Optimize wxImage::Scale() by pre-calculating the values used.

Precompute the values used by various resampling algorithms once instead of
doing it for each pixel. This dramatically speeds them up: more than 3 times
faster in wxImage benchmark with the small images and up to 5 times faster
with larger images.

Closes #15281.

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@74321 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
Vadim Zeitlin 2013-07-01 14:48:24 +00:00
parent 544ab85e05
commit 1b7f2c727d
2 changed files with 152 additions and 57 deletions

View File

@ -673,6 +673,7 @@ All (GUI):
- Add wxMouseEvent::GetColumnsPerAction() (toiffel).
- Add support for horizontal mouse wheel scrolling in wxSTC (toiffel).
- Improve wrapping of cell contents in wxGrid (nmset).
- Big speed up in wxImage::Scale(wxIMAGE_QUALITY_HIGH) (Hsilgos).
wxGTK:

View File

@ -551,6 +551,42 @@ wxImage wxImage::ResampleNearest(int width, int height) const
return image;
}
namespace
{
struct BoxPrecalc
{
int boxStart;
int boxEnd;
};
inline int BoxBetween(int value, int low, int high)
{
return wxMax(wxMin(value, high), low);
}
void ResampleBoxPrecalc(wxVector<BoxPrecalc>& boxes, int oldDim)
{
const int newDim = boxes.size();
const double scale_factor_1 = double(oldDim) / newDim;
const int scale_factor_2 = (int)(scale_factor_1 / 2);
for ( int dst = 0; dst < newDim; ++dst )
{
// Source pixel in the Y direction
const int src_p = int(dst * scale_factor_1);
BoxPrecalc& precalc = boxes[dst];
precalc.boxStart = BoxBetween(int(src_p - scale_factor_1/2.0 + 1),
0, oldDim - 1);
precalc.boxEnd = BoxBetween(wxMax(precalc.boxStart + 1,
int(src_p + scale_factor_2)),
0, oldDim - 1);
}
}
} // anonymous namespace
wxImage wxImage::ResampleBox(int width, int height) const
{
// This function implements a simple pre-blur/box averaging method for
@ -560,11 +596,12 @@ wxImage wxImage::ResampleBox(int width, int height) const
wxImage ret_image(width, height, false);
const double scale_factor_x = double(M_IMGDATA->m_width) / width;
const double scale_factor_y = double(M_IMGDATA->m_height) / height;
wxVector<BoxPrecalc> vPrecalcs(height);
wxVector<BoxPrecalc> hPrecalcs(width);
ResampleBoxPrecalc(vPrecalcs, M_IMGDATA->m_height);
ResampleBoxPrecalc(hPrecalcs, M_IMGDATA->m_width);
const int scale_factor_x_2 = (int)(scale_factor_x / 2);
const int scale_factor_y_2 = (int)(scale_factor_y / 2);
const unsigned char* src_data = M_IMGDATA->m_data;
const unsigned char* src_alpha = M_IMGDATA->m_alpha;
@ -583,33 +620,21 @@ wxImage wxImage::ResampleBox(int width, int height) const
for ( int y = 0; y < height; y++ ) // Destination image - Y direction
{
// Source pixel in the Y direction
int src_y = (int)(y * scale_factor_y);
const BoxPrecalc& vPrecalc = vPrecalcs[y];
for ( int x = 0; x < width; x++ ) // Destination image - X direction
{
// Source pixel in the X direction
int src_x = (int)(x * scale_factor_x);
const BoxPrecalc& hPrecalc = hPrecalcs[x];
// Box of pixels to average
averaged_pixels = 0;
sum_r = sum_g = sum_b = sum_a = 0.0;
for ( int j = int(src_y - scale_factor_y/2.0 + 1), k = j;
j <= int(src_y + scale_factor_y_2) || j < k + 2;
j++ )
for ( int j = vPrecalc.boxStart; j <= vPrecalc.boxEnd; ++j )
{
// We don't care to average pixels that don't exist (edges)
if ( j < 0 || j > M_IMGDATA->m_height - 1 )
