c1d8296a78
git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@36257 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
2180 lines
58 KiB
C
2180 lines
58 KiB
C
/*
|
|
* re_*comp and friends - compile REs
|
|
* This file #includes several others (see the bottom).
|
|
*
|
|
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
|
|
*
|
|
* Development of this software was funded, in part, by Cray Research Inc.,
|
|
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
|
|
* Corporation, none of whom are responsible for the results. The author
|
|
* thanks all of them.
|
|
*
|
|
* Redistribution and use in source and binary forms -- with or without
|
|
* modification -- are permitted for any purpose, provided that
|
|
* redistributions in source form retain this entire copyright notice and
|
|
* indicate the origin and nature of any modifications.
|
|
*
|
|
* I'd appreciate being given credit for this package in the documentation
|
|
* of software which uses it, but that is not a requirement.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "regguts.h"
|
|
|
|
/*
|
|
* forward declarations, up here so forward datatypes etc. are defined early
|
|
*/
|
|
/* =====^!^===== begin forwards =====^!^===== */
|
|
/* automatically gathered by fwd; do not hand-edit */
|
|
/* === regcomp.c === */
|
|
int compile _ANSI_ARGS_((regex_t *, CONST chr *, size_t, int));
|
|
static VOID moresubs _ANSI_ARGS_((struct vars *, int));
|
|
static int freev _ANSI_ARGS_((struct vars *, int));
|
|
static VOID makesearch _ANSI_ARGS_((struct vars *, struct nfa *));
|
|
static struct subre *parse _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
|
|
static struct subre *parsebranch _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, int));
|
|
static VOID parseqatom _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, struct subre *));
|
|
static VOID nonword _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
|
|
static VOID word _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
|
|
static int scannum _ANSI_ARGS_((struct vars *));
|
|
static VOID repeat _ANSI_ARGS_((struct vars *, struct state *, struct state *, int, int));
|
|
static VOID bracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
|
|
static VOID cbracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
|
|
static VOID brackpart _ANSI_ARGS_((struct vars *, struct state *, struct state *));
|
|
static chr *scanplain _ANSI_ARGS_((struct vars *));
|
|
static VOID leaders _ANSI_ARGS_((struct vars *, struct cvec *));
|
|
static VOID onechr _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
|
|
static VOID dovec _ANSI_ARGS_((struct vars *, struct cvec *, struct state *, struct state *));
|
|
static celt nextleader _ANSI_ARGS_((struct vars *, pchr, pchr));
|
|
static VOID wordchrs _ANSI_ARGS_((struct vars *));
|
|
static struct subre *subre _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
|
|
static VOID freesubre _ANSI_ARGS_((struct vars *, struct subre *));
|
|
static VOID freesrnode _ANSI_ARGS_((struct vars *, struct subre *));
|
|
static VOID optst _ANSI_ARGS_((struct vars *, struct subre *));
|
|
static int numst _ANSI_ARGS_((struct subre *, int));
|
|
static VOID markst _ANSI_ARGS_((struct subre *));
|
|
static VOID cleanst _ANSI_ARGS_((struct vars *));
|
|
static long nfatree _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
|
|
static long nfanode _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
|
|
static int newlacon _ANSI_ARGS_((struct vars *, struct state *, struct state *, int));
|
|
static VOID freelacons _ANSI_ARGS_((struct subre *, int));
|
|
static VOID rfree _ANSI_ARGS_((regex_t *));
|
|
static VOID dump _ANSI_ARGS_((regex_t *, FILE *));
|
|
static VOID dumpst _ANSI_ARGS_((struct subre *, FILE *, int));
|
|
static VOID stdump _ANSI_ARGS_((struct subre *, FILE *, int));
|
|
static char *stid _ANSI_ARGS_((struct subre *, char *, size_t));
|
|
/* === regc_lex.c === */
|
|
static VOID lexstart _ANSI_ARGS_((struct vars *));
|
|
static VOID prefixes _ANSI_ARGS_((struct vars *));
|
|
static VOID lexnest _ANSI_ARGS_((struct vars *, chr *, chr *));
|
|
static VOID lexword _ANSI_ARGS_((struct vars *));
|
|
static int next _ANSI_ARGS_((struct vars *));
|
|
static int lexescape _ANSI_ARGS_((struct vars *));
|
|
static chr lexdigits _ANSI_ARGS_((struct vars *, int, int, int));
|
|
static int brenext _ANSI_ARGS_((struct vars *, pchr));
|
|
static VOID skip _ANSI_ARGS_((struct vars *));
|
|
static chr newline _ANSI_ARGS_((NOPARMS));
|
|
#ifdef REG_DEBUG
|
|
static chr *ch _ANSI_ARGS_((NOPARMS));
|
|
#endif
|
|
static chr chrnamed _ANSI_ARGS_((struct vars *, chr *, chr *, pchr));
|
|
/* === regc_color.c === */
|
|
static VOID initcm _ANSI_ARGS_((struct vars *, struct colormap *));
|
|
static VOID freecm _ANSI_ARGS_((struct colormap *));
|
|
static VOID cmtreefree _ANSI_ARGS_((struct colormap *, union tree *, int));
|
|
static color setcolor _ANSI_ARGS_((struct colormap *, pchr, pcolor));
|
|
static color maxcolor _ANSI_ARGS_((struct colormap *));
|
|
static color newcolor _ANSI_ARGS_((struct colormap *));
|
|
static VOID freecolor _ANSI_ARGS_((struct colormap *, pcolor));
|
|
static color pseudocolor _ANSI_ARGS_((struct colormap *));
|
|
static color subcolor _ANSI_ARGS_((struct colormap *, pchr c));
|
|
static color newsub _ANSI_ARGS_((struct colormap *, pcolor));
|
|
static VOID subrange _ANSI_ARGS_((struct vars *, pchr, pchr, struct state *, struct state *));
|
|
static VOID subblock _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
|
|
static VOID okcolors _ANSI_ARGS_((struct nfa *, struct colormap *));
|
|
static VOID colorchain _ANSI_ARGS_((struct colormap *, struct arc *));
|
|
static VOID uncolorchain _ANSI_ARGS_((struct colormap *, struct arc *));
|
|
static int singleton _ANSI_ARGS_((struct colormap *, pchr c));
|
|
static VOID rainbow _ANSI_ARGS_((struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *));
|
|
static VOID colorcomplement _ANSI_ARGS_((struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *));
|
|
#ifdef REG_DEBUG
|
|
static VOID dumpcolors _ANSI_ARGS_((struct colormap *, FILE *));
|
|
static VOID fillcheck _ANSI_ARGS_((struct colormap *, union tree *, int, FILE *));
|
|
static VOID dumpchr _ANSI_ARGS_((pchr, FILE *));
|
|
#endif
|
|
/* === regc_nfa.c === */
|
|
static struct nfa *newnfa _ANSI_ARGS_((struct vars *, struct colormap *, struct nfa *));
|
|
static VOID freenfa _ANSI_ARGS_((struct nfa *));
|
|
static struct state *newstate _ANSI_ARGS_((struct nfa *));
|
|
static struct state *newfstate _ANSI_ARGS_((struct nfa *, int flag));
|
|
static VOID dropstate _ANSI_ARGS_((struct nfa *, struct state *));
|
|
static VOID freestate _ANSI_ARGS_((struct nfa *, struct state *));
|
|
static VOID destroystate _ANSI_ARGS_((struct nfa *, struct state *));
|
|
static VOID newarc _ANSI_ARGS_((struct nfa *, int, pcolor, struct state *, struct state *));
|
|
static struct arc *allocarc _ANSI_ARGS_((struct nfa *, struct state *));
|
|
static VOID freearc _ANSI_ARGS_((struct nfa *, struct arc *));
|
|
static struct arc *findarc _ANSI_ARGS_((struct state *, int, pcolor));
|
|
static VOID cparc _ANSI_ARGS_((struct nfa *, struct arc *, struct state *, struct state *));
|
|
static VOID moveins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID copyins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID moveouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID copyouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID cloneouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, int));
|
|
static VOID delsub _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID deltraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID dupnfa _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, struct state *));
|
|
static VOID duptraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
|
|
static VOID cleartraverse _ANSI_ARGS_((struct nfa *, struct state *));
|
|
static VOID specialcolors _ANSI_ARGS_((struct nfa *));
|
|
static long optimize _ANSI_ARGS_((struct nfa *, FILE *));
|
|
static VOID pullback _ANSI_ARGS_((struct nfa *, FILE *));
|
|
static int pull _ANSI_ARGS_((struct nfa *, struct arc *));
|
|
static VOID pushfwd _ANSI_ARGS_((struct nfa *, FILE *));
|
|
static int push _ANSI_ARGS_((struct nfa *, struct arc *));
|
|
#define INCOMPATIBLE 1 /* destroys arc */
|
|
#define SATISFIED 2 /* constraint satisfied */
|
|
#define COMPATIBLE 3 /* compatible but not satisfied yet */
|
|
static int combine _ANSI_ARGS_((struct arc *, struct arc *));
|
|
