Add wxGCD() helper function.

It is needed in wxMSW code and it looks like it could be useful to the library
users, so make it public.

See #16254.

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@77019 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
Vadim Zeitlin 2014-08-07 21:03:25 +00:00
parent 3c7ba39135
commit e871a2157d
3 changed files with 62 additions and 2 deletions

View File

@ -165,5 +165,7 @@ inline double wxRadToDeg(double rad) { return (rad * 180.0) / M_PI; }
#endif
#endif /* wxUSE_APPLE_IEEE */
/* Compute the greatest common divisor of two positive integers */
WXDLLIMPEXP_BASE unsigned int wxGCD(unsigned int u, unsigned int v);
#endif /* _WX_MATH_H_ */

View File

@ -16,6 +16,15 @@
*/
int wxFinite(double x);
/**
Returns the greatest common divisor of the two given numbers.
@since 3.1.0
@header{wx/math.h}
*/
unsigned int wxGCD(unsigned int u, unsigned int v);
/**
Returns a non-zero value if x is NaN (not a number), returns 0 otherwise.

View File

@ -52,6 +52,7 @@
#include "wx/mimetype.h"
#include "wx/config.h"
#include "wx/versioninfo.h"
#include "wx/math.h"
#if defined(__WXWINCE__) && wxUSE_DATETIME
#include "wx/datetime.h"
@ -967,10 +968,58 @@ void wxQsort(void* pbase, size_t total_elems,
}
}
// ----------------------------------------------------------------------------
// wxGCD
// Compute the greatest common divisor of two positive integers
// using binary GCD algorithm.
// See:
// http://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C
// ----------------------------------------------------------------------------
unsigned int wxGCD(unsigned int u, unsigned int v)
{
// GCD(0,v) == v; GCD(u,0) == u, GCD(0,0) == 0
if (u == 0)
return v;
if (v == 0)
return u;
int shift;
// Let shift := lg K, where K is the greatest power of 2
// dividing both u and v.
for (shift = 0; ((u | v) & 1) == 0; ++shift)
{
u >>= 1;
v >>= 1;
}
while ((u & 1) == 0)
u >>= 1;
// From here on, u is always odd.
do
{
// remove all factors of 2 in v -- they are not common
// note: v is not zero, so while will terminate
while ((v & 1) == 0)
v >>= 1;
// Now u and v are both odd. Swap if necessary so u <= v,
// then set v = v - u (which is even)
if (u > v)
{
wxSwap(u, v);
}
v -= u; // Here v >= u
} while (v != 0);
// restore common factors of 2
return u << shift;
}
#endif // wxUSE_BASE
// ============================================================================
// GUI-only functions from now on
// ============================================================================