wxWidgets/include/wx/matrix.h

140 lines
3.8 KiB
C
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////
// Name: matrix.h
// Purpose: wxTransformMatrix class. NOT YET USED
// Author: Chris Breeze, Julian Smart
// Modified by:
// Created: 01/02/97
// RCS-ID: $Id$
// Copyright: (c) Julian Smart and Markus Holzem
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#ifndef __MATRIXH__
#define __MATRIXH__
#ifdef __GNUG__
#pragma interface "matrix.h"
#endif
#include "wx/object.h"
// A simple 3x3 matrix. This may be replaced by a more general matrix
// class some day.
//
// Note: this is intended to be used in wxDC at some point to replace
// the current system of scaling/translation. It is not yet used.
class WXDLLEXPORT wxTransformMatrix: public wxObject
{
public:
wxTransformMatrix(void);
wxTransformMatrix(const wxTransformMatrix& mat);
double GetValue(int row, int col) const;
void SetValue(int row, int col, double value);
void operator = (const wxTransformMatrix& mat);
bool operator == (const wxTransformMatrix& mat);
bool operator != (const wxTransformMatrix& mat);
double& operator()(int row, int col);
double operator()(int row, int col) const;
// Invert matrix
bool Invert(void);
// Make into identity matrix
bool Identity(void);
// Is the matrix the identity matrix?
// Only returns a flag, which is set whenever an operation
// is done.
inline bool IsIdentity(void) const { return m_isIdentity; };
// This does an actual check.
inline bool IsIdentity1(void) const ;
// Isotropic scaling
bool Scale(double scale);
// Translate
bool Translate(double x, double y);
// Rotate
bool Rotate(double angle);
// Transform X value from logical to device
inline double TransformX(double x) const;
// Transform Y value from logical to device
inline double TransformY(double y) const;
// Transform a point from logical to device coordinates
bool TransformPoint(double x, double y, double& tx, double& ty) const;
// Transform a point from device to logical coordinates.
// Example of use:
// wxTransformMatrix mat = dc.GetTransformation();
// mat.Invert();
// mat.InverseTransformPoint(x, y, x1, y1);
// OR (shorthand:)
// dc.LogicalToDevice(x, y, x1, y1);
// The latter is slightly less efficient if we're doing several
// conversions, since the matrix is inverted several times.
// N.B. 'this' matrix is the inverse at this point
bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
public:
double m_matrix[3][3];
bool m_isIdentity;
/*
double m11, m21, m31;
double m12, m22, m32;
double m13, m23, m33;
*/
};
// Transform X value from logical to device
inline double wxTransformMatrix::TransformX(double x) const
{
// return (m_isIdentity ? x : (x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]));
return 0;
}
// Transform Y value from logical to device
inline double wxTransformMatrix::TransformY(double y) const
{
// return (m_isIdentity ? y : (x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]));
return 0;
}
// Is the matrix the identity matrix?
// Perhaps there's some kind of optimization we can do to make this
// a faster operation. E.g. each operation (scale, translate etc.)
// checks whether it's still the identity matrix and sets a flag.
inline bool wxTransformMatrix::IsIdentity1(void) const
{
return
(m_matrix[0][0] == 1.0 &&
m_matrix[1][1] == 1.0 &&
m_matrix[2][2] == 1.0 &&
m_matrix[1][0] == 0.0 &&
m_matrix[2][0] == 0.0 &&
m_matrix[0][1] == 0.0 &&
m_matrix[2][1] == 0.0 &&
m_matrix[0][2] == 0.0 &&
m_matrix[1][2] == 0.0) ;
}
// Calculates the determinant of a 2 x 2 matrix
inline double wxCalculateDet(double a11, double a21, double a12, double a22)
{
return a11 * a22 - a12 * a21;
}
#endif
// __MATRIXH__