static VOID fixempties _ANSI_ARGS_((struct nfa *, FILE *));
|
|
static int unempty _ANSI_ARGS_((struct nfa *, struct arc *));
|
|
static VOID cleanup _ANSI_ARGS_((struct nfa *));
|
|
static VOID markreachable _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
|
|
static VOID markcanreach _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
|
|
static long analyze _ANSI_ARGS_((struct nfa *));
|
|
static VOID compact _ANSI_ARGS_((struct nfa *, struct cnfa *));
|
|
static VOID carcsort _ANSI_ARGS_((struct carc *, struct carc *));
|
|
static VOID freecnfa _ANSI_ARGS_((struct cnfa *));
|
|
static VOID dumpnfa _ANSI_ARGS_((struct nfa *, FILE *));
|
|
#ifdef REG_DEBUG
|
|
static VOID dumpstate _ANSI_ARGS_((struct state *, FILE *));
|
|
static VOID dumparcs _ANSI_ARGS_((struct state *, FILE *));
|
|
static int dumprarcs _ANSI_ARGS_((struct arc *, struct state *, FILE *, int));
|
|
static VOID dumparc _ANSI_ARGS_((struct arc *, struct state *, FILE *));
|
|
#endif
|
|
static VOID dumpcnfa _ANSI_ARGS_((struct cnfa *, FILE *));
|
|
#ifdef REG_DEBUG
|
|
static VOID dumpcstate _ANSI_ARGS_((int, struct carc *, struct cnfa *, FILE *));
|
|
#endif
|
|
/* === regc_cvec.c === */
|
|
static struct cvec *newcvec _ANSI_ARGS_((int, int, int));
|
|
static struct cvec *clearcvec _ANSI_ARGS_((struct cvec *));
|
|
static VOID addchr _ANSI_ARGS_((struct cvec *, pchr));
|
|
static VOID addrange _ANSI_ARGS_((struct cvec *, pchr, pchr));
|
|
static VOID addmcce _ANSI_ARGS_((struct cvec *, chr *, chr *));
|
|
static int haschr _ANSI_ARGS_((struct cvec *, pchr));
|
|
static struct cvec *getcvec _ANSI_ARGS_((struct vars *, int, int, int));
|
|
static VOID freecvec _ANSI_ARGS_((struct cvec *));
|
|
/* === regc_locale.c === */
|
|
static int nmcces _ANSI_ARGS_((struct vars *));
|
|
static int nleaders _ANSI_ARGS_((struct vars *));
|
|
static struct cvec *allmcces _ANSI_ARGS_((struct vars *, struct cvec *));
|
|
static celt element _ANSI_ARGS_((struct vars *, chr *, chr *));
|
|
static struct cvec *range _ANSI_ARGS_((struct vars *, celt, celt, int));
|
|
static int before _ANSI_ARGS_((celt, celt));
|
|
static struct cvec *eclass _ANSI_ARGS_((struct vars *, celt, int));
|
|
static struct cvec *cclass _ANSI_ARGS_((struct vars *, chr *, chr *, int));
|
|
static struct cvec *allcases _ANSI_ARGS_((struct vars *, pchr));
|
|
static int cmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
|
|
static int casecmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
|
|
/* automatically gathered by fwd; do not hand-edit */
|
|
/* =====^!^===== end forwards =====^!^===== */
|
|
|
|
|
|
|
|
/* internal variables, bundled for easy passing around */
|
|
struct vars {
|
|
regex_t *re;
|
|
chr *now; /* scan pointer into string */
|
|
chr *stop; /* end of string */
|
|
chr *savenow; /* saved now and stop for "subroutine call" */
|
|
chr *savestop;
|
|
int err; /* error code (0 if none) */
|
|
int cflags; /* copy of compile flags */
|
|
int lasttype; /* type of previous token */
|
|
int nexttype; /* type of next token */
|
|
chr nextvalue; /* value (if any) of next token */
|
|
int lexcon; /* lexical context type (see lex.c) */
|
|
int nsubexp; /* subexpression count */
|
|
struct subre **subs; /* subRE pointer vector */
|
|
size_t nsubs; /* length of vector */
|
|
struct subre *sub10[10]; /* initial vector, enough for most */
|
|
struct nfa *nfa; /* the NFA */
|
|
struct colormap *cm; /* character color map */
|
|
color nlcolor; /* color of newline */
|
|
struct state *wordchrs; /* state in nfa holding word-char outarcs */
|
|
struct subre *tree; /* subexpression tree */
|
|
struct subre *treechain; /* all tree nodes allocated */
|
|
struct subre *treefree; /* any free tree nodes */
|
|
int ntree; /* number of tree nodes */
|
|
struct cvec *cv; /* interface cvec */
|
|
struct cvec *cv2; /* utility cvec */
|
|
struct cvec *mcces; /* collating-element information */
|
|
# define ISCELEADER(v,c) (v->mcces != NULL && haschr(v->mcces, (c)))
|
|
struct state *mccepbegin; /* in nfa, start of MCCE prototypes */
|
|
struct state *mccepend; /* in nfa, end of MCCE prototypes */
|
|
struct subre *lacons; /* lookahead-constraint vector */
|
|
int nlacons; /* size of lacons */
|
|
};
|
|
|
|
/* parsing macros; most know that `v' is the struct vars pointer */
|
|
#define NEXT() (next(v)) /* advance by one token */
|
|
#define SEE(t) (v->nexttype == (t)) /* is next token this? */
|
|
#define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */
|
|
#define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */
|
|
#define ISERR() VISERR(v)
|
|
#define VERR(vv,e) ((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\
|
|
((vv)->err = (e)))
|
|
#define ERR(e) VERR(v, e) /* record an error */
|
|
#define NOERR() {if (ISERR()) return;} /* if error seen, return */
|
|
#define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */
|
|
#define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */
|
|
#define INSIST(c, e) ((c) ? 0 : ERR(e)) /* if condition false, error */
|
|
#define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */
|
|
#define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y)
|
|
|
|
/* token type codes, some also used as NFA arc types */
|
|
#define EMPTY 'n' /* no token present */
|
|
#define EOS 'e' /* end of string */
|
|
#define PLAIN 'p' /* ordinary character */
|
|
#define DIGIT 'd' /* digit (in bound) */
|
|
#define BACKREF 'b' /* back reference */
|
|
#define COLLEL 'I' /* start of [. */
|
|
#define ECLASS 'E' /* start of [= */
|
|
#define CCLASS 'C' /* start of [: */
|
|
#define END 'X' /* end of [. [= [: */
|
|
#define RANGE 'R' /* - within [] which might be range delim. */
|
|
#define LACON 'L' /* lookahead constraint subRE */
|
|
#define AHEAD 'a' /* color-lookahead arc */
|
|
#define BEHIND 'r' /* color-lookbehind arc */
|
|
#define WBDRY 'w' /* word boundary constraint */
|
|
#define NWBDRY 'W' /* non-word-boundary constraint */
|
|
#define SBEGIN 'A' /* beginning of string (even if not BOL) */
|
|
#define SEND 'Z' /* end of string (even if not EOL) */
|
|
#define PREFER 'P' /* length preference */
|
|
|
|
/* is an arc colored, and hence on a color chain? */
|
|
#define COLORED(a) ((a)->type == PLAIN || (a)->type == AHEAD || \
|
|
(a)->type == BEHIND)
|
|
|
|
|
|
|
|
/* static function list */
|
|
static struct fns functions = {
|
|
rfree, /* regfree insides */
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
- compile - compile regular expression
|
|
^ int compile(regex_t *, CONST chr *, size_t, int);
|
|
*/
|
|
int
|
|
compile(re, string, len, flags)
|
|
regex_t *re;
|
|
CONST chr *string;
|
|
size_t len;
|
|
int flags;
|
|
{
|
|
struct vars var;
|
|
struct vars *v = &var;
|
|
struct guts *g;
|
|
int i;
|
|
size_t j;
|
|
FILE *debug = (flags®_PROGRESS) ? stdout : (FILE *)NULL;
|
|
# define CNOERR() { if (ISERR()) return freev(v, v->err); }
|
|
|
|
/* sanity checks */
|
|
|
|
if (re == NULL || string == NULL)
|
|
return REG_INVARG;
|
|
if ((flags®_QUOTE) &&
|
|
(flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE)))
|
|
return REG_INVARG;
|
|
if (!(flags®_EXTENDED) && (flags®_ADVF))
|
|
return REG_INVARG;
|
|
|
|
/* initial setup (after which freev() is callable) */
|
|
v->re = re;
|
|
v->now = (chr *)string;
|
|
v->stop = v->now + len;
|
|
v->savenow = v->savestop = NULL;
|
|
v->err = 0;
|
|
v->cflags = flags;
|
|
v->nsubexp = 0;
|
|
v->subs = v->sub10;
|
|
v->nsubs = 10;
|
|
for (j = 0; j < v->nsubs; j++)
|
|
v->subs[j] = NULL;
|
|
v->nfa = NULL;
|
|
v->cm = NULL;
|
|
v->nlcolor = COLORLESS;
|
|
v->wordchrs = NULL;
|
|
v->tree = NULL;
|
|
v->treechain = NULL;
|
|
v->treefree = NULL;
|
|
v->cv = NULL;
|
|
v->cv2 = NULL;
|
|
v->mcces = NULL;
|
|
v->lacons = NULL;
|
|
v->nlacons = 0;
|
|
re->re_magic = REMAGIC;
|
|
re->re_info = 0; /* bits get set during parse */
|
|
re->re_csize = sizeof(chr);
|
|
re->re_guts = NULL;
|
|
re->re_fns = VS(&functions);
|
|
|
|
/* more complex setup, malloced things */
|
|
re->re_guts = VS(MALLOC(sizeof(struct guts)));
|
|
if (re->re_guts == NULL)
|
|
return freev(v, REG_ESPACE);
|
|
g = (struct guts *)re->re_guts;
|
|
g->tree = NULL;
|
|
initcm(v, &g->cmap);
|
|
v->cm = &g->cmap;
|
|
g->lacons = NULL;
|
|
g->nlacons = 0;
|
|
ZAPCNFA(g->search);
|
|
v->nfa = newnfa(v, v->cm, (struct nfa *)NULL);
|
|
CNOERR();
|
|
v->cv = newcvec(100, 20, 10);
|
|
if (v->cv == NULL)
|
|
return freev(v, REG_ESPACE);
|
|
i = nmcces(v);
|
|
if (i > 0) {
|
|
v->mcces = newcvec(nleaders(v), 0, i);
|
|
CNOERR();
|
|
v->mcces = allmcces(v, v->mcces);
|
|
leaders(v, v->mcces);