continue;
for ( int i = int(src_x - scale_factor_x/2.0 + 1), e = i;
i <= src_x + scale_factor_x_2 || i < e + 2;
i++ )
for ( int i = hPrecalc.boxStart; i <= hPrecalc.boxEnd; ++i )
{
// Don't average edge pixels
if ( i < 0 || i > M_IMGDATA->m_width - 1 )
continue;
// Calculate the actual index in our source pixels
src_pixel_index = j * M_IMGDATA->m_width + i;
@ -636,6 +661,49 @@ wxImage wxImage::ResampleBox(int width, int height) const
return ret_image;
}
namespace
{
struct BilinearPrecalc
{
int offset1;
int offset2;
double dd;
double dd1;
};
void ResampleBilinearPrecalc(wxVector<BilinearPrecalc>& precalcs, int oldDim)
{
const int newDim = precalcs.size();
const double scale_factor = double(oldDim) / newDim;
const int srcpixmax = oldDim - 1;
for ( int dsty = 0; dsty < newDim; dsty++ )
{
// We need to calculate the source pixel to interpolate from - Y-axis
double srcpix = double(dsty) * scale_factor;
double srcpix1 = int(srcpix);
double srcpix2 = srcpix1 == srcpixmax ? srcpix1 : srcpix1 + 1.0;
BilinearPrecalc& precalc = precalcs[dsty];
precalc.dd = srcpix - (int)srcpix;
precalc.dd1 = 1.0 - precalc.dd;
precalc.offset1 = srcpix1 < 0.0
? 0
: srcpix1 > srcpixmax
? srcpixmax
: (int)srcpix1;
precalc.offset2 = srcpix2 < 0.0
? 0
: srcpix2 > srcpixmax
? srcpixmax
: (int)srcpix2;
}
}
} // anonymous namespace
wxImage wxImage::ResampleBilinear(int width, int height) const
{
// This function implements a Bilinear algorithm for resampling.
@ -650,14 +718,11 @@ wxImage wxImage::ResampleBilinear(int width, int height) const
ret_image.SetAlpha();
dst_alpha = ret_image.GetAlpha();
}
double HFactor = double(M_IMGDATA->m_height) / height;
double WFactor = double(M_IMGDATA->m_width) / width;
int srcpixymax = M_IMGDATA->m_height - 1;
int srcpixxmax = M_IMGDATA->m_width - 1;
double srcpixy, srcpixy1, srcpixy2, dy, dy1;
double srcpixx, srcpixx1, srcpixx2, dx, dx1;
wxVector<BilinearPrecalc> vPrecalcs(height);
wxVector<BilinearPrecalc> hPrecalcs(width);
ResampleBilinearPrecalc(vPrecalcs, M_IMGDATA->m_height);
ResampleBilinearPrecalc(hPrecalcs, M_IMGDATA->m_width);
// initialize alpha values to avoid g++ warnings about possibly
// uninitialized variables
@ -667,26 +732,22 @@ wxImage wxImage::ResampleBilinear(int width, int height) const
for ( int dsty = 0; dsty < height; dsty++ )
{
// We need to calculate the source pixel to interpolate from - Y-axis
srcpixy = double(dsty) * HFactor;
srcpixy1 = int(srcpixy);
srcpixy2 = ( srcpixy1 == srcpixymax ) ? srcpixy1 : srcpixy1 + 1.0;
dy = srcpixy - (int)srcpixy;
dy1 = 1.0 - dy;
const BilinearPrecalc& vPrecalc = vPrecalcs[dsty];
const int y_offset1 = vPrecalc.offset1;
const int y_offset2 = vPrecalc.offset2;
const double dy = vPrecalc.dd;
const double dy1 = vPrecalc.dd1;
for ( int dstx = 0; dstx < width; dstx++ )
{
// X-axis of pixel to interpolate from
srcpixx = double(dstx) * WFactor;
srcpixx1 = int(srcpixx);
srcpixx2 = ( srcpixx1 == srcpixxmax ) ? srcpixx1 : srcpixx1 + 1.0;
dx = srcpixx - (int)srcpixx;
dx1 = 1.0 - dx;
const BilinearPrecalc& hPrecalc = hPrecalcs[dstx];
int x_offset1 = srcpixx1 < 0.0 ? 0 : srcpixx1 > srcpixxmax ? srcpixxmax : (int)srcpixx1;
int x_offset2 = srcpixx2 < 0.0 ? 0 : srcpixx2 > srcpixxmax ? srcpixxmax : (int)srcpixx2;
int y_offset1 = srcpixy1 < 0.0 ? 0 : srcpixy1 > srcpixymax ? srcpixymax : (int)srcpixy1;
