v8/test/unittests/base/platform/time-unittest.cc
Camillo Bruni fffcbaea55 [counters] Fix reentrant timers for V8.Execute
This CL fixes a long standing issue where reentering TimedHistograms
scopes would cause spurious measurements. Only the non-nested scopes
yielded correct results.

Due to the changed numbers, the V8.Execute histogram is renamed to
V8.ExecuteMicroSeconds. Note that this histogram is also guarded
behind the --slow-histograms flag due to the additional overhead.

Unlike before, it does no longer include time for external callbacks
and only measures self time. The following example illustrates the
new behaviour:

1. Enter V8:           |--+.......+--| self-time: 4 units (reported)
2. Exit V8 (callback):    |-+...+-|    self-time: 2 units (ignored)
3. Re-enter V8:             |---|      self-time: 3 units (reported)

This would result in 2 histogram entries with 4 time units for the first
V8 slice and 3 units for the nested part. Note that the callback time
itself is ignored.

This CL attempts to clean up how TimedHistograms work:
- Histogram: the base class
- TimedHistograms: used for time-related histograms that are not nested
- NestedTimeHistograms: Extends TimedHistograms and is used for nested
  histograms

This CL changes Histograms to not measure time themselves. Measurements
happen in the *HistogramScopes:
- BaseTimedHistogramScope: Base functionality
- TimedHistogramScope: For non-nested measurements
- NestedTimedHistogramScope: For nested measurements
- PauseNestedTimedHistogramScope: Ignore time during a given scope.
  This is used to pause timers during callbacks.

Additional changes:
- ExternalCallbackScope now contains a PauseNestedTimedHistogramScope
  and always sets VMState<EXTERNAL>

Bug: v8:11946
Change-Id: I45e4b7ff77b5948b605dd50539044cb26222fa21
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3001345
Reviewed-by: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Thibaud Michaud <thibaudm@chromium.org>
Reviewed-by: Victor Gomes <victorgomes@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Commit-Queue: Camillo Bruni <cbruni@chromium.org>
Cr-Commit-Position: refs/heads/master@{#76111}
2021-08-05 10:03:08 +00:00