|
|
addmcce(v->mcces, (chr *)NULL, (chr *)NULL); /* dummy */
|
|
}
|
|
CNOERR();
|
|
|
|
/* parsing */
|
|
lexstart(v); /* also handles prefixes */
|
|
if ((v->cflags®_NLSTOP) || (v->cflags®_NLANCH)) {
|
|
/* assign newline a unique color */
|
|
v->nlcolor = subcolor(v->cm, newline());
|
|
okcolors(v->nfa, v->cm);
|
|
}
|
|
CNOERR();
|
|
v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final);
|
|
assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */
|
|
CNOERR();
|
|
assert(v->tree != NULL);
|
|
|
|
/* finish setup of nfa and its subre tree */
|
|
specialcolors(v->nfa);
|
|
CNOERR();
|
|
if (debug != NULL) {
|
|
fprintf(debug, "\n\n\n========= RAW ==========\n");
|
|
dumpnfa(v->nfa, debug);
|
|
dumpst(v->tree, debug, 1);
|
|
}
|
|
optst(v, v->tree);
|
|
v->ntree = numst(v->tree, 1);
|
|
markst(v->tree);
|
|
cleanst(v);
|
|
if (debug != NULL) {
|
|
fprintf(debug, "\n\n\n========= TREE FIXED ==========\n");
|
|
dumpst(v->tree, debug, 1);
|
|
}
|
|
|
|
/* build compacted NFAs for tree and lacons */
|
|
re->re_info |= nfatree(v, v->tree, debug);
|
|
CNOERR();
|
|
assert(v->nlacons == 0 || v->lacons != NULL);
|
|
for (i = 1; i < v->nlacons; i++) {
|
|
if (debug != NULL)
|
|
fprintf(debug, "\n\n\n========= LA%d ==========\n", i);
|
|
nfanode(v, &v->lacons[i], debug);
|
|
}
|
|
CNOERR();
|
|
if (v->tree->flags&SHORTER)
|
|
NOTE(REG_USHORTEST);
|
|
|
|
/* build compacted NFAs for tree, lacons, fast search */
|
|
if (debug != NULL)
|
|
fprintf(debug, "\n\n\n========= SEARCH ==========\n");
|
|
/* can sacrifice main NFA now, so use it as work area */
|
|
(DISCARD)optimize(v->nfa, debug);
|
|
CNOERR();
|
|
makesearch(v, v->nfa);
|
|
CNOERR();
|
|
compact(v->nfa, &g->search);
|
|
CNOERR();
|
|
|
|
/* looks okay, package it up */
|
|
re->re_nsub = v->nsubexp;
|
|
v->re = NULL; /* freev no longer frees re */
|
|
g->magic = GUTSMAGIC;
|
|
g->cflags = v->cflags;
|
|
g->info = re->re_info;
|
|
g->nsub = re->re_nsub;
|
|
g->tree = v->tree;
|
|
v->tree = NULL;
|
|
g->ntree = v->ntree;
|
|
g->compare = (v->cflags®_ICASE) ? casecmp : cmp;
|
|
g->lacons = v->lacons;
|
|
v->lacons = NULL;
|
|
g->nlacons = v->nlacons;
|
|
|
|
if (flags®_DUMP)
|
|
dump(re, stdout);
|
|
|
|
assert(v->err == 0);
|
|
return freev(v, 0);
|
|
}
|
|
|
|
/*
|
|
- moresubs - enlarge subRE vector
|
|
^ static VOID moresubs(struct vars *, int);
|
|
*/
|
|
static VOID
|
|
moresubs(v, wanted)
|
|
struct vars *v;
|
|
int wanted; /* want enough room for this one */
|
|
{
|
|
struct subre **p;
|
|
size_t n;
|
|
|
|
assert(wanted > 0 && (size_t)wanted >= v->nsubs);
|
|
n = (size_t)wanted * 3 / 2 + 1;
|
|
if (v->subs == v->sub10) {
|
|
p = (struct subre **)MALLOC(n * sizeof(struct subre *));
|
|
if (p != NULL)
|
|
memcpy(VS(p), VS(v->subs),
|
|
v->nsubs * sizeof(struct subre *));
|
|
} else
|
|
p = (struct subre **)REALLOC(v->subs, n*sizeof(struct subre *));
|
|
if (p == NULL) {
|
|
ERR(REG_ESPACE);
|
|
return;
|
|
}
|
|
v->subs = p;
|
|
for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++)
|
|
*p = NULL;
|
|
assert(v->nsubs == n);
|
|
assert((size_t)wanted < v->nsubs);
|
|
}
|
|
|
|
/*
|
|
- freev - free vars struct's substructures where necessary
|
|
* Optionally does error-number setting, and always returns error code
|
|
* (if any), to make error-handling code terser.
|
|
^ static int freev(struct vars *, int);
|
|
*/
|
|
static int
|
|
freev(v, err)
|
|
struct vars *v;
|
|
int err;
|
|
{
|
|
if (v->re != NULL)
|
|
rfree(v->re);
|
|
if (v->subs != v->sub10)
|
|
FREE(v->subs);
|
|
if (v->nfa != NULL)
|
|
freenfa(v->nfa);
|
|
if (v->tree != NULL)
|
|
freesubre(v, v->tree);
|
|
if (v->treechain != NULL)
|
|
cleanst(v);
|
|
if (v->cv != NULL)
|
|
freecvec(v->cv);
|
|
if (v->cv2 != NULL)
|
|
freecvec(v->cv2);
|
|
if (v->mcces != NULL)
|
|
freecvec(v->mcces);
|
|
if (v->lacons != NULL)
|
|
freelacons(v->lacons, v->nlacons);
|
|
ERR(err); /* nop if err==0 */
|
|
|
|
return v->err;
|
|
}
|
|
|
|
/*
|
|
- makesearch - turn an NFA into a search NFA (implicit prepend of .*?)
|
|
* NFA must have been optimize()d already.
|
|
^ static VOID makesearch(struct vars *, struct nfa *);
|
|
*/
|
|
static VOID
|
|
makesearch(v, nfa)
|
|
struct vars *v;
|
|
struct nfa *nfa;
|
|
{
|
|
struct arc *a;
|
|
struct arc *b;
|
|
struct state *pre = nfa->pre;
|
|
struct state *s;
|
|
struct state *s2;
|
|
struct state *slist;
|
|
|
|
/* no loops are needed if it's anchored */
|
|
for (a = pre->outs; a != NULL; a = a->outchain) {
|
|
assert(a->type == PLAIN);
|
|
if (a->co != nfa->bos[0] && a->co != nfa->bos[1])
|
|
break;
|
|
}
|
|
if (a != NULL) {
|
|
/* add implicit .* in front */
|
|
rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre);
|
|
|
|
/* and ^* and \A* too -- not always necessary, but harmless */
|
|
newarc(nfa, PLAIN, nfa->bos[0], pre, pre);
|
|
newarc(nfa, PLAIN, nfa->bos[1], pre, pre);
|
|
}
|
|
|
|
/*
|
|
* Now here's the subtle part. Because many REs have no lookback
|
|
* constraints, often knowing when you were in the pre state tells
|
|
* you little; it's the next state(s) that are informative. But
|
|
* some of them may have other inarcs, i.e. it may be possible to
|
|
* make actual progress and then return to one of them. We must
|
|
* de-optimize such cases, splitting each such state into progress
|
|
* and no-progress states.
|
|
*/
|
|
|
|
/* first, make a list of the states */
|
|
slist = NULL;
|
|
for (a = pre->outs; a != NULL; a = a->outchain) {
|
|
s = a->to;
|
|
for (b = s->ins; b != NULL; b = b->inchain)
|
|
if (b->from != pre)
|
|
break;
|
|
if (b != NULL) { /* must be split */
|
|
if (s->tmp == NULL) { /* if not already in the list */
|
|
/* (fixes bugs 505048, 230589, */
|
|
/* 840258, 504785) */
|
|
s->tmp = slist;
|
|
slist = s;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* do the splits */
|
|
for (s = slist; s != NULL; s = s2) {
|
|
s2 = newstate(nfa);
|
|
copyouts(nfa, s, s2);
|
|
for (a = s->ins; a != NULL; a = b) {
|
|
b = a->inchain;
|
|
if (a->from != pre) {
|
|
cparc(nfa, a, a->from, s2);
|
|
freearc(nfa, a);
|
|
}
|
|
}
|
|
s2 = s->tmp;
|
|
s->tmp = NULL; /* clean up while we're at it */
|
|
}
|
|
}
|
|
|
|
/*
|
|
- parse - parse an RE
|
|
* This is actually just the top level, which parses a bunch of branches
|
|
* tied together with '|'. They appear in the tree as the left children
|
|
* of a chain of '|' subres.
|
|
^ static struct subre *parse(struct vars *, int, int, struct state *,
|
|
^ struct state *);
|
|
*/
|
|
static struct subre *
|
|
parse(v, stopper, type, init, final)
|
|
struct vars *v;
|
|
int stopper; /* EOS or ')' */
|
|
int type; /* LACON (lookahead subRE) or PLAIN */
|
|
struct state *init; /* initial state */
|
|
struct state *final; /* final state */
|
|
{
|
|
struct state *left; /* scaffolding for branch */
|
|
struct state *right;
|
|
struct subre *branches; /* top level */
|
|
struct subre *branch; /* current branch */
|
|
struct subre *t; /* temporary */
|
|
int firstbranch; /* is this the first branch? */
|
|
|
|
assert(stopper == ')' || stopper == EOS);
|
|
|
|
branches = subre(v, '|', LONGER, init, final);
|
|
NOERRN();
|
|
branch = branches;
|
|
firstbranch = 1;
|
|
do { /* a branch */
|
|
if (!firstbranch) {
|
|
/* need a place to hang it */
|
|
branch->right = subre(v, '|', LONGER, init, final);
|
|
NOERRN();
|
|
branch = branch->right;
|
|
}
|
|
firstbranch = 0;
|
|
left = newstate(v->nfa);
|
|
right = newstate(v->nfa);
|
|
NOERRN();
|
|
EMPTYARC(init, left);
|
|
EMPTYARC(right, final);
|
|
NOERRN();
|
|
branch->left = parsebranch(v, stopper, type, left, right, 0);
|
|
NOERRN();
|
|
branch->flags |= UP(branch->flags | branch->left->flags);
|
|
if ((branch->flags &~ branches->flags) != 0) /* new flags */
|
|
for (t = branches; t != branch; t = t->right)
|
|
t->flags |= branch->flags;
|
|
} while (EAT('|'));
|
|
assert(SEE(stopper) || SEE(EOS));
|
|
|
|
if (!SEE(stopper)) {
|
|
assert(stopper == ')' && SEE(EOS));
|
|
ERR(REG_EPAREN);
|
|
}
|
|
|
|
/* optimize out simple cases */
|
|
if (branch == branches) { /* only one branch */
|
|
assert(branch->right == NULL);
|
|
t = branch->left;
|
|
branch->left = NULL;
|
|
freesubre(v, branches);
|
|
branches = t;
|
|
} else if (!MESSY(branches->flags)) { /* no interesting innards */
|
|
freesubre(v, branches->left);
|
|
branches->left = NULL;
|
|
freesubre(v, branches->right);
|
|
branches->right = NULL;
|
|
branches->op = '=';
|
|
}
|
|
|
|
return branches;
|
|
}
|
|
|
|
/*
|
|
- parsebranch - parse one branch of an RE
|
|
* This mostly manages concatenation, working closely with parseqatom().
