SetLastInput(Object* value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kLastInputIndex, value);
}
int RegExpMatchInfo::Capture(int i) {
DCHECK_LT(i, NumberOfCaptureRegisters());
Object* obj = get(kFirstCaptureIndex + i);
return Smi::ToInt(obj);
}
void RegExpMatchInfo::SetCapture(int i, int value) {
DCHECK_LT(i, NumberOfCaptureRegisters());
set(kFirstCaptureIndex + i, Smi::FromInt(value));
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(
const DisallowHeapAllocation& promise) {
Heap* heap = Heap::FromWritableHeapObject(this);
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
if (Heap::InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
AllocationAlignment HeapObject::RequiredAlignment(Map* map) {
#ifdef V8_HOST_ARCH_32_BIT
int instance_type = map->instance_type();
if (instance_type == FIXED_FLOAT64_ARRAY_TYPE ||
instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return kDoubleAligned;
}
if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned;
#endif // V8_HOST_ARCH_32_BIT
return kWordAligned;
}
bool HeapObject::NeedsRehashing() const {
switch (map()->instance_type()) {
case DESCRIPTOR_ARRAY_TYPE:
return DescriptorArray::cast(this)->number_of_descriptors() > 1;
case TRANSITION_ARRAY_TYPE:
return TransitionArray::cast(this)->number_of_entries() > 1;
case ORDERED_HASH_MAP_TYPE:
return OrderedHashMap::cast(this)->NumberOfElements() > 0;
case ORDERED_HASH_SET_TYPE:
return OrderedHashSet::cast(this)->NumberOfElements() > 0;
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE:
case STRING_TABLE_TYPE:
case HASH_TABLE_TYPE:
case SMALL_ORDERED_HASH_MAP_TYPE:
case SMALL_ORDERED_HASH_SET_TYPE:
return true;
default:
return false;
}
}
Address HeapObject::GetFieldAddress(int field_offset) const {
return FIELD_ADDR(this, field_offset);
}
ACCESSORS(EnumCache, keys, FixedArray, kKeysOffset)
ACCESSORS(EnumCache, indices, FixedArray, kIndicesOffset)
int DescriptorArray::number_of_descriptors() const {
return Smi::ToInt(get(kDescriptorLengthIndex).ToSmi());
}
int DescriptorArray::number_of_descriptors_storage() const {
return (length() - kFirstIndex) / kEntrySize;
}
int DescriptorArray::NumberOfSlackDescriptors() const {
return number_of_descriptors_storage() - number_of_descriptors();
}
void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) {
set(kDescriptorLengthIndex,
MaybeObject::FromObject(Smi::FromInt(number_of_descriptors)));
}
inline int DescriptorArray::number_of_entries() const {
return number_of_descriptors();
}
void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) {
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
}
EnumCache* DescriptorArray::GetEnumCache() {
return EnumCache::cast(get(kEnumCacheIndex)->GetHeapObjectAssumeStrong());
}
// Perform a binary search in a fixed array.
template <SearchMode search_mode, typename T>
int BinarySearch(T* array, Name* name, int valid_entries,
int* out_insertion_index) {
DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == nullptr);
int low = 0;
int high = array->number_of_entries() - 1;
uint32_t hash = name->hash_field();
int limit = high;
DCHECK(low <= high);
while (low != high) {
int mid = low + (high - low) / 2;
Name* mid_name = array->GetSortedKey(mid);
uint32_t mid_hash = mid_name->hash_field();
if (mid_hash >= hash) {
high = mid;
} else {
low = mid + 1;
}
}
for (; low <= limit; ++low) {
int sort_index = array->GetSortedKeyIndex(low);
Name* entry = array->GetKey(sort_index);
uint32_t current_hash = entry->hash_field();
if (current_hash != hash) {
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
}
return T::kNotFound;
}
if (entry == name) {
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
return sort_index;
}
return T::kNotFound;
}
}
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = limit + 1;
}
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template <SearchMode search_mode, typename T>
int LinearSearch(T* array, Name* name, int valid_entries,
int* out_insertion_index) {
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
uint32_t hash = name->hash_field();
int len = array->number_of_entries();
for (int number = 0; number < len; number++) {
int sorted_index = array->GetSortedKeyIndex(number);
Name* entry = array->GetKey(sorted_index);
uint32_t current_hash = entry->hash_field();
if (current_hash > hash) {
*out_insertion_index = sorted_index;
return T::kNotFound;
}
if (entry == name) return sorted_index;
}
*out_insertion_index = len;
return T::kNotFound;
} else {
DCHECK_LE(valid_entries, array->number_of_entries());
DCHECK_NULL(out_insertion_index); // Not supported here.