573 lines
19 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/platform/time.h"
#if V8_OS_MACOSX
#include <mach/mach_time.h>
#endif
#if V8_OS_POSIX
#include <sys/time.h>
#endif
#if V8_OS_WIN
#include <windows.h>
#include "src/base/win32-headers.h"
#endif
#include <vector>
#include "src/base/platform/elapsed-timer.h"
#include "src/base/platform/platform.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace base {
TEST(TimeDelta, ZeroMinMax) {
constexpr TimeDelta kZero;
static_assert(kZero.IsZero(), "");
constexpr TimeDelta kMax = TimeDelta::Max();
static_assert(kMax.IsMax(), "");
static_assert(kMax == TimeDelta::Max(), "");
EXPECT_GT(kMax, TimeDelta::FromDays(100 * 365));
static_assert(kMax > kZero, "");
constexpr TimeDelta kMin = TimeDelta::Min();
static_assert(kMin.IsMin(), "");
static_assert(kMin == TimeDelta::Min(), "");
EXPECT_LT(kMin, TimeDelta::FromDays(-100 * 365));
static_assert(kMin < kZero, "");
}
TEST(TimeDelta, MaxConversions) {
// static_assert also confirms constexpr works as intended.
constexpr TimeDelta kMax = TimeDelta::Max();
EXPECT_EQ(kMax.InDays(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InHours(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InMinutes(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InSecondsF(), std::numeric_limits<double>::infinity());
EXPECT_EQ(kMax.InSeconds(), std::numeric_limits<int64_t>::max());
EXPECT_EQ(kMax.InMillisecondsF(), std::numeric_limits<double>::infinity());
EXPECT_EQ(kMax.InMilliseconds(), std::numeric_limits<int64_t>::max());
EXPECT_EQ(kMax.InMillisecondsRoundedUp(),
std::numeric_limits<int64_t>::max());
// TODO(v8-team): Import overflow support from Chromium's base.
// EXPECT_TRUE(TimeDelta::FromDays(std::numeric_limits<int>::max()).IsMax());
// EXPECT_TRUE(
// TimeDelta::FromHours(std::numeric_limits<int>::max()).IsMax());
// EXPECT_TRUE(
// TimeDelta::FromMinutes(std::numeric_limits<int>::max()).IsMax());
// constexpr int64_t max_int = std::numeric_limits<int64_t>::max();
// constexpr int64_t min_int = std::numeric_limits<int64_t>::min();
// EXPECT_TRUE(
// TimeDelta::FromSeconds(max_int / Time::kMicrosecondsPerSecond + 1)
// .IsMax());
// EXPECT_TRUE(TimeDelta::FromMilliseconds(
// max_int / Time::kMillisecondsPerSecond + 1)
// .IsMax());
// EXPECT_TRUE(TimeDelta::FromMicroseconds(max_int).IsMax());
// EXPECT_TRUE(
// TimeDelta::FromSeconds(min_int / Time::kMicrosecondsPerSecond - 1)
// .IsMin());
// EXPECT_TRUE(TimeDelta::FromMilliseconds(
// min_int / Time::kMillisecondsPerSecond - 1)
// .IsMin());
// EXPECT_TRUE(TimeDelta::FromMicroseconds(min_int).IsMin());
// EXPECT_TRUE(
// TimeDelta::FromMicroseconds(std::numeric_limits<int64_t>::min())
// .IsMin());
}
TEST(TimeDelta, NumericOperators) {
constexpr int i = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * i));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) / i));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= i));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) /= i));
constexpr int64_t i64 = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * i64));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) / i64));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= i64));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) /= i64));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * 2));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) / 2));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= 2));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) /= 2));
}
// TODO(v8-team): Import support for overflow from Chromium's base.
TEST(TimeDelta, DISABLED_Overflows) {
// Some sanity checks. static_assert's used were possible to verify constexpr
// evaluation at the same time.
static_assert(TimeDelta::Max().IsMax(), "");
static_assert(-TimeDelta::Max() < TimeDelta(), "");
static_assert(-TimeDelta::Max() > TimeDelta::Min(), "");
static_assert(TimeDelta() > -TimeDelta::Max(), "");
TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1);
TimeDelta large_negative = -large_delta;
EXPECT_GT(TimeDelta(), large_negative);
EXPECT_FALSE(large_delta.IsMax());
EXPECT_FALSE((-large_negative).IsMin());
const TimeDelta kOneSecond = TimeDelta::FromSeconds(1);
// Test +, -, * and / operators.
EXPECT_TRUE((large_delta + kOneSecond).IsMax());
EXPECT_TRUE((large_negative + (-kOneSecond)).IsMin());