|
|
* Concatenated things are bundled up as much as possible, with separate
|
|
* ',' nodes introduced only when necessary due to substructure.
|
|
^ static struct subre *parsebranch(struct vars *, int, int, struct state *,
|
|
^ struct state *, int);
|
|
*/
|
|
static struct subre *
|
|
parsebranch(v, stopper, type, left, right, partial)
|
|
struct vars *v;
|
|
int stopper; /* EOS or ')' */
|
|
int type; /* LACON (lookahead subRE) or PLAIN */
|
|
struct state *left; /* leftmost state */
|
|
struct state *right; /* rightmost state */
|
|
int partial; /* is this only part of a branch? */
|
|
{
|
|
struct state *lp; /* left end of current construct */
|
|
int seencontent; /* is there anything in this branch yet? */
|
|
struct subre *t;
|
|
|
|
lp = left;
|
|
seencontent = 0;
|
|
t = subre(v, '=', 0, left, right); /* op '=' is tentative */
|
|
NOERRN();
|
|
while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) {
|
|
if (seencontent) { /* implicit concat operator */
|
|
lp = newstate(v->nfa);
|
|
NOERRN();
|
|
moveins(v->nfa, right, lp);
|
|
}
|
|
seencontent = 1;
|
|
|
|
/* NB, recursion in parseqatom() may swallow rest of branch */
|
|
parseqatom(v, stopper, type, lp, right, t);
|
|
}
|
|
|
|
if (!seencontent) { /* empty branch */
|
|
if (!partial)
|
|
NOTE(REG_UUNSPEC);
|
|
assert(lp == left);
|
|
EMPTYARC(left, right);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
- parseqatom - parse one quantified atom or constraint of an RE
|
|
* The bookkeeping near the end cooperates very closely with parsebranch();
|
|
* in particular, it contains a recursion that can involve parsing the rest
|
|
* of the branch, making this function's name somewhat inaccurate.
|
|
^ static VOID parseqatom(struct vars *, int, int, struct state *,
|
|
^ struct state *, struct subre *);
|
|
*/
|
|
static VOID
|
|
parseqatom(v, stopper, type, lp, rp, top)
|
|
struct vars *v;
|
|
int stopper; /* EOS or ')' */
|
|
int type; /* LACON (lookahead subRE) or PLAIN */
|
|
struct state *lp; /* left state to hang it on */
|
|
struct state *rp; /* right state to hang it on */
|
|
struct subre *top; /* subtree top */
|
|
{
|
|
struct state *s; /* temporaries for new states */
|
|
struct state *s2;
|
|
# define ARCV(t, val) newarc(v->nfa, t, val, lp, rp)
|
|
int m, n;
|
|
struct subre *atom; /* atom's subtree */
|
|
struct subre *t;
|
|
int cap; /* capturing parens? */
|
|
int pos; /* positive lookahead? */
|
|
int subno; /* capturing-parens or backref number */
|
|
int atomtype;
|
|
int qprefer; /* quantifier short/long preference */
|
|
int f;
|
|
struct subre **atomp; /* where the pointer to atom is */
|
|
|
|
/* initial bookkeeping */
|
|
atom = NULL;
|
|
assert(lp->nouts == 0); /* must string new code */
|
|
assert(rp->nins == 0); /* between lp and rp */
|
|
subno = 0; /* just to shut lint up */
|
|
|
|
/* an atom or constraint... */
|
|
atomtype = v->nexttype;
|
|
switch (atomtype) {
|
|
/* first, constraints, which end by returning */
|
|
case '^':
|
|
ARCV('^', 1);
|
|
if (v->cflags®_NLANCH)
|
|
ARCV(BEHIND, v->nlcolor);
|
|
NEXT();
|
|
return;
|
|
break;
|
|
case '$':
|
|
ARCV('$', 1);
|
|
if (v->cflags®_NLANCH)
|
|
ARCV(AHEAD, v->nlcolor);
|
|
NEXT();
|
|
return;
|
|
break;
|
|
case SBEGIN:
|
|
ARCV('^', 1); /* BOL */
|
|
ARCV('^', 0); /* or BOS */
|
|
NEXT();
|
|
return;
|
|
break;
|
|
case SEND:
|
|
ARCV('$', 1); /* EOL */
|
|
ARCV('$', 0); /* or EOS */
|
|
NEXT();
|
|
return;
|
|
break;
|
|
case '<':
|
|
wordchrs(v); /* does NEXT() */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
nonword(v, BEHIND, lp, s);
|
|
word(v, AHEAD, s, rp);
|
|
return;
|
|
break;
|
|
case '>':
|
|
wordchrs(v); /* does NEXT() */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
word(v, BEHIND, lp, s);
|
|
nonword(v, AHEAD, s, rp);
|
|
return;
|
|
break;
|
|
case WBDRY:
|
|
wordchrs(v); /* does NEXT() */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
nonword(v, BEHIND, lp, s);
|
|
word(v, AHEAD, s, rp);
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
word(v, BEHIND, lp, s);
|
|
nonword(v, AHEAD, s, rp);
|
|
return;
|
|
break;
|
|
case NWBDRY:
|
|
wordchrs(v); /* does NEXT() */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
word(v, BEHIND, lp, s);
|
|
word(v, AHEAD, s, rp);
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
nonword(v, BEHIND, lp, s);
|
|
nonword(v, AHEAD, s, rp);
|
|
return;
|
|
break;
|
|
case LACON: /* lookahead constraint */
|
|
pos = v->nextvalue;
|
|
NEXT();
|
|
s = newstate(v->nfa);
|
|
s2 = newstate(v->nfa);
|
|
NOERR();
|
|
t = parse(v, ')', LACON, s, s2);
|
|
freesubre(v, t); /* internal structure irrelevant */
|
|
assert(SEE(')') || ISERR());
|
|
NEXT();
|
|
n = newlacon(v, s, s2, pos);
|
|
NOERR();
|
|
ARCV(LACON, n);
|
|
return;
|
|
break;
|
|
/* then errors, to get them out of the way */
|
|
case '*':
|
|
case '+':
|
|
case '?':
|
|
case '{':
|
|
ERR(REG_BADRPT);
|
|
return;
|
|
break;
|
|
default:
|
|
ERR(REG_ASSERT);
|
|
return;
|
|
break;
|
|
/* then plain characters, and minor variants on that theme */
|
|
case ')': /* unbalanced paren */
|
|
if ((v->cflags®_ADVANCED) != REG_EXTENDED) {
|
|
ERR(REG_EPAREN);
|
|
return;
|
|
}
|
|
/* legal in EREs due to specification botch */
|
|
NOTE(REG_UPBOTCH);
|
|
/* fallthrough into case PLAIN */
|
|
case PLAIN:
|
|
onechr(v, v->nextvalue, lp, rp);
|
|
okcolors(v->nfa, v->cm);
|
|
NOERR();
|
|
NEXT();
|
|
break;
|
|
case '[':
|
|
if (v->nextvalue == 1)
|
|
bracket(v, lp, rp);
|
|
else
|
|
cbracket(v, lp, rp);
|
|
assert(SEE(']') || ISERR());
|
|
NEXT();
|
|
break;
|
|
case '.':
|
|
rainbow(v->nfa, v->cm, PLAIN,
|
|
(v->cflags®_NLSTOP) ? v->nlcolor : COLORLESS,
|
|
lp, rp);
|
|
NEXT();
|
|
break;
|
|
/* and finally the ugly stuff */
|
|
case '(': /* value flags as capturing or non */
|
|
cap = (type == LACON) ? 0 : v->nextvalue;
|
|
if (cap) {
|
|
v->nsubexp++;
|
|
subno = v->nsubexp;
|
|
if ((size_t)subno >= v->nsubs)
|
|
moresubs(v, subno);
|
|
assert((size_t)subno < v->nsubs);
|
|
} else
|
|
atomtype = PLAIN; /* something that's not '(' */
|
|
NEXT();
|
|
/* need new endpoints because tree will contain pointers */
|
|
s = newstate(v->nfa);
|
|
s2 = newstate(v->nfa);
|
|
NOERR();
|
|
EMPTYARC(lp, s);
|
|
EMPTYARC(s2, rp);
|
|
NOERR();
|
|
atom = parse(v, ')', PLAIN, s, s2);
|
|
assert(SEE(')') || ISERR());
|
|
NEXT();
|
|
NOERR();
|
|
if (cap) {
|
|
v->subs[subno] = atom;
|
|
t = subre(v, '(', atom->flags|CAP, lp, rp);
|
|
NOERR();
|
|
t->subno = subno;
|
|
t->left = atom;
|
|
atom = t;
|
|
}
|
|
/* postpone everything else pending possible {0} */
|
|
break;
|
|
case BACKREF: /* the Feature From The Black Lagoon */
|
|
INSIST(type != LACON, REG_ESUBREG);
|
|
INSIST(v->nextvalue < v->nsubs, REG_ESUBREG);
|
|
INSIST(v->subs[(int)v->nextvalue] != NULL, REG_ESUBREG);
|
|
NOERR();
|
|
assert(v->nextvalue > 0);
|
|
atom = subre(v, 'b', BACKR, lp, rp);
|
|
subno = v->nextvalue;
|
|
atom->subno = subno;
|
|
EMPTYARC(lp, rp); /* temporarily, so there's something */
|
|
NEXT();
|
|
break;
|
|
}
|
|
|
|
/* ...and an atom may be followed by a quantifier */
|
|
switch (v->nexttype) {
|
|
case '*':
|
|
m = 0;
|
|
n = INFINITY;
|
|
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
|
NEXT();
|
|
break;
|
|
case '+':
|
|
m = 1;
|
|
n = INFINITY;
|
|
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
|
NEXT();
|
|
break;
|
|
case '?':
|
|
m = 0;
|
|
n = 1;
|
|
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
|
NEXT();
|
|
break;
|
|
case '{':
|
|
NEXT();
|
|
m = scannum(v);
|
|
if (EAT(',')) {
|
|
if (SEE(DIGIT))
|
|
n = scannum(v);
|
|
else
|
|
n = INFINITY;
|
|
if (m > n) {
|
|
ERR(REG_BADBR);
|
|
return;
|
|
}
|
|
/* {m,n} exercises preference, even if it's {m,m} */
|
|
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
|
} else {
|
|
n = m;
|
|
/* {m} passes operand's preference through */
|
|
qprefer = 0;
|
|
}
|
|
if (!SEE('}')) { /* catches errors too */
|
|
ERR(REG_BADBR);
|
|
return;
|
|
}
|
|
NEXT();
|
|
break;
|
|
default: /* no quantifier */
|
|
m = n = 1;
|
|
qprefer = 0;
|
|
break;
|
|
}
|
|
|
|
/* annoying special case: {0} or {0,0} cancels everything */
|
|
if (m == 0 && n == 0) {
|
|
if (atom != NULL)
|
|
freesubre(v, atom);
|
|
if (atomtype == '(')
|
|
v->subs[subno] = NULL;
|
|
delsub(v->nfa, lp, rp);
|
|
EMPTYARC(lp, rp);
|
|
return;
|
|
}
|
|
|
|
/* if not a messy case, avoid hard part */
|
|
assert(!MESSY(top->flags));
|
|
f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0);
|
|
if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) {
|
|
if (!(m == 1 && n == 1))
|
|
repeat(v, lp, rp, m, n);
|
|
if (atom != NULL)
|
|
freesubre(v, atom);
|
|
top->flags = f;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* hard part: something messy
|
|
* That is, capturing parens, back reference, short/long clash, or
|
|
* an atom with substructure containing one of those.