for (int number = 0; number < valid_entries; number++) {
if (array->GetKey(number) == name) return number;
}
return T::kNotFound;
}
}
template <SearchMode search_mode, typename T>
int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) {
SLOW_DCHECK(array->IsSortedNoDuplicates());
if (valid_entries == 0) {
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = 0;
}
return T::kNotFound;
}
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if (valid_entries <= kMaxElementsForLinearSearch) {
return LinearSearch<search_mode>(array, name, valid_entries,
out_insertion_index);
}
// Slow case: perform binary search.
return BinarySearch<search_mode>(array, name, valid_entries,
out_insertion_index);
}
int DescriptorArray::Search(Name* name, int valid_descriptors) {
DCHECK(name->IsUniqueName());
return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors,
nullptr);
}
int DescriptorArray::Search(Name* name, Map* map) {
DCHECK(name->IsUniqueName());
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
if (number_of_own_descriptors == 0) return kNotFound;
return Search(name, number_of_own_descriptors);
}
int DescriptorArray::SearchWithCache(Isolate* isolate, Name* name, Map* map) {
DCHECK(name->IsUniqueName());
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
if (number_of_own_descriptors == 0) return kNotFound;
DescriptorLookupCache* cache = isolate->descriptor_lookup_cache();
int number = cache->Lookup(map, name);
if (number == DescriptorLookupCache::kAbsent) {
number = Search(name, number_of_own_descriptors);
cache->Update(map, name, number);
}
return number;
}
ObjectSlot DescriptorArray::GetKeySlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
DCHECK((*RawFieldOfElementAt(ToKeyIndex(descriptor_number)))->IsObject());
return ObjectSlot(RawFieldOfElementAt(ToKeyIndex(descriptor_number)));
}
MaybeObjectSlot DescriptorArray::GetDescriptorStartSlot(int descriptor_number) {
return MaybeObjectSlot(GetKeySlot(descriptor_number));
}
MaybeObjectSlot DescriptorArray::GetDescriptorEndSlot(int descriptor_number) {
return GetValueSlot(descriptor_number - 1) + 1;
}
Name* DescriptorArray::GetKey(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return Name::cast(
get(ToKeyIndex(descriptor_number))->GetHeapObjectAssumeStrong());
}
int DescriptorArray::GetSortedKeyIndex(int descriptor_number) {
return GetDetails(descriptor_number).pointer();
}
Name* DescriptorArray::GetSortedKey(int descriptor_number) {
return GetKey(GetSortedKeyIndex(descriptor_number));
}
void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) {
PropertyDetails details = GetDetails(descriptor_index);
set(ToDetailsIndex(descriptor_index),
MaybeObject::FromObject(details.set_pointer(pointer).AsSmi()));
}
MaybeObjectSlot DescriptorArray::GetValueSlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return RawFieldOfElementAt(ToValueIndex(descriptor_number));
}
int DescriptorArray::GetValueOffset(int descriptor_number) {
return OffsetOfElementAt(ToValueIndex(descriptor_number));
}
Object* DescriptorArray::GetStrongValue(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return get(ToValueIndex(descriptor_number))->cast<Object>();
}
void DescriptorArray::SetValue(int descriptor_index, Object* value) {
set(ToValueIndex(descriptor_index), MaybeObject::FromObject(value));
}
MaybeObject DescriptorArray::GetValue(int descriptor_number) {
DCHECK_LT(descriptor_number, number_of_descriptors());
return get(ToValueIndex(descriptor_number));
}
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
MaybeObject details = get(ToDetailsIndex(descriptor_number));
return PropertyDetails(details->ToSmi());
}
int DescriptorArray::GetFieldIndex(int descriptor_number) {
DCHECK_EQ(GetDetails(descriptor_number).location(), kField);
return GetDetails(descriptor_number).field_index();
}
FieldType DescriptorArray::GetFieldType(int descriptor_number) {
DCHECK_EQ(GetDetails(descriptor_number).location(), kField);
MaybeObject wrapped_type = GetValue(descriptor_number);
return Map::UnwrapFieldType(wrapped_type);
}
void DescriptorArray::Set(int descriptor_number, Name* key, MaybeObject value,
PropertyDetails details) {
// Range check.