EXPECT_TRUE((large_negative - kOneSecond).IsMin());
EXPECT_TRUE((large_delta - (-kOneSecond)).IsMax());
EXPECT_TRUE((large_delta * 2).IsMax());
EXPECT_TRUE((large_delta * -2).IsMin());
// Test +=, -=, *= and /= operators.
TimeDelta delta = large_delta;
delta += kOneSecond;
EXPECT_TRUE(delta.IsMax());
delta = large_negative;
delta += -kOneSecond;
EXPECT_TRUE((delta).IsMin());
delta = large_negative;
delta -= kOneSecond;
EXPECT_TRUE((delta).IsMin());
delta = large_delta;
delta -= -kOneSecond;
EXPECT_TRUE(delta.IsMax());
delta = large_delta;
delta *= 2;
EXPECT_TRUE(delta.IsMax());
// Test operations with Time and TimeTicks.
EXPECT_TRUE((large_delta + Time::Now()).IsMax());
EXPECT_TRUE((large_delta + TimeTicks::Now()).IsMax());
EXPECT_TRUE((Time::Now() + large_delta).IsMax());
EXPECT_TRUE((TimeTicks::Now() + large_delta).IsMax());
Time time_now = Time::Now();
EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now);
EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now);
TimeTicks ticks_now = TimeTicks::Now();
EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now);
EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now);
}
TEST(TimeDelta, FromAndIn) {
EXPECT_EQ(TimeDelta::FromDays(2), TimeDelta::FromHours(48));
EXPECT_EQ(TimeDelta::FromHours(3), TimeDelta::FromMinutes(180));
EXPECT_EQ(TimeDelta::FromMinutes(2), TimeDelta::FromSeconds(120));
EXPECT_EQ(TimeDelta::FromSeconds(2), TimeDelta::FromMilliseconds(2000));
EXPECT_EQ(TimeDelta::FromMilliseconds(2), TimeDelta::FromMicroseconds(2000));
EXPECT_EQ(static_cast<int>(13), TimeDelta::FromDays(13).InDays());
EXPECT_EQ(static_cast<int>(13), TimeDelta::FromHours(13).InHours());
EXPECT_EQ(static_cast<int>(13), TimeDelta::FromMinutes(13).InMinutes());
EXPECT_EQ(static_cast<int64_t>(13), TimeDelta::FromSeconds(13).InSeconds());
EXPECT_DOUBLE_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF());
EXPECT_EQ(static_cast<int64_t>(13),
TimeDelta::FromMilliseconds(13).InMilliseconds());
EXPECT_DOUBLE_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF());
EXPECT_EQ(static_cast<int64_t>(13),
TimeDelta::FromMicroseconds(13).InMicroseconds());
}
#if V8_OS_MACOSX
TEST(TimeDelta, MachTimespec) {
TimeDelta null = TimeDelta();
EXPECT_EQ(null, TimeDelta::FromMachTimespec(null.ToMachTimespec()));
TimeDelta delta1 = TimeDelta::FromMilliseconds(42);
EXPECT_EQ(delta1, TimeDelta::FromMachTimespec(delta1.ToMachTimespec()));
TimeDelta delta2 = TimeDelta::FromDays(42);
EXPECT_EQ(delta2, TimeDelta::FromMachTimespec(delta2.ToMachTimespec()));
}
#endif
TEST(Time, Max) {
Time max = Time::Max();
EXPECT_TRUE(max.IsMax());
EXPECT_EQ(max, Time::Max());
EXPECT_GT(max, Time::Now());
EXPECT_GT(max, Time());
}
TEST(Time, MaxConversions) {
Time t = Time::Max();
EXPECT_EQ(std::numeric_limits<int64_t>::max(), t.ToInternalValue());
// TODO(v8-team): Time::FromJsTime() overflows with infinity. Import support
// from Chromium's base.
// t = Time::FromJsTime(std::numeric_limits<double>::infinity());
// EXPECT_TRUE(t.IsMax());
// EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToJsTime());
#if defined(OS_POSIX)
struct timeval tval;
tval.tv_sec = std::numeric_limits<time_t>::max();
tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
t = Time::FromTimeVal(tval);
EXPECT_TRUE(t.IsMax());
tval = t.ToTimeVal();
EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
tval.tv_usec);
#endif
#if defined(OS_WIN)
FILETIME ftime;
ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
t = Time::FromFileTime(ftime);
EXPECT_TRUE(t.IsMax());
ftime = t.ToFileTime();
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
#endif
}
TEST(Time, JsTime) {
Time t = Time::FromJsTime(700000.3);
EXPECT_DOUBLE_EQ(700000.3, t.ToJsTime());
}
#if V8_OS_POSIX
TEST(Time, Timespec) {
Time null;
EXPECT_TRUE(null.IsNull());
EXPECT_EQ(null, Time::FromTimespec(null.ToTimespec()));
Time now = Time::Now();
EXPECT_EQ(now, Time::FromTimespec(now.ToTimespec()));
Time now_sys = Time::NowFromSystemTime();
EXPECT_EQ(now_sys, Time::FromTimespec(now_sys.ToTimespec()));
Time unix_epoch = Time::UnixEpoch();
EXPECT_EQ(unix_epoch, Time::FromTimespec(unix_epoch.ToTimespec()));
Time max = Time::Max();
EXPECT_TRUE(max.IsMax());
EXPECT_EQ(max, Time::FromTimespec(max.ToTimespec()));
}
TEST(Time, Timeval) {
Time null;
EXPECT_TRUE(null.IsNull());
EXPECT_EQ(null, Time::FromTimeval(null.ToTimeval()));