|
|
*/
|
|
|
|
/* now we'll need a subre for the contents even if they're boring */
|
|
if (atom == NULL) {
|
|
atom = subre(v, '=', 0, lp, rp);
|
|
NOERR();
|
|
}
|
|
|
|
/*
|
|
* prepare a general-purpose state skeleton
|
|
*
|
|
* ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp]
|
|
* / /
|
|
* [lp] ----> [s2] ----bypass---------------------
|
|
*
|
|
* where bypass is an empty, and prefix is some repetitions of atom
|
|
*/
|
|
s = newstate(v->nfa); /* first, new endpoints for the atom */
|
|
s2 = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
moveins(v->nfa, rp, s2);
|
|
NOERR();
|
|
atom->begin = s;
|
|
atom->end = s2;
|
|
s = newstate(v->nfa); /* and spots for prefix and bypass */
|
|
s2 = newstate(v->nfa);
|
|
NOERR();
|
|
EMPTYARC(lp, s);
|
|
EMPTYARC(lp, s2);
|
|
NOERR();
|
|
|
|
/* break remaining subRE into x{...} and what follows */
|
|
t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp);
|
|
t->left = atom;
|
|
atomp = &t->left;
|
|
/* here we should recurse... but we must postpone that to the end */
|
|
|
|
/* split top into prefix and remaining */
|
|
assert(top->op == '=' && top->left == NULL && top->right == NULL);
|
|
top->left = subre(v, '=', top->flags, top->begin, lp);
|
|
top->op = '.';
|
|
top->right = t;
|
|
|
|
/* if it's a backref, now is the time to replicate the subNFA */
|
|
if (atomtype == BACKREF) {
|
|
assert(atom->begin->nouts == 1); /* just the EMPTY */
|
|
delsub(v->nfa, atom->begin, atom->end);
|
|
assert(v->subs[subno] != NULL);
|
|
/* and here's why the recursion got postponed: it must */
|
|
/* wait until the skeleton is filled in, because it may */
|
|
/* hit a backref that wants to copy the filled-in skeleton */
|
|
dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end,
|
|
atom->begin, atom->end);
|
|
NOERR();
|
|
}
|
|
|
|
/* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */
|
|
if (m == 0) {
|
|
EMPTYARC(s2, atom->end); /* the bypass */
|
|
assert(PREF(qprefer) != 0);
|
|
f = COMBINE(qprefer, atom->flags);
|
|
t = subre(v, '|', f, lp, atom->end);
|
|
NOERR();
|
|
t->left = atom;
|
|
t->right = subre(v, '|', PREF(f), s2, atom->end);
|
|
NOERR();
|
|
t->right->left = subre(v, '=', 0, s2, atom->end);
|
|
NOERR();
|
|
*atomp = t;
|
|
atomp = &t->left;
|
|
m = 1;
|
|
}
|
|
|
|
/* deal with the rest of the quantifier */
|
|
if (atomtype == BACKREF) {
|
|
/* special case: backrefs have internal quantifiers */
|
|
EMPTYARC(s, atom->begin); /* empty prefix */
|
|
/* just stuff everything into atom */
|
|
repeat(v, atom->begin, atom->end, m, n);
|
|
atom->min = (short)m;
|
|
atom->max = (short)n;
|
|
atom->flags |= COMBINE(qprefer, atom->flags);
|
|
} else if (m == 1 && n == 1) {
|
|
/* no/vacuous quantifier: done */
|
|
EMPTYARC(s, atom->begin); /* empty prefix */
|
|
} else {
|
|
/* turn x{m,n} into x{m-1,n-1}x, with capturing */
|
|
/* parens in only second x */
|
|
dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin);
|
|
assert(m >= 1 && m != INFINITY && n >= 1);
|
|
repeat(v, s, atom->begin, m-1, (n == INFINITY) ? n : n-1);
|
|
f = COMBINE(qprefer, atom->flags);
|
|
t = subre(v, '.', f, s, atom->end); /* prefix and atom */
|
|
NOERR();
|
|
t->left = subre(v, '=', PREF(f), s, atom->begin);
|
|
NOERR();
|
|
t->right = atom;
|
|
*atomp = t;
|
|
}
|
|
|
|
/* and finally, look after that postponed recursion */
|
|
t = top->right;
|
|
if (!(SEE('|') || SEE(stopper) || SEE(EOS)))
|
|
t->right = parsebranch(v, stopper, type, atom->end, rp, 1);
|
|
else {
|
|
EMPTYARC(atom->end, rp);
|
|
t->right = subre(v, '=', 0, atom->end, rp);
|
|
}
|
|
assert(SEE('|') || SEE(stopper) || SEE(EOS));
|
|
t->flags |= COMBINE(t->flags, t->right->flags);
|
|
top->flags |= COMBINE(top->flags, t->flags);
|
|
}
|
|
|
|
/*
|
|
- nonword - generate arcs for non-word-character ahead or behind
|
|
^ static VOID nonword(struct vars *, int, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
nonword(v, dir, lp, rp)
|
|
struct vars *v;
|
|
int dir; /* AHEAD or BEHIND */
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
int anchor = (dir == AHEAD) ? '$' : '^';
|
|
|
|
assert(dir == AHEAD || dir == BEHIND);
|
|
newarc(v->nfa, anchor, 1, lp, rp);
|
|
newarc(v->nfa, anchor, 0, lp, rp);
|
|
colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp);
|
|
/* (no need for special attention to \n) */
|
|
}
|
|
|
|
/*
|
|
- word - generate arcs for word character ahead or behind
|
|
^ static VOID word(struct vars *, int, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
word(v, dir, lp, rp)
|
|
struct vars *v;
|
|
int dir; /* AHEAD or BEHIND */
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
assert(dir == AHEAD || dir == BEHIND);
|
|
cloneouts(v->nfa, v->wordchrs, lp, rp, dir);
|
|
/* (no need for special attention to \n) */
|
|
}
|
|
|
|
/*
|
|
- scannum - scan a number
|
|
^ static int scannum(struct vars *);
|
|
*/
|
|
static int /* value, <= DUPMAX */
|
|
scannum(v)
|
|
struct vars *v;
|
|
{
|
|
int n = 0;
|
|
|
|
while (SEE(DIGIT) && n < DUPMAX) {
|
|
n = n*10 + v->nextvalue;
|
|
NEXT();
|
|
}
|
|
if (SEE(DIGIT) || n > DUPMAX) {
|
|
ERR(REG_BADBR);
|
|
return 0;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
- repeat - replicate subNFA for quantifiers
|
|
* The duplication sequences used here are chosen carefully so that any
|
|
* pointers starting out pointing into the subexpression end up pointing into
|
|
* the last occurrence. (Note that it may not be strung between the same
|
|
* left and right end states, however!) This used to be important for the
|
|
* subRE tree, although the important bits are now handled by the in-line
|
|
* code in parse(), and when this is called, it doesn't matter any more.
|
|
^ static VOID repeat(struct vars *, struct state *, struct state *, int, int);
|
|
*/
|
|
static VOID
|
|
repeat(v, lp, rp, m, n)
|
|
struct vars *v;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
int m;
|
|
int n;
|
|
{
|
|
# define SOME 2
|
|
# define INF 3
|
|
# define PAIR(x, y) ((x)*4 + (y))
|
|
# define REDUCE(x) ( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) )
|
|
CONST int rm = REDUCE(m);
|
|
CONST int rn = REDUCE(n);
|
|
struct state *s;
|
|
struct state *s2;
|
|
|
|
switch (PAIR(rm, rn)) {
|
|
case PAIR(0, 0): /* empty string */
|
|
delsub(v->nfa, lp, rp);
|
|
EMPTYARC(lp, rp);
|
|
break;
|
|
case PAIR(0, 1): /* do as x| */
|
|
EMPTYARC(lp, rp);
|
|
break;
|
|
case PAIR(0, SOME): /* do as x{1,n}| */
|
|
repeat(v, lp, rp, 1, n);
|
|
NOERR();
|
|
EMPTYARC(lp, rp);
|
|
break;
|
|
case PAIR(0, INF): /* loop x around */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
moveins(v->nfa, rp, s);
|
|
EMPTYARC(lp, s);
|
|
EMPTYARC(s, rp);
|
|
break;
|
|
case PAIR(1, 1): /* no action required */
|
|
break;
|
|
case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
dupnfa(v->nfa, s, rp, lp, s);
|
|
NOERR();
|
|
repeat(v, lp, s, 1, n-1);
|
|
NOERR();
|
|
EMPTYARC(lp, s);
|
|
break;
|
|
case PAIR(1, INF): /* add loopback arc */
|
|
s = newstate(v->nfa);
|
|
s2 = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
moveins(v->nfa, rp, s2);
|
|
EMPTYARC(lp, s);
|
|
EMPTYARC(s2, rp);
|
|
EMPTYARC(s2, s);
|
|
break;
|
|
case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
dupnfa(v->nfa, s, rp, lp, s);
|
|
NOERR();
|
|
repeat(v, lp, s, m-1, n-1);
|
|
break;
|
|
case PAIR(SOME, INF): /* do as x{m-1,}x */
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
moveouts(v->nfa, lp, s);
|
|
dupnfa(v->nfa, s, rp, lp, s);
|
|
NOERR();
|
|
repeat(v, lp, s, m-1, n);
|
|
break;
|
|
default:
|
|
ERR(REG_ASSERT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- bracket - handle non-complemented bracket expression
|
|
* Also called from cbracket for complemented bracket expressions.