DCHECK(descriptor_number < number_of_descriptors());
set(ToKeyIndex(descriptor_number), MaybeObject::FromObject(key));
set(ToValueIndex(descriptor_number), value);
set(ToDetailsIndex(descriptor_number),
MaybeObject::FromObject(details.AsSmi()));
}
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
Name* key = *desc->GetKey();
MaybeObject value = *desc->GetValue();
Set(descriptor_number, key, value, desc->GetDetails());
}
void DescriptorArray::Append(Descriptor* desc) {
DisallowHeapAllocation no_gc;
int descriptor_number = number_of_descriptors();
SetNumberOfDescriptors(descriptor_number + 1);
Set(descriptor_number, desc);
uint32_t hash = desc->GetKey()->Hash();
int insertion;
for (insertion = descriptor_number; insertion > 0; --insertion) {
Name* key = GetSortedKey(insertion - 1);
if (key->Hash() <= hash) break;
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
}
SetSortedKey(insertion, descriptor_number);
}
void DescriptorArray::SwapSortedKeys(int first, int second) {
int first_key = GetSortedKeyIndex(first);
SetSortedKey(first, GetSortedKeyIndex(second));
SetSortedKey(second, first_key);
}
MaybeObject DescriptorArray::get(int index) const {
return WeakFixedArray::Get(index);
}
void DescriptorArray::set(int index, MaybeObject value) {
WeakFixedArray::Set(index, value);
}
bool StringSetShape::IsMatch(String* key, Object* value) {
DCHECK(value->IsString());
return key->Equals(String::cast(value));
}
uint32_t StringSetShape::Hash(Isolate* isolate, String* key) {
return key->Hash();
}
uint32_t StringSetShape::HashForObject(Isolate* isolate, Object* object) {
return String::cast(object)->Hash();
}
StringTableKey::StringTableKey(uint32_t hash_field)
: HashTableKey(hash_field >> Name::kHashShift), hash_field_(hash_field) {}
void StringTableKey::set_hash_field(uint32_t hash_field) {
hash_field_ = hash_field;
set_hash(hash_field >> Name::kHashShift);
}
Handle<Object> StringTableShape::AsHandle(Isolate* isolate,
StringTableKey* key) {
return key->AsHandle(isolate);
}
uint32_t StringTableShape::HashForObject(Isolate* isolate, Object* object) {
return String::cast(object)->Hash();
}
RootIndex StringTableShape::GetMapRootIndex() {
return RootIndex::kStringTableMap;
}
bool NumberDictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 != (Smi::ToInt(max_index_object) & kRequiresSlowElementsMask);
}
uint32_t NumberDictionary::max_number_key() {
DCHECK(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::ToInt(max_index_object));
return value >> kRequiresSlowElementsTagSize;
}
void NumberDictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
}
DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
DEFINE_DEOPT_ELEMENT_ACCESSORS2(InlinedFunctionCount, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
DEFINE_DEOPT_ELEMENT_ACCESSORS2(OsrBytecodeOffset, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS2(OsrPcOffset, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS2(OptimizationId, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>)
DEFINE_DEOPT_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi)
DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi)
DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi)
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
RELAXED_SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
int FreeSpace::Size() { return size(); }
FreeSpace* FreeSpace::next() {
#ifdef DEBUG
Heap* heap = Heap::FromWritableHeapObject(this);
DCHECK_IMPLIES(map() != heap->isolate()->root(RootIndex::kFreeSpaceMap),
!heap->deserialization_complete() && map() == nullptr);
#endif
DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size());
return reinterpret_cast<FreeSpace*>(Memory<Address>(address() + kNextOffset));
}
void FreeSpace::set_next(FreeSpace* next) {
#ifdef DEBUG
Heap* heap = Heap::FromWritableHeapObject(this);
DCHECK_IMPLIES(map() != heap->isolate()->root(RootIndex::kFreeSpaceMap),
!heap->deserialization_complete() && map() == nullptr);
#endif
DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size());
base::Relaxed_Store(
reinterpret_cast<base::AtomicWord*>(address() + kNextOffset),
reinterpret_cast<base::AtomicWord>(next));
}
FreeSpace* FreeSpace::cast(HeapObject* o) {
SLOW_DCHECK(!Heap::FromWritableHeapObject(o)->deserialization_complete() ||
o->IsFreeSpace());
return reinterpret_cast<FreeSpace*>(o);
}
int HeapObject::SizeFromMap(Map* map) const {
int instance_size = map->instance_size();
if (instance_size != kVariableSizeSentinel) return instance_size;
// Only inline the most frequent cases.