Time now = Time::Now();
EXPECT_EQ(now, Time::FromTimeval(now.ToTimeval()));
Time now_sys = Time::NowFromSystemTime();
EXPECT_EQ(now_sys, Time::FromTimeval(now_sys.ToTimeval()));
Time unix_epoch = Time::UnixEpoch();
EXPECT_EQ(unix_epoch, Time::FromTimeval(unix_epoch.ToTimeval()));
Time max = Time::Max();
EXPECT_TRUE(max.IsMax());
EXPECT_EQ(max, Time::FromTimeval(max.ToTimeval()));
}
#endif
#if V8_OS_WIN
TEST(Time, Filetime) {
Time null;
EXPECT_TRUE(null.IsNull());
EXPECT_EQ(null, Time::FromFiletime(null.ToFiletime()));
Time now = Time::Now();
EXPECT_EQ(now, Time::FromFiletime(now.ToFiletime()));
Time now_sys = Time::NowFromSystemTime();
EXPECT_EQ(now_sys, Time::FromFiletime(now_sys.ToFiletime()));
Time unix_epoch = Time::UnixEpoch();
EXPECT_EQ(unix_epoch, Time::FromFiletime(unix_epoch.ToFiletime()));
Time max = Time::Max();
EXPECT_TRUE(max.IsMax());
EXPECT_EQ(max, Time::FromFiletime(max.ToFiletime()));
}
#endif
namespace {
template <typename T>
static void ResolutionTest(T (*Now)(), TimeDelta target_granularity) {
// We're trying to measure that intervals increment in a VERY small amount
// of time -- according to the specified target granularity. Unfortunately,
// if we happen to have a context switch in the middle of our test, the
// context switch could easily exceed our limit. So, we iterate on this
// several times. As long as we're able to detect the fine-granularity
// timers at least once, then the test has succeeded.
static const TimeDelta kExpirationTimeout = TimeDelta::FromSeconds(1);
ElapsedTimer timer;
timer.Start();
TimeDelta delta;
do {
T start = Now();
T now = start;
// Loop until we can detect that the clock has changed. Non-HighRes timers
// will increment in chunks, i.e. 15ms. By spinning until we see a clock
// change, we detect the minimum time between measurements.
do {
now = Now();
delta = now - start;
} while (now <= start);
EXPECT_NE(static_cast<int64_t>(0), delta.InMicroseconds());
} while (delta > target_granularity && !timer.HasExpired(kExpirationTimeout));
EXPECT_LE(delta, target_granularity);
}
} // namespace
TEST(Time, NowResolution) {
// We assume that Time::Now() has at least 16ms resolution.
static const TimeDelta kTargetGranularity = TimeDelta::FromMilliseconds(16);
ResolutionTest<Time>(&Time::Now, kTargetGranularity);
}
TEST(TimeTicks, NowResolution) {
// TimeTicks::Now() is documented as having "no worse than one microsecond"
// resolution. Unless !TimeTicks::IsHighResolution() in which case the clock
// could be as coarse as ~15.6ms.
const TimeDelta kTargetGranularity = TimeTicks::IsHighResolution()
? TimeDelta::FromMicroseconds(1)
: TimeDelta::FromMilliseconds(16);
ResolutionTest<TimeTicks>(&TimeTicks::Now, kTargetGranularity);
}
TEST(TimeTicks, IsMonotonic) {
TimeTicks previous_normal_ticks;
TimeTicks previous_highres_ticks;
ElapsedTimer timer;
timer.Start();
while (!timer.HasExpired(TimeDelta::FromMilliseconds(100))) {
TimeTicks normal_ticks = TimeTicks::Now();
TimeTicks highres_ticks = TimeTicks::HighResolutionNow();
EXPECT_GE(normal_ticks, previous_normal_ticks);
EXPECT_GE((normal_ticks - previous_normal_ticks).InMicroseconds(), 0);
EXPECT_GE(highres_ticks, previous_highres_ticks);
EXPECT_GE((highres_ticks - previous_highres_ticks).InMicroseconds(), 0);
previous_normal_ticks = normal_ticks;
previous_highres_ticks = highres_ticks;
}
}
namespace {
void Sleep(TimeDelta wait_time) {
ElapsedTimer waiter;
waiter.Start();
while (!waiter.HasExpired(wait_time)) {
OS::Sleep(TimeDelta::FromMilliseconds(1));
}
}
} // namespace
TEST(ElapsedTimer, StartStop) {
TimeDelta wait_time = TimeDelta::FromMilliseconds(100);
TimeDelta noise = TimeDelta::FromMilliseconds(100);
ElapsedTimer timer;
DCHECK(!timer.IsStarted());
timer.Start();
DCHECK(timer.IsStarted());
Sleep(wait_time);
TimeDelta delta = timer.Elapsed();
DCHECK(timer.IsStarted());
EXPECT_GE(delta, wait_time);
EXPECT_LT(delta, wait_time + noise);
timer.Pause();
DCHECK(timer.IsStarted());
Sleep(wait_time);
timer.Resume();
DCHECK(timer.IsStarted());
delta = timer.Elapsed();
timer.Pause();
DCHECK(timer.IsStarted());
EXPECT_GE(delta, wait_time);
EXPECT_LT(delta, wait_time + noise);
Sleep(wait_time);
timer.Resume();
DCHECK(timer.IsStarted());
delta = timer.Elapsed();
EXPECT_GE(delta, wait_time);
EXPECT_LT(delta, wait_time + noise);
timer.Stop();