|
|
^ static VOID bracket(struct vars *, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
bracket(v, lp, rp)
|
|
struct vars *v;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
assert(SEE('['));
|
|
NEXT();
|
|
while (!SEE(']') && !SEE(EOS))
|
|
brackpart(v, lp, rp);
|
|
assert(SEE(']') || ISERR());
|
|
okcolors(v->nfa, v->cm);
|
|
}
|
|
|
|
/*
|
|
- cbracket - handle complemented bracket expression
|
|
* We do it by calling bracket() with dummy endpoints, and then complementing
|
|
* the result. The alternative would be to invoke rainbow(), and then delete
|
|
* arcs as the b.e. is seen... but that gets messy.
|
|
^ static VOID cbracket(struct vars *, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
cbracket(v, lp, rp)
|
|
struct vars *v;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
struct state *left = newstate(v->nfa);
|
|
struct state *right = newstate(v->nfa);
|
|
struct state *s;
|
|
struct arc *a; /* arc from lp */
|
|
struct arc *ba; /* arc from left, from bracket() */
|
|
struct arc *pa; /* MCCE-prototype arc */
|
|
color co;
|
|
chr *p;
|
|
int i;
|
|
|
|
NOERR();
|
|
bracket(v, left, right);
|
|
if (v->cflags®_NLSTOP)
|
|
newarc(v->nfa, PLAIN, v->nlcolor, left, right);
|
|
NOERR();
|
|
|
|
assert(lp->nouts == 0); /* all outarcs will be ours */
|
|
|
|
/* easy part of complementing */
|
|
colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp);
|
|
NOERR();
|
|
if (v->mcces == NULL) { /* no MCCEs -- we're done */
|
|
dropstate(v->nfa, left);
|
|
assert(right->nins == 0);
|
|
freestate(v->nfa, right);
|
|
return;
|
|
}
|
|
|
|
/* but complementing gets messy in the presence of MCCEs... */
|
|
NOTE(REG_ULOCALE);
|
|
for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) {
|
|
co = GETCOLOR(v->cm, *p);
|
|
a = findarc(lp, PLAIN, co);
|
|
ba = findarc(left, PLAIN, co);
|
|
if (ba == NULL) {
|
|
assert(a != NULL);
|
|
freearc(v->nfa, a);
|
|
} else {
|
|
assert(a == NULL);
|
|
}
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
newarc(v->nfa, PLAIN, co, lp, s);
|
|
NOERR();
|
|
pa = findarc(v->mccepbegin, PLAIN, co);
|
|
assert(pa != NULL);
|
|
if (ba == NULL) { /* easy case, need all of them */
|
|
cloneouts(v->nfa, pa->to, s, rp, PLAIN);
|
|
newarc(v->nfa, '$', 1, s, rp);
|
|
newarc(v->nfa, '$', 0, s, rp);
|
|
colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp);
|
|
} else { /* must be selective */
|
|
if (findarc(ba->to, '$', 1) == NULL) {
|
|
newarc(v->nfa, '$', 1, s, rp);
|
|
newarc(v->nfa, '$', 0, s, rp);
|
|
colorcomplement(v->nfa, v->cm, AHEAD, pa->to,
|
|
s, rp);
|
|
}
|
|
for (pa = pa->to->outs; pa != NULL; pa = pa->outchain)
|
|
if (findarc(ba->to, PLAIN, pa->co) == NULL)
|
|
newarc(v->nfa, PLAIN, pa->co, s, rp);
|
|
if (s->nouts == 0) /* limit of selectivity: none */
|
|
dropstate(v->nfa, s); /* frees arc too */
|
|
}
|
|
NOERR();
|
|
}
|
|
|
|
delsub(v->nfa, left, right);
|
|
assert(left->nouts == 0);
|
|
freestate(v->nfa, left);
|
|
assert(right->nins == 0);
|
|
freestate(v->nfa, right);
|
|
}
|
|
|
|
/*
|
|
- brackpart - handle one item (or range) within a bracket expression
|
|
^ static VOID brackpart(struct vars *, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
brackpart(v, lp, rp)
|
|
struct vars *v;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
celt startc;
|
|
celt endc;
|
|
struct cvec *cv;
|
|
chr *startp;
|
|
chr *endp;
|
|
chr c[1];
|
|
|
|
/* parse something, get rid of special cases, take shortcuts */
|
|
switch (v->nexttype) {
|
|
case RANGE: /* a-b-c or other botch */
|
|
ERR(REG_ERANGE);
|
|
return;
|
|
break;
|
|
case PLAIN:
|
|
c[0] = v->nextvalue;
|
|
NEXT();
|
|
/* shortcut for ordinary chr (not range, not MCCE leader) */
|
|
if (!SEE(RANGE) && !ISCELEADER(v, c[0])) {
|
|
onechr(v, c[0], lp, rp);
|
|
return;
|
|
}
|
|
startc = element(v, c, c+1);
|
|
NOERR();
|
|
break;
|
|
case COLLEL:
|
|
startp = v->now;
|
|
endp = scanplain(v);
|
|
INSIST(startp < endp, REG_ECOLLATE);
|
|
NOERR();
|
|
startc = element(v, startp, endp);
|
|
NOERR();
|
|
break;
|
|
case ECLASS:
|
|
startp = v->now;
|
|
endp = scanplain(v);
|
|
INSIST(startp < endp, REG_ECOLLATE);
|
|
NOERR();
|
|
startc = element(v, startp, endp);
|
|
NOERR();
|
|
cv = eclass(v, startc, (v->cflags®_ICASE));
|
|
NOERR();
|
|
dovec(v, cv, lp, rp);
|
|
return;
|
|
break;
|
|
case CCLASS:
|
|
startp = v->now;
|
|
endp = scanplain(v);
|
|
INSIST(startp < endp, REG_ECTYPE);
|
|
NOERR();
|
|
cv = cclass(v, startp, endp, (v->cflags®_ICASE));
|
|
NOERR();
|
|
dovec(v, cv, lp, rp);
|
|
return;
|
|
break;
|
|
default:
|
|
ERR(REG_ASSERT);
|
|
return;
|
|
break;
|
|
}
|
|
|
|
if (SEE(RANGE)) {
|
|
NEXT();
|
|
switch (v->nexttype) {
|
|
case PLAIN:
|
|
case RANGE:
|
|
c[0] = v->nextvalue;
|
|
NEXT();
|
|
endc = element(v, c, c+1);
|
|
NOERR();
|
|
break;
|
|
case COLLEL:
|
|
startp = v->now;
|
|
endp = scanplain(v);
|
|
INSIST(startp < endp, REG_ECOLLATE);
|
|
NOERR();
|
|
endc = element(v, startp, endp);
|
|
NOERR();
|
|
break;
|
|
default:
|
|
ERR(REG_ERANGE);
|
|
return;
|
|
break;
|
|
}
|
|
} else
|
|
endc = startc;
|
|
|
|
/*
|
|
* Ranges are unportable. Actually, standard C does
|
|
* guarantee that digits are contiguous, but making
|
|
* that an exception is just too complicated.
|
|
*/
|
|
if (startc != endc)
|
|
NOTE(REG_UUNPORT);
|
|
cv = range(v, startc, endc, (v->cflags®_ICASE));
|
|
NOERR();
|
|
dovec(v, cv, lp, rp);
|
|
}
|
|
|
|
/*
|
|
- scanplain - scan PLAIN contents of [. etc.
|
|
* Certain bits of trickery in lex.c know that this code does not try
|
|
* to look past the final bracket of the [. etc.
|
|
^ static chr *scanplain(struct vars *);
|
|
*/
|
|
static chr * /* just after end of sequence */
|
|
scanplain(v)
|
|
struct vars *v;
|
|
{
|
|
chr *endp;
|
|
|
|
assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS));
|
|
NEXT();
|
|
|
|
endp = v->now;
|
|
while (SEE(PLAIN)) {
|
|
endp = v->now;
|
|
NEXT();
|
|
}
|
|
|
|
assert(SEE(END) || ISERR());
|
|
NEXT();
|
|
|
|
return endp;
|
|
}
|
|
|
|
/*
|
|
- leaders - process a cvec of collating elements to also include leaders
|
|
* Also gives all characters involved their own colors, which is almost
|
|
* certainly necessary, and sets up little disconnected subNFA.
|
|
^ static VOID leaders(struct vars *, struct cvec *);
|
|
*/
|
|
static VOID
|
|
leaders(v, cv)
|
|
struct vars *v;
|
|
struct cvec *cv;
|
|
{
|
|
int mcce;
|
|
chr *p;
|
|
chr leader;
|
|
struct state *s;
|
|
struct arc *a;
|
|
|
|
v->mccepbegin = newstate(v->nfa);
|
|
v->mccepend = newstate(v->nfa);
|
|
NOERR();
|
|
|
|
for (mcce = 0; mcce < cv->nmcces; mcce++) {
|
|
p = cv->mcces[mcce];
|
|
leader = *p;
|
|
if (!haschr(cv, leader)) {
|
|
addchr(cv, leader);
|
|
s = newstate(v->nfa);
|
|
newarc(v->nfa, PLAIN, subcolor(v->cm, leader),
|
|
v->mccepbegin, s);
|
|
okcolors(v->nfa, v->cm);
|
|
} else {
|
|
a = findarc(v->mccepbegin, PLAIN,
|
|
GETCOLOR(v->cm, leader));
|
|
assert(a != NULL);
|
|
s = a->to;
|
|
assert(s != v->mccepend);
|
|
}
|
|
p++;
|
|
assert(*p != 0 && *(p+1) == 0); /* only 2-char MCCEs for now */
|
|
newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend);
|
|
okcolors(v->nfa, v->cm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
- onechr - fill in arcs for a plain character, and possible case complements
|
|
* This is mostly a shortcut for efficient handling of the common case.