InstanceType instance_type = map->instance_type();
if (instance_type >= FIRST_FIXED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_ARRAY_TYPE) {
return FixedArray::SizeFor(
reinterpret_cast<const FixedArray*>(this)->synchronized_length());
}
if (instance_type == ONE_BYTE_STRING_TYPE ||
instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqOneByteString::SizeFor(
reinterpret_cast<const SeqOneByteString*>(this)->synchronized_length());
}
if (instance_type == BYTE_ARRAY_TYPE) {
return ByteArray::SizeFor(
reinterpret_cast<const ByteArray*>(this)->synchronized_length());
}
if (instance_type == BYTECODE_ARRAY_TYPE) {
return BytecodeArray::SizeFor(
reinterpret_cast<const BytecodeArray*>(this)->synchronized_length());
}
if (instance_type == FREE_SPACE_TYPE) {
return reinterpret_cast<const FreeSpace*>(this)->relaxed_read_size();
}
if (instance_type == STRING_TYPE ||
instance_type == INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqTwoByteString::SizeFor(
reinterpret_cast<const SeqTwoByteString*>(this)->synchronized_length());
}
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return FixedDoubleArray::SizeFor(
reinterpret_cast<const FixedDoubleArray*>(this)->synchronized_length());
}
if (instance_type == FEEDBACK_METADATA_TYPE) {
return FeedbackMetadata::SizeFor(
reinterpret_cast<const FeedbackMetadata*>(this)
->synchronized_slot_count());
}
if (instance_type >= FIRST_WEAK_FIXED_ARRAY_TYPE &&
instance_type <= LAST_WEAK_FIXED_ARRAY_TYPE) {
return WeakFixedArray::SizeFor(
reinterpret_cast<const WeakFixedArray*>(this)->synchronized_length());
}
if (instance_type == WEAK_ARRAY_LIST_TYPE) {
return WeakArrayList::SizeForCapacity(
reinterpret_cast<const WeakArrayList*>(this)->synchronized_capacity());
}
if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) {
return reinterpret_cast<const FixedTypedArrayBase*>(this)->TypedArraySize(
instance_type);
}
if (instance_type == SMALL_ORDERED_HASH_SET_TYPE) {
return SmallOrderedHashSet::SizeFor(
reinterpret_cast<const SmallOrderedHashSet*>(this)->Capacity());
}
if (instance_type == PROPERTY_ARRAY_TYPE) {
return PropertyArray::SizeFor(
PropertyArray::cast(this)->synchronized_length());
}
if (instance_type == SMALL_ORDERED_HASH_MAP_TYPE) {
return SmallOrderedHashMap::SizeFor(
reinterpret_cast<const SmallOrderedHashMap*>(this)->Capacity());
}
if (instance_type == FEEDBACK_VECTOR_TYPE) {
return FeedbackVector::SizeFor(
reinterpret_cast<const FeedbackVector*>(this)->length());
}
if (instance_type == BIGINT_TYPE) {
return BigInt::SizeFor(reinterpret_cast<const BigInt*>(this)->length());
}
if (instance_type == PRE_PARSED_SCOPE_DATA_TYPE) {
return PreParsedScopeData::SizeFor(
reinterpret_cast<const PreParsedScopeData*>(this)->length());
}
DCHECK(instance_type == CODE_TYPE);
return reinterpret_cast<const Code*>(this)->CodeSize();
}
ACCESSORS(AsyncGeneratorRequest, next, Object, kNextOffset)
SMI_ACCESSORS(AsyncGeneratorRequest, resume_mode, kResumeModeOffset)
ACCESSORS(AsyncGeneratorRequest, value, Object, kValueOffset)
ACCESSORS(AsyncGeneratorRequest, promise, Object, kPromiseOffset)
ACCESSORS(Tuple2, value1, Object, kValue1Offset)
ACCESSORS(Tuple2, value2, Object, kValue2Offset)
ACCESSORS(Tuple3, value3, Object, kValue3Offset)
ACCESSORS(TemplateObjectDescription, raw_strings, FixedArray, kRawStringsOffset)
ACCESSORS(TemplateObjectDescription, cooked_strings, FixedArray,
kCookedStringsOffset)
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