DCHECK(!timer.IsStarted());
}
TEST(ElapsedTimer, StartStopArgs) {
TimeDelta wait_time = TimeDelta::FromMilliseconds(100);
ElapsedTimer timer1;
ElapsedTimer timer2;
DCHECK(!timer1.IsStarted());
DCHECK(!timer2.IsStarted());
TimeTicks now = TimeTicks::HighResolutionNow();
timer1.Start(now);
timer2.Start(now);
DCHECK(timer1.IsStarted());
DCHECK(timer2.IsStarted());
Sleep(wait_time);
now = TimeTicks::HighResolutionNow();
TimeDelta delta1 = timer1.Elapsed(now);
Sleep(wait_time);
TimeDelta delta2 = timer2.Elapsed(now);
DCHECK(timer1.IsStarted());
DCHECK(timer2.IsStarted());
EXPECT_GE(delta1, delta2);
Sleep(wait_time);
EXPECT_NE(delta1, timer2.Elapsed());
TimeTicks now2 = TimeTicks::HighResolutionNow();
EXPECT_NE(timer1.Elapsed(now), timer1.Elapsed(now2));
EXPECT_NE(delta1, timer1.Elapsed(now2));
EXPECT_NE(delta2, timer2.Elapsed(now2));
EXPECT_GE(timer1.Elapsed(now2), timer2.Elapsed(now2));
now = TimeTicks::HighResolutionNow();
timer1.Pause(now);
timer2.Pause(now);
DCHECK(timer1.IsStarted());
DCHECK(timer2.IsStarted());
Sleep(wait_time);
now = TimeTicks::HighResolutionNow();
timer1.Resume(now);
Sleep(wait_time);
timer2.Resume(now);
DCHECK(timer1.IsStarted());
DCHECK(timer2.IsStarted());
delta1 = timer1.Elapsed(now);
Sleep(wait_time);
delta2 = timer2.Elapsed(now);
EXPECT_GE(delta1, delta2);
timer1.Stop();
timer2.Stop();
DCHECK(!timer1.IsStarted());
DCHECK(!timer2.IsStarted());
}
#if V8_OS_ANDROID
#define MAYBE_ThreadNow DISABLED_ThreadNow
#else
#define MAYBE_ThreadNow ThreadNow
#endif
TEST(ThreadTicks, MAYBE_ThreadNow) {
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
TimeTicks end, begin = TimeTicks::Now();
ThreadTicks end_thread, begin_thread = ThreadTicks::Now();
TimeDelta delta;
// Make sure that ThreadNow value is non-zero.
EXPECT_GT(begin_thread, ThreadTicks());
int iterations_count = 0;
// Some systems have low resolution thread timers, this code makes sure
// that thread time has progressed by at least one tick.
// Limit waiting to 10ms to prevent infinite loops.
while (ThreadTicks::Now() == begin_thread &&
((TimeTicks::Now() - begin).InMicroseconds() < 10000)) {
}
EXPECT_GT(ThreadTicks::Now(), begin_thread);
do {
// Sleep for 10 milliseconds to get the thread de-scheduled.
OS::Sleep(base::TimeDelta::FromMilliseconds(10));
end_thread = ThreadTicks::Now();
end = TimeTicks::Now();
delta = end - begin;
EXPECT_LE(++iterations_count, 2); // fail after 2 attempts.
} while (delta.InMicroseconds() <
10000); // Make sure that the OS did sleep for at least 10 ms.
TimeDelta delta_thread = end_thread - begin_thread;
// Make sure that some thread time have elapsed.
EXPECT_GT(delta_thread.InMicroseconds(), 0);
// But the thread time is at least 9ms less than clock time.
TimeDelta difference = delta - delta_thread;
EXPECT_GE(difference.InMicroseconds(), 9000);
}
}
#if V8_OS_WIN
TEST(TimeTicks, TimerPerformance) {
// Verify that various timer mechanisms can always complete quickly.
// Note: This is a somewhat arbitrary test.
const int kLoops = 10000;
using TestFunc = TimeTicks (*)();
struct TestCase {
TestFunc func;
const char *description;
};
// Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
// in order to create a single test case list.
static_assert(sizeof(TimeTicks) == sizeof(Time),
"TimeTicks and Time must be the same size");
std::vector<TestCase> cases;
cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
cases.push_back(
{reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
}
for (const auto& test_case : cases) {
TimeTicks start = TimeTicks::Now();
for (int index = 0; index < kLoops; index++)
test_case.func();
TimeTicks stop = TimeTicks::Now();
// Turning off the check for acceptable delays. Without this check,
// the test really doesn't do much other than measure. But the
// measurements are still useful for testing timers on various platforms.
// The reason to remove the check is because the tests run on many
// buildbots, some of which are VMs. These machines can run horribly
// slow, and there is really no value for checking against a max timer.
// const int kMaxTime = 35; // Maximum acceptable milliseconds for test.
// EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
printf("%s: %1.2fus per call\n", test_case.description,
(stop - start).InMillisecondsF() * 1000 / kLoops);
}
}
#endif // V8_OS_WIN
} // namespace base
} // namespace v8