6c5e63761c
Added makefile for VC++ 5 Warning: sndwin.cpp will not compile, it is unfinished git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@3402 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
176 lines
5.2 KiB
C++
176 lines
5.2 KiB
C++
/*
|
|
* This source code is a product of Sun Microsystems, Inc. and is provided
|
|
* for unrestricted use. Users may copy or modify this source code without
|
|
* charge.
|
|
*
|
|
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
|
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
|
*
|
|
* Sun source code is provided with no support and without any obligation on
|
|
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
* modification or enhancement.
|
|
*
|
|
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
|
* OR ANY PART THEREOF.
|
|
*
|
|
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
|
* or profits or other special, indirect and consequential damages, even if
|
|
* Sun has been advised of the possibility of such damages.
|
|
*
|
|
* Sun Microsystems, Inc.
|
|
* 2550 Garcia Avenue
|
|
* Mountain View, California 94043
|
|
*/
|
|
|
|
#include <wx/wxprec.h>
|
|
|
|
/*
|
|
* g721.c
|
|
*
|
|
* Description:
|
|
*
|
|
* g721_encoder(), g721_decoder()
|
|
*
|
|
* These routines comprise an implementation of the CCITT G.721 ADPCM
|
|
* coding algorithm. Essentially, this implementation is identical to
|
|
* the bit level description except for a few deviations which
|
|
* take advantage of work station attributes, such as hardware 2's
|
|
* complement arithmetic and large memory. Specifically, certain time
|
|
* consuming operations such as multiplications are replaced
|
|
* with lookup tables and software 2's complement operations are
|
|
* replaced with hardware 2's complement.
|
|
*
|
|
* The deviation from the bit level specification (lookup tables)
|
|
* preserves the bit level performance specifications.
|
|
*
|
|
* As outlined in the G.721 Recommendation, the algorithm is broken
|
|
* down into modules. Each section of code below is preceded by
|
|
* the name of the module which it is implementing.
|
|
*
|
|
*/
|
|
#include "g72x.h"
|
|
|
|
static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
|
|
/*
|
|
* Maps G.721 code word to reconstructed scale factor normalized log
|
|
* magnitude values.
|
|
*/
|
|
static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
|
|
425, 373, 323, 273, 213, 135, 4, -2048};
|
|
|
|
/* Maps G.721 code word to log of scale factor multiplier. */
|
|
static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
|
|
1122, 355, 198, 112, 64, 41, 18, -12};
|
|
/*
|
|
* Maps G.721 code words to a set of values whose long and short
|
|
* term averages are computed and then compared to give an indication
|
|
* how stationary (steady state) the signal is.
|
|
*/
|
|
static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
|
|
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
|
|
|
|
/*
|
|
* g721_encoder()
|
|
*
|
|
* Encodes the input vale of linear PCM, A-law or u-law data sl and returns
|
|
* the resulting code. -1 is returned for unknown input coding value.
|
|
*/
|
|
int
|
|
g721_encoder(
|
|
int sl,
|
|
int in_coding,
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
short sezi, se, sez; /* ACCUM */
|
|
short d; /* SUBTA */
|
|
short sr; /* ADDB */
|
|
short y; /* MIX */
|
|
short dqsez; /* ADDC */
|
|
short dq, i;
|
|
|
|
switch (in_coding) { /* linearize input sample to 14-bit PCM */
|
|
case AUDIO_ENCODING_ALAW:
|
|
sl = alaw2linear(sl) >> 2;
|
|
break;
|
|
case AUDIO_ENCODING_ULAW:
|
|
sl = ulaw2linear(sl) >> 2;
|
|
break;
|
|
case AUDIO_ENCODING_LINEAR:
|
|
sl = ((short)sl) >> 2; /* 14-bit dynamic range */
|
|
break;
|
|
default:
|
|
return (-1);
|
|
}
|
|
|
|
sezi = predictor_zero(state_ptr);
|
|
sez = sezi >> 1;
|
|
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
|
|
|
|
d = sl - se; /* estimation difference */
|
|
|
|
/* quantize the prediction difference */
|
|
y = step_size(state_ptr); /* quantizer step size */
|
|
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
|
|
|
|
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
|
|
|
|
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
|
|
|
|
dqsez = sr + sez - se; /* pole prediction diff. */
|
|
|
|
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
|
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* g721_decoder()
|
|
*
|
|
* Description:
|
|
*
|
|
* Decodes a 4-bit code of G.721 encoded data of i and
|
|
* returns the resulting linear PCM, A-law or u-law value.
|
|
* return -1 for unknown out_coding value.
|
|
*/
|
|
int
|
|
g721_decoder(
|
|
int i,
|
|
int out_coding,
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
short sezi, sei, sez, se; /* ACCUM */
|
|
short y; /* MIX */
|
|
short sr; /* ADDB */
|
|
short dq;
|
|
short dqsez;
|
|
|
|
i &= 0x0f; /* mask to get proper bits */
|
|
sezi = predictor_zero(state_ptr);
|
|
sez = sezi >> 1;
|
|
sei = sezi + predictor_pole(state_ptr);
|
|
se = sei >> 1; /* se = estimated signal */
|
|
|
|
y = step_size(state_ptr); /* dynamic quantizer step size */
|
|
|
|
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
|
|
|
|
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
|
|
|
|
dqsez = sr - se + sez; /* pole prediction diff. */
|
|
|
|
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
|
|
|
switch (out_coding) {
|
|
case AUDIO_ENCODING_ALAW:
|
|
return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));
|
|
case AUDIO_ENCODING_ULAW:
|
|
return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));
|
|
case AUDIO_ENCODING_LINEAR:
|
|
return (sr << 2); /* sr was 14-bit dynamic range */
|
|
default:
|
|
return (-1);
|
|
}
|
|
}
|