// static
bool Foreign::IsNormalized(Object* value) {
if (value == Smi::kZero) return true;
return Foreign::cast(value)->foreign_address() != kNullAddress;
}
Address Foreign::foreign_address() {
return READ_UINTPTR_FIELD(this, kForeignAddressOffset);
}
void Foreign::set_foreign_address(Address value) {
WRITE_UINTPTR_FIELD(this, kForeignAddressOffset, value);
}
template <class Derived>
void SmallOrderedHashTable<Derived>::SetDataEntry(int entry, int relative_index,
Object* value) {
Address entry_offset = GetDataEntryOffset(entry, relative_index);
RELAXED_WRITE_FIELD(this, entry_offset, value);
WRITE_BARRIER(this, static_cast<int>(entry_offset), value);
}
// static
Maybe<bool> Object::GreaterThan(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kEqual:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::GreaterThanOrEqual(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThan(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThanOrEqual(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
MaybeHandle<Object> Object::GetPropertyOrElement(Isolate* isolate,
Handle<Object> object,
Handle<Name> name) {
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
return GetProperty(&it);
}
MaybeHandle<Object> Object::SetPropertyOrElement(Isolate* isolate,
Handle<Object> object,
Handle<Name> name,
Handle<Object> value,
LanguageMode language_mode,
StoreOrigin store_origin) {
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_origin));
return value;
}
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver,
Handle<Name> name,
Handle<JSReceiver> holder) {
LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(),
receiver, name, holder);
return GetProperty(&it);
}
Object* AccessorPair::get(AccessorComponent component) {
return component == ACCESSOR_GETTER ? getter() : setter();
}
void AccessorPair::set(AccessorComponent component, Object* value) {
if (component == ACCESSOR_GETTER) {
set_getter(value);
} else {
set_setter(value);
}
}
void AccessorPair::SetComponents(Object* getter, Object* setter) {
if (!getter->IsNull()) set_getter(getter);
if (!setter->IsNull()) set_setter(setter);
}
bool AccessorPair::Equals(AccessorPair* pair) {
return (this == pair) || pair->Equals(getter(), setter());
}
bool AccessorPair::Equals(Object* getter_value, Object* setter_value) {
return (getter() == getter_value) && (setter() == setter_value);
}
bool AccessorPair::ContainsAccessor() {
return IsJSAccessor(getter()) || IsJSAccessor(setter());
}
bool AccessorPair::IsJSAccessor(Object* obj) {
return obj->IsCallable() || obj->IsUndefined();
}
template <typename Derived, typename Shape>
void Dictionary<Derived, Shape>::ClearEntry(Isolate* isolate, int entry) {
Object* the_hole = this->GetReadOnlyRoots().the_hole_value();
PropertyDetails details = PropertyDetails::Empty();
Derived::cast(this)->SetEntry(isolate, entry, the_hole, the_hole, details);
}
template <typename Derived, typename Shape>
void Dictionary<Derived, Shape>::SetEntry(Isolate* isolate, int entry,
Object* key, Object* value,
PropertyDetails details) {
DCHECK(Dictionary::kEntrySize == 2 || Dictionary::kEntrySize == 3);
DCHECK(!key->IsName() || details.dictionary_index() > 0);
int index = DerivedHashTable::EntryToIndex(entry);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = this->GetWriteBarrierMode(no_gc);
this->set(index + Derived::kEntryKeyIndex, key, mode);
this->set(index + Derived::kEntryValueIndex, value, mode);