|
|
^ static VOID onechr(struct vars *, pchr, struct state *, struct state *);
|
|
*/
|
|
static VOID
|
|
onechr(v, c, lp, rp)
|
|
struct vars *v;
|
|
pchr c;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
if (!(v->cflags®_ICASE)) {
|
|
newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp);
|
|
return;
|
|
}
|
|
|
|
/* rats, need general case anyway... */
|
|
dovec(v, allcases(v, c), lp, rp);
|
|
}
|
|
|
|
/*
|
|
- dovec - fill in arcs for each element of a cvec
|
|
* This one has to handle the messy cases, like MCCEs and MCCE leaders.
|
|
^ static VOID dovec(struct vars *, struct cvec *, struct state *,
|
|
^ struct state *);
|
|
*/
|
|
static VOID
|
|
dovec(v, cv, lp, rp)
|
|
struct vars *v;
|
|
struct cvec *cv;
|
|
struct state *lp;
|
|
struct state *rp;
|
|
{
|
|
chr ch, from, to;
|
|
celt ce;
|
|
chr *p;
|
|
int i;
|
|
color co;
|
|
struct cvec *leads;
|
|
struct arc *a;
|
|
struct arc *pa; /* arc in prototype */
|
|
struct state *s;
|
|
struct state *ps; /* state in prototype */
|
|
|
|
/* need a place to store leaders, if any */
|
|
if (nmcces(v) > 0) {
|
|
assert(v->mcces != NULL);
|
|
if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) {
|
|
if (v->cv2 != NULL)
|
|
free(v->cv2);
|
|
v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces);
|
|
NOERR();
|
|
leads = v->cv2;
|
|
} else
|
|
leads = clearcvec(v->cv2);
|
|
} else
|
|
leads = NULL;
|
|
|
|
/* first, get the ordinary characters out of the way */
|
|
for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) {
|
|
ch = *p;
|
|
if (!ISCELEADER(v, ch))
|
|
newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp);
|
|
else {
|
|
assert(singleton(v->cm, ch));
|
|
assert(leads != NULL);
|
|
if (!haschr(leads, ch))
|
|
addchr(leads, ch);
|
|
}
|
|
}
|
|
|
|
/* and the ranges */
|
|
for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) {
|
|
from = *p;
|
|
to = *(p+1);
|
|
while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) {
|
|
if (from < ce)
|
|
subrange(v, from, ce - 1, lp, rp);
|
|
assert(singleton(v->cm, ce));
|
|
assert(leads != NULL);
|
|
if (!haschr(leads, ce))
|
|
addchr(leads, ce);
|
|
from = ce + 1;
|
|
}
|
|
if (from <= to)
|
|
subrange(v, from, to, lp, rp);
|
|
}
|
|
|
|
if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0)
|
|
return;
|
|
|
|
/* deal with the MCCE leaders */
|
|
NOTE(REG_ULOCALE);
|
|
for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) {
|
|
co = GETCOLOR(v->cm, *p);
|
|
a = findarc(lp, PLAIN, co);
|
|
if (a != NULL)
|
|
s = a->to;
|
|
else {
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
newarc(v->nfa, PLAIN, co, lp, s);
|
|
NOERR();
|
|
}
|
|
pa = findarc(v->mccepbegin, PLAIN, co);
|
|
assert(pa != NULL);
|
|
ps = pa->to;
|
|
newarc(v->nfa, '$', 1, s, rp);
|
|
newarc(v->nfa, '$', 0, s, rp);
|
|
colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp);
|
|
NOERR();
|
|
}
|
|
|
|
/* and the MCCEs */
|
|
for (i = 0; i < cv->nmcces; i++) {
|
|
p = cv->mcces[i];
|
|
assert(singleton(v->cm, *p));
|
|
if (!singleton(v->cm, *p)) {
|
|
ERR(REG_ASSERT);
|
|
return;
|
|
}
|
|
ch = *p++;
|
|
co = GETCOLOR(v->cm, ch);
|
|
a = findarc(lp, PLAIN, co);
|
|
if (a != NULL)
|
|
s = a->to;
|
|
else {
|
|
s = newstate(v->nfa);
|
|
NOERR();
|
|
newarc(v->nfa, PLAIN, co, lp, s);
|
|
NOERR();
|
|
}
|
|
assert(*p != 0); /* at least two chars */
|
|
assert(singleton(v->cm, *p));
|
|
ch = *p++;
|
|
co = GETCOLOR(v->cm, ch);
|
|
assert(*p == 0); /* and only two, for now */
|
|
newarc(v->nfa, PLAIN, co, s, rp);
|
|
NOERR();
|
|
}
|
|
}
|
|
|
|
/*
|
|
- nextleader - find next MCCE leader within range
|
|
^ static celt nextleader(struct vars *, pchr, pchr);
|
|
*/
|
|
static celt /* NOCELT means none */
|
|
nextleader(v, from, to)
|
|
struct vars *v;
|
|
pchr from;
|
|
pchr to;
|
|
{
|
|
int i;
|
|
chr *p;
|
|
chr ch;
|
|
celt it = NOCELT;
|
|
|
|
if (v->mcces == NULL)
|
|
return it;
|
|
|
|
for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) {
|
|
ch = *p;
|
|
if (from <= ch && ch <= to)
|
|
if (it == NOCELT || ch < it)
|
|
it = ch;
|
|
}
|
|
return it;
|
|
}
|
|
|
|
/*
|
|
- wordchrs - set up word-chr list for word-boundary stuff, if needed
|
|
* The list is kept as a bunch of arcs between two dummy states; it's
|
|
* disposed of by the unreachable-states sweep in NFA optimization.
|
|
* Does NEXT(). Must not be called from any unusual lexical context.
|
|
* This should be reconciled with the \w etc. handling in lex.c, and
|
|
* should be cleaned up to reduce dependencies on input scanning.
|
|
^ static VOID wordchrs(struct vars *);
|
|
*/
|
|
static VOID
|
|
wordchrs(v)
|
|
struct vars *v;
|
|
{
|
|
struct state *left;
|
|
struct state *right;
|
|
|
|
if (v->wordchrs != NULL) {
|
|
NEXT(); /* for consistency */
|
|
return;
|
|
}
|
|
|
|
left = newstate(v->nfa);
|
|
right = newstate(v->nfa);
|
|
NOERR();
|
|
/* fine point: implemented with [::], and lexer will set REG_ULOCALE */
|
|
lexword(v);
|
|
NEXT();
|
|
assert(v->savenow != NULL && SEE('['));
|
|
bracket(v, left, right);
|
|
assert((v->savenow != NULL && SEE(']')) || ISERR());
|
|
NEXT();
|
|
NOERR();
|
|
v->wordchrs = left;
|
|
}
|
|
|
|
/*
|
|
- subre - allocate a subre
|
|
^ static struct subre *subre(struct vars *, int, int, struct state *,
|
|
^ struct state *);
|
|
*/
|
|
static struct subre *
|
|
subre(v, op, flags, begin, end)
|
|
struct vars *v;
|
|
int op;
|
|
int flags;
|
|
struct state *begin;
|
|
struct state *end;
|
|
{
|
|
struct subre *ret;
|
|
|
|
ret = v->treefree;
|
|
if (ret != NULL)
|
|
v->treefree = ret->left;
|
|
else {
|
|
ret = (struct subre *)MALLOC(sizeof(struct subre));
|
|
if (ret == NULL) {
|
|
ERR(REG_ESPACE);
|
|
return NULL;
|
|
}
|
|
ret->chain = v->treechain;
|
|
v->treechain = ret;
|
|
}
|
|
|
|
assert(strchr("|.b(=", op) != NULL);
|
|
|
|
ret->op = op;
|
|
ret->flags = flags;
|
|
ret->retry = 0;
|
|
ret->subno = 0;
|
|
ret->min = ret->max = 1;
|
|
ret->left = NULL;
|
|
ret->right = NULL;
|
|
ret->begin = begin;
|
|
ret->end = end;
|
|
ZAPCNFA(ret->cnfa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
- freesubre - free a subRE subtree
|
|
^ static VOID freesubre(struct vars *, struct subre *);
|
|
*/
|
|
static VOID
|
|
freesubre(v, sr)
|
|
struct vars *v; /* might be NULL */
|
|
struct subre *sr;
|
|
{
|
|
if (sr == NULL)
|
|
return;
|
|
|
|
if (sr->left != NULL)
|
|
freesubre(v, sr->left);
|
|
if (sr->right != NULL)
|
|
freesubre(v, sr->right);
|
|
|
|
freesrnode(v, sr);
|
|
}
|
|
|
|
/*
|
|
- freesrnode - free one node in a subRE subtree
|
|
^ static VOID freesrnode(struct vars *, struct subre *);
|
|
*/
|
|
static VOID
|
|
freesrnode(v, sr)
|
|
struct vars *v; /* might be NULL */
|
|
struct subre *sr;
|
|
{
|
|
if (sr == NULL)
|
|
return;
|
|
|
|
if (!NULLCNFA(sr->cnfa))
|
|
freecnfa(&sr->cnfa);
|
|
sr->flags = 0;
|
|
|
|
if (v != NULL) {
|
|
sr->left = v->treefree;
|
|
v->treefree = sr;
|
|
} else
|
|
FREE(sr);
|
|
}
|
|
|
|
/*
|
|
- optst - optimize a subRE subtree
|
|
^ static VOID optst(struct vars *, struct subre *);
|
|
*/
|
|
static VOID
|
|
optst(v, t)
|
|
struct vars *v;
|
|
struct subre *t;
|
|
{
|
|
if (t == NULL)
|
|
return;
|
|
|
|
/* recurse through children */
|
|
if (t->left != NULL)
|
|
optst(v, t->left);
|
|
if (t->right != NULL)
|
|
optst(v, t->right);
|
|
}
|
|
|
|
/*
|
|
- numst - number tree nodes (assigning retry indexes)
|
|
^ static int numst(struct subre *, int);
|
|
*/
|
|
static int /* next number */
|
|
numst(t, start)
|
|
struct subre *t;
|
|
int start; /* starting point for subtree numbers */
|
|
{
|
|
int i;
|
|
|
|
assert(t != NULL);
|
|
|
|
i = start;
|
|
t->retry = (short)i++;
|
|
if (t->left != NULL)
|
|