int y_offset2 = srcpixy2 < 0.0 ? 0 : srcpixy2 > srcpixymax ? srcpixymax : (int)srcpixy2;
const int x_offset1 = hPrecalc.offset1;
const int x_offset2 = hPrecalc.offset2;
const double dx = hPrecalc.dd;
const double dx1 = hPrecalc.dd1;
int src_pixel_index00 = y_offset1 * M_IMGDATA->m_width + x_offset1;
int src_pixel_index01 = y_offset1 * M_IMGDATA->m_width + x_offset2;
@ -737,6 +798,42 @@ static inline double spline_weight(double value)
4 * spline_cube(value - 1)) / 6;
}
namespace
{
struct BicubicPrecalc
{
double weight[4];
int offset[4];
};
void ResampleBicubicPrecalc(wxVector<BicubicPrecalc> &aWeight, int oldDim)
{
const int newDim = aWeight.size();
for ( int dstd = 0; dstd < newDim; dstd++ )
{
// We need to calculate the source pixel to interpolate from - Y-axis
const double srcpixd = static_cast<double>(dstd * oldDim) / newDim;
const double dd = srcpixd - static_cast<int>(srcpixd);
BicubicPrecalc &precalc = aWeight[dstd];
for ( int k = -1; k <= 2; k++ )
{
precalc.offset[k + 1] = srcpixd + k < 0.0
? 0
: srcpixd + k >= oldDim
? oldDim - 1
: static_cast<int>(srcpixd + k);
precalc.weight[k + 1] = spline_weight(k - dd);
}
}
}
} // anonymous namespace
// This is the bicubic resampling algorithm
wxImage wxImage::ResampleBicubic(int width, int height) const
{
@ -781,17 +878,22 @@ wxImage wxImage::ResampleBicubic(int width, int height) const
dst_alpha = ret_image.GetAlpha();
}
// Precalculate weights
wxVector<BicubicPrecalc> vPrecalcs(height);
wxVector<BicubicPrecalc> hPrecalcs(width);
ResampleBicubicPrecalc(vPrecalcs, M_IMGDATA->m_height);
ResampleBicubicPrecalc(hPrecalcs, M_IMGDATA->m_width);
for ( int dsty = 0; dsty < height; dsty++ )
{
// We need to calculate the source pixel to interpolate from - Y-axis
double srcpixy = double(dsty * M_IMGDATA->m_height) / height;
double dy = srcpixy - (int)srcpixy;
const BicubicPrecalc& vPrecalc = vPrecalcs[dsty];
for ( int dstx = 0; dstx < width; dstx++ )
{
// X-axis of pixel to interpolate from
double srcpixx = double(dstx * M_IMGDATA->m_width) / width;
double dx = srcpixx - (int)srcpixx;
const BicubicPrecalc& hPrecalc = hPrecalcs[dstx];
// Sums for each color channel
double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0;
@ -800,21 +902,13 @@ wxImage wxImage::ResampleBicubic(int width, int height) const
for ( int k = -1; k <= 2; k++ )
{
// Y offset
int y_offset = srcpixy + k < 0.0
? 0
: srcpixy + k >= M_IMGDATA->m_height
? M_IMGDATA->m_height - 1
: (int)(srcpixy + k);
const int y_offset = vPrecalc.offset[k + 1];
// Loop across the X axis
for ( int i = -1; i <= 2; i++ )
{
// X offset
int x_offset = srcpixx + i < 0.0
? 0
: srcpixx + i >= M_IMGDATA->m_width
? M_IMGDATA->m_width - 1
: (int)(srcpixx + i);
const int x_offset = hPrecalc.offset[i + 1];
// Calculate the exact position where the source data
// should be pulled from based on the x_offset and y_offset
@ -823,8 +917,8 @@ wxImage wxImage::ResampleBicubic(int width, int height) const
// Calculate the weight for the specified pixel according
// to the bicubic b-spline kernel we're using for
// interpolation
double
pixel_weight = spline_weight(i - dx)*spline_weight(k - dy);
const double
pixel_weight = vPrecalc.weight[k + 1] * hPrecalc.weight[i + 1];
// Create a sum of all velues for each color channel
// adjusted for the pixel's calculated weight