if (Shape::kHasDetails) DetailsAtPut(isolate, entry, details);
}
Object* GlobalDictionaryShape::Unwrap(Object* object) {
return PropertyCell::cast(object)->name();
}
RootIndex GlobalDictionaryShape::GetMapRootIndex() {
return RootIndex::kGlobalDictionaryMap;
}
Name* NameDictionary::NameAt(int entry) { return Name::cast(KeyAt(entry)); }
RootIndex NameDictionaryShape::GetMapRootIndex() {
return RootIndex::kNameDictionaryMap;
}
PropertyCell* GlobalDictionary::CellAt(int entry) {
DCHECK(KeyAt(entry)->IsPropertyCell());
return PropertyCell::cast(KeyAt(entry));
}
bool GlobalDictionaryShape::IsLive(ReadOnlyRoots roots, Object* k) {
DCHECK_NE(roots.the_hole_value(), k);
return k != roots.undefined_value();
}
bool GlobalDictionaryShape::IsKey(ReadOnlyRoots roots, Object* k) {
return IsLive(roots, k) && !PropertyCell::cast(k)->value()->IsTheHole(roots);
}
Name* GlobalDictionary::NameAt(int entry) { return CellAt(entry)->name(); }
Object* GlobalDictionary::ValueAt(int entry) { return CellAt(entry)->value(); }
void GlobalDictionary::SetEntry(Isolate* isolate, int entry, Object* key,
Object* value, PropertyDetails details) {
DCHECK_EQ(key, PropertyCell::cast(value)->name());
set(EntryToIndex(entry) + kEntryKeyIndex, value);
DetailsAtPut(isolate, entry, details);
}
void GlobalDictionary::ValueAtPut(int entry, Object* value) {
set(EntryToIndex(entry), value);
}
bool NumberDictionaryBaseShape::IsMatch(uint32_t key, Object* other) {
DCHECK(other->IsNumber());
return key == static_cast<uint32_t>(other->Number());
}
uint32_t NumberDictionaryBaseShape::Hash(Isolate* isolate, uint32_t key) {
return ComputeSeededHash(key, isolate->heap()->HashSeed());
}
uint32_t NumberDictionaryBaseShape::HashForObject(Isolate* isolate,
Object* other) {
DCHECK(other->IsNumber());
return ComputeSeededHash(static_cast<uint32_t>(other->Number()),
isolate->heap()->HashSeed());
}
Handle<Object> NumberDictionaryBaseShape::AsHandle(Isolate* isolate,
uint32_t key) {
return isolate->factory()->NewNumberFromUint(key);
}
RootIndex NumberDictionaryShape::GetMapRootIndex() {
return RootIndex::kNumberDictionaryMap;
}
RootIndex SimpleNumberDictionaryShape::GetMapRootIndex() {
return RootIndex::kSimpleNumberDictionaryMap;
}
bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
DCHECK(other->IsTheHole() || Name::cast(other)->IsUniqueName());
DCHECK(key->IsUniqueName());
return *key == other;
}
uint32_t NameDictionaryShape::Hash(Isolate* isolate, Handle<Name> key) {
return key->Hash();
}
uint32_t NameDictionaryShape::HashForObject(Isolate* isolate, Object* other) {
return Name::cast(other)->Hash();
}
bool GlobalDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
DCHECK(PropertyCell::cast(other)->name()->IsUniqueName());
return *key == PropertyCell::cast(other)->name();
}
uint32_t GlobalDictionaryShape::HashForObject(Isolate* isolate, Object* other) {
return PropertyCell::cast(other)->name()->Hash();
}
Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate,
Handle<Name> key) {
DCHECK(key->IsUniqueName());
return key;
}
template <typename Dictionary>
PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) {
DCHECK_LE(0, entry); // Not found is -1, which is not caught by get().
return dict->CellAt(entry)->property_details();
}
template <typename Dictionary>
void GlobalDictionaryShape::DetailsAtPut(Isolate* isolate, Dictionary* dict,
int entry, PropertyDetails value) {
DCHECK_LE(0, entry); // Not found is -1, which is not caught by get().