i = numst(t->left, i);
|
|
if (t->right != NULL)
|
|
i = numst(t->right, i);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
- markst - mark tree nodes as INUSE
|
|
^ static VOID markst(struct subre *);
|
|
*/
|
|
static VOID
|
|
markst(t)
|
|
struct subre *t;
|
|
{
|
|
assert(t != NULL);
|
|
|
|
t->flags |= INUSE;
|
|
if (t->left != NULL)
|
|
markst(t->left);
|
|
if (t->right != NULL)
|
|
markst(t->right);
|
|
}
|
|
|
|
/*
|
|
- cleanst - free any tree nodes not marked INUSE
|
|
^ static VOID cleanst(struct vars *);
|
|
*/
|
|
static VOID
|
|
cleanst(v)
|
|
struct vars *v;
|
|
{
|
|
struct subre *t;
|
|
struct subre *next;
|
|
|
|
for (t = v->treechain; t != NULL; t = next) {
|
|
next = t->chain;
|
|
if (!(t->flags&INUSE))
|
|
FREE(t);
|
|
}
|
|
v->treechain = NULL;
|
|
v->treefree = NULL; /* just on general principles */
|
|
}
|
|
|
|
/*
|
|
- nfatree - turn a subRE subtree into a tree of compacted NFAs
|
|
^ static long nfatree(struct vars *, struct subre *, FILE *);
|
|
*/
|
|
static long /* optimize results from top node */
|
|
nfatree(v, t, f)
|
|
struct vars *v;
|
|
struct subre *t;
|
|
FILE *f; /* for debug output */
|
|
{
|
|
assert(t != NULL && t->begin != NULL);
|
|
|
|
if (t->left != NULL)
|
|
(DISCARD)nfatree(v, t->left, f);
|
|
if (t->right != NULL)
|
|
(DISCARD)nfatree(v, t->right, f);
|
|
|
|
return nfanode(v, t, f);
|
|
}
|
|
|
|
/*
|
|
- nfanode - do one NFA for nfatree
|
|
^ static long nfanode(struct vars *, struct subre *, FILE *);
|
|
*/
|
|
static long /* optimize results */
|
|
nfanode(v, t, f)
|
|
struct vars *v;
|
|
struct subre *t;
|
|
FILE *f; /* for debug output */
|
|
{
|
|
struct nfa *nfa;
|
|
long ret = 0;
|
|
char idbuf[50];
|
|
|
|
assert(t->begin != NULL);
|
|
|
|
if (f != NULL)
|
|
fprintf(f, "\n\n\n========= TREE NODE %s ==========\n",
|
|
stid(t, idbuf, sizeof(idbuf)));
|
|
nfa = newnfa(v, v->cm, v->nfa);
|
|
NOERRZ();
|
|
dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final);
|
|
if (!ISERR()) {
|
|
specialcolors(nfa);
|
|
ret = optimize(nfa, f);
|
|
}
|
|
if (!ISERR())
|
|
compact(nfa, &t->cnfa);
|
|
|
|
freenfa(nfa);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
- newlacon - allocate a lookahead-constraint subRE
|
|
^ static int newlacon(struct vars *, struct state *, struct state *, int);
|
|
*/
|
|
static int /* lacon number */
|
|
newlacon(v, begin, end, pos)
|
|
struct vars *v;
|
|
struct state *begin;
|
|
struct state *end;
|
|
int pos;
|
|
{
|
|
int n;
|
|
struct subre *sub;
|
|
|
|
if (v->nlacons == 0) {
|
|
v->lacons = (struct subre *)MALLOC(2 * sizeof(struct subre));
|
|
n = 1; /* skip 0th */
|
|
v->nlacons = 2;
|
|
} else {
|
|
v->lacons = (struct subre *)REALLOC(v->lacons,
|
|
(v->nlacons+1)*sizeof(struct subre));
|
|
n = v->nlacons++;
|
|
}
|
|
if (v->lacons == NULL) {
|
|
ERR(REG_ESPACE);
|
|
return 0;
|
|
}
|
|
sub = &v->lacons[n];
|
|
sub->begin = begin;
|
|
sub->end = end;
|
|
sub->subno = pos;
|
|
ZAPCNFA(sub->cnfa);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
- freelacons - free lookahead-constraint subRE vector
|
|
^ static VOID freelacons(struct subre *, int);
|
|
*/
|
|
static VOID
|
|
freelacons(subs, n)
|
|
struct subre *subs;
|
|
int n;
|
|
{
|
|
struct subre *sub;
|
|
int i;
|
|
|
|
assert(n > 0);
|
|
for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */
|
|
if (!NULLCNFA(sub->cnfa))
|
|
freecnfa(&sub->cnfa);
|
|
FREE(subs);
|
|
}
|
|
|
|
/*
|
|
- rfree - free a whole RE (insides of regfree)
|
|
^ static VOID rfree(regex_t *);
|
|
*/
|
|
static VOID
|
|
rfree(re)
|
|
regex_t *re;
|
|
{
|
|
struct guts *g;
|
|
|
|
if (re == NULL || re->re_magic != REMAGIC)
|
|
return;
|
|
|
|
re->re_magic = 0; /* invalidate RE */
|
|
g = (struct guts *)re->re_guts;
|
|
re->re_guts = NULL;
|
|
re->re_fns = NULL;
|
|
g->magic = 0;
|
|
freecm(&g->cmap);
|
|
if (g->tree != NULL)
|
|
freesubre((struct vars *)NULL, g->tree);
|
|
if (g->lacons != NULL)
|
|
freelacons(g->lacons, g->nlacons);
|
|
if (!NULLCNFA(g->search))
|
|
freecnfa(&g->search);
|
|
FREE(g);
|
|
}
|
|
|
|
/*
|
|
- dump - dump an RE in human-readable form
|
|
^ static VOID dump(regex_t *, FILE *);
|
|
*/
|
|
static VOID
|
|
dump(re, f)
|
|
regex_t *re;
|
|
FILE *f;
|
|
{
|
|
#ifdef REG_DEBUG
|
|
struct guts *g;
|
|
int i;
|
|
|
|
if (re->re_magic != REMAGIC)
|
|
fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic,
|
|
REMAGIC);
|
|
if (re->re_guts == NULL) {
|
|
fprintf(f, "NULL guts!!!\n");
|
|
return;
|
|
}
|
|
g = (struct guts *)re->re_guts;
|
|
if (g->magic != GUTSMAGIC)
|
|
fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic,
|
|
GUTSMAGIC);
|
|
|
|
fprintf(f, "\n\n\n========= DUMP ==========\n");
|
|
fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n",
|
|
re->re_nsub, re->re_info, re->re_csize, g->ntree);
|
|
|
|
dumpcolors(&g->cmap, f);
|
|
if (!NULLCNFA(g->search)) {
|
|
printf("\nsearch:\n");
|
|
dumpcnfa(&g->search, f);
|
|
}
|
|
for (i = 1; i < g->nlacons; i++) {
|
|
fprintf(f, "\nla%d (%s):\n", i,
|
|
(g->lacons[i].subno) ? "positive" : "negative");
|
|
dumpcnfa(&g->lacons[i].cnfa, f);
|
|
}
|
|
fprintf(f, "\n");
|
|
dumpst(g->tree, f, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
- dumpst - dump a subRE tree
|
|
^ static VOID dumpst(struct subre *, FILE *, int);
|
|
*/
|
|
static VOID
|
|
dumpst(t, f, nfapresent)
|
|
struct subre *t;
|
|
FILE *f;
|
|
int nfapresent; /* is the original NFA still around? */
|
|
{
|
|
if (t == NULL)
|
|
fprintf(f, "null tree\n");
|
|
else
|
|
stdump(t, f, nfapresent);
|
|
fflush(f);
|
|
}
|
|
|
|
/*
|
|
- stdump - recursive guts of dumpst
|
|
^ static VOID stdump(struct subre *, FILE *, int);
|
|
*/
|
|
static VOID
|
|
stdump(t, f, nfapresent)
|
|
struct subre *t;
|
|
FILE *f;
|
|
int nfapresent; /* is the original NFA still around? */
|
|
{
|
|
char idbuf[50];
|
|
|
|
fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op);
|
|
if (t->flags&LONGER)
|
|
fprintf(f, " longest");
|
|
if (t->flags&SHORTER)
|
|
fprintf(f, " shortest");
|
|
if (t->flags&MIXED)
|
|
fprintf(f, " hasmixed");
|
|
if (t->flags&CAP)
|
|
fprintf(f, " hascapture");
|
|
if (t->flags&BACKR)
|
|
fprintf(f, " hasbackref");
|
|
if (!(t->flags&INUSE))
|
|
fprintf(f, " UNUSED");
|
|
if (t->subno != 0)
|
|
fprintf(f, " (#%d)", t->subno);
|
|
if (t->min != 1 || t->max != 1) {
|
|
fprintf(f, " {%d,", t->min);
|
|
if (t->max != INFINITY)
|
|
fprintf(f, "%d", t->max);
|
|
fprintf(f, "}");
|
|
}
|
|
if (nfapresent)
|
|
fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no);
|
|
if (t->left != NULL)
|
|
fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf)));
|
|
if (t->right != NULL)
|
|
fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf)));
|
|
if (!NULLCNFA(t->cnfa)) {
|
|
fprintf(f, "\n");
|
|
dumpcnfa(&t->cnfa, f);
|
|
fprintf(f, "\n");
|
|
}
|
|
if (t->left != NULL)
|
|
stdump(t->left, f, nfapresent);
|
|
if (t->right != NULL)
|
|
stdump(t->right, f, nfapresent);
|
|
}
|
|
|
|
/*
|
|
- stid - identify a subtree node for dumping
|
|
^ static char *stid(struct subre *, char *, size_t);
|
|
*/
|
|
static char * /* points to buf or constant string */
|
|
stid(t, buf, bufsize)
|
|
struct subre *t;
|
|
char *buf;
|
|
size_t bufsize;
|
|
{
|
|
/* big enough for hex int or decimal t->retry? */
|
|
if (bufsize < sizeof(int)*2 + 3 || bufsize < sizeof(t->retry)*3 + 1)
|
|
return "unable";
|
|
if (t->retry != 0)
|
|
sprintf(buf, "%d", t->retry);
|
|
else
|
|
sprintf(buf, "0x%x", (int)(wxUIntPtr)(t)); /* may lose bits, that's okay */
|
|
return buf;
|
|
}
|
|
|
|
#include "regc_lex.c"
|
|
#include "regc_color.c"
|
|
#include "regc_nfa.c"
|
|
#include "regc_cvec.c"
|
|
#include "regc_locale.c"
|