PropertyCell* cell = dict->CellAt(entry);
if (cell->property_details().IsReadOnly() != value.IsReadOnly()) {
cell->dependent_code()->DeoptimizeDependentCodeGroup(
isolate, DependentCode::kPropertyCellChangedGroup);
}
cell->set_property_details(value);
}
bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) {
return key->SameValue(other);
}
uint32_t ObjectHashTableShape::Hash(Isolate* isolate, Handle<Object> key) {
return Smi::ToInt(key->GetHash());
}
uint32_t ObjectHashTableShape::HashForObject(Isolate* isolate, Object* other) {
return Smi::ToInt(other->GetHash());
}
// static
Object* Object::GetSimpleHash(Object* object) {
DisallowHeapAllocation no_gc;
if (object->IsSmi()) {
uint32_t hash = ComputeUnseededHash(Smi::ToInt(object));
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (object->IsHeapNumber()) {
double num = HeapNumber::cast(object)->value();
if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
// Use ComputeUnseededHash for all values in Signed32 range, including -0,
// which is considered equal to 0 because collections use SameValueZero.
uint32_t hash;
// Check range before conversion to avoid undefined behavior.
if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) {
hash = ComputeUnseededHash(FastD2I(num));
} else {
hash = ComputeLongHash(double_to_uint64(num));
}
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (object->IsName()) {
uint32_t hash = Name::cast(object)->Hash();
return Smi::FromInt(hash);
}
if (object->IsOddball()) {
uint32_t hash = Oddball::cast(object)->to_string()->Hash();
return Smi::FromInt(hash);
}
if (object->IsBigInt()) {
uint32_t hash = BigInt::cast(object)->Hash();
return Smi::FromInt(hash & Smi::kMaxValue);
}
DCHECK(object->IsJSReceiver());
return object;
}
Object* Object::GetHash() {
DisallowHeapAllocation no_gc;
Object* hash = GetSimpleHash(this);
if (hash->IsSmi()) return hash;
DCHECK(IsJSReceiver());
JSReceiver* receiver = JSReceiver::cast(this);
return receiver->GetIdentityHash();
}
Handle<Object> ObjectHashTableShape::AsHandle(Handle<Object> key) {
return key;
}
Relocatable::Relocatable(Isolate* isolate) {
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
DCHECK_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
template<class Derived, class TableType>
Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() {
TableType* table(TableType::cast(this->table()));
int index = Smi::ToInt(this->index());
Object* key = table->KeyAt(index);
DCHECK(!key->IsTheHole());
return key;
}
// Predictably converts HeapObject* or Address to uint32 by calculating
// offset of the address in respective MemoryChunk.
static inline uint32_t ObjectAddressForHashing(void* object) {
uint32_t value = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(object));
return value & MemoryChunk::kAlignmentMask;
}
static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index,
Handle<Object> value) {
Handle<Object> key = isolate->factory()->Uint32ToString(index);
Handle<FixedArray> entry_storage =
isolate->factory()->NewUninitializedFixedArray(2);
{
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
}
return isolate->factory()->NewJSArrayWithElements(entry_storage,
PACKED_ELEMENTS, 2);
}
static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key,
Handle<Object> value) {
Handle<FixedArray> entry_storage =
isolate->factory()->NewUninitializedFixedArray(2);
{
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
}
return isolate->factory()->NewJSArrayWithElements(entry_storage,
PACKED_ELEMENTS, 2);
}
bool ScopeInfo::IsAsmModule() const { return AsmModuleField::decode(Flags()); }
bool ScopeInfo::HasSimpleParameters() const {
return HasSimpleParametersField::decode(Flags());
}
#define FIELD_ACCESSORS(name) \
void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \
int ScopeInfo::name() const { \
if (length() > 0) { \
return Smi::ToInt(get(k##name)); \
} else { \
return 0; \
} \
}
FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
#undef FIELD_ACCESSORS
FreshlyAllocatedBigInt* FreshlyAllocatedBigInt::cast(Object* object) {
SLOW_DCHECK(object->IsBigInt());
return reinterpret_cast<FreshlyAllocatedBigInt*>(object);
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_INL_H_