wxWidgets/interface/object.h
2008-03-14 08:05:31 +00:00

658 lines
18 KiB
Objective-C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/////////////////////////////////////////////////////////////////////////////
// Name: object.h
// Purpose: interface of wxObjectRefData
// Author: wxWidgets team
// RCS-ID: $Id$
// Licence: wxWindows license
/////////////////////////////////////////////////////////////////////////////
/**
@class wxObjectRefData
@wxheader{object.h}
This class is used to store reference-counted data. Derive classes from this to
store your own data. When retrieving information from a @b wxObject's reference
data,
you will need to cast to your own derived class.
@library{wxbase}
@category{FIXME}
@see wxObject, wxObjectDataPtrT(), @ref overview_trefcount "Reference counting"
*/
class wxObjectRefData
{
public:
/**
Default constructor. Initialises the internal reference count to 1.
*/
wxObjectRefData();
/**
Destructor. It's declared @c protected so that wxObjectRefData instances will
never
be destroyed directly but only as result of a DecRef() call.
*/
wxObjectRefData();
/**
Decrements the reference count associated with this shared data and, if it
reaches zero,
destroys this instance of wxObjectRefData releasing its memory.
Please note that after calling this function, the caller should absolutely
avoid to use
the pointer to this instance since it may not be valid anymore.
*/
void DecRef();
/**
Returns the reference count associated with this shared data.
When this goes to zero during a DecRef() call, the object
will auto-free itself.
*/
int GetRefCount() const;
/**
Increments the reference count associated with this shared data.
*/
void IncRef();
};
/**
@class wxObject
@wxheader{object.h}
This is the root class of many of the wxWidgets classes.
It declares a virtual destructor which ensures that
destructors get called for all derived class objects where necessary.
wxObject is the hub of a dynamic object creation
scheme, enabling a program to create instances of a class only knowing
its string class name, and to query the class hierarchy.
The class contains optional debugging versions
of @b new and @b delete, which can help trace memory allocation
and deallocation problems.
wxObject can be used to implement @ref overview_trefcount "reference counted"
objects,
such as wxPen, wxBitmap and others (see @ref overview_refcountlist "this list").
@library{wxbase}
@category{rtti}
@see wxClassInfo, @ref overview_debuggingoverview, wxObjectRefData
*/
class wxObject
{
public:
//@{
/**
Default and copy constructors.
*/
wxObject();
wxObject(const wxObject& other);
//@}
/**
Destructor. Performs dereferencing, for those objects
that use reference counting.
*/
wxObject();
/**
A virtual function that may be redefined by derived classes to allow dumping of
memory states.
This function is only defined in debug build and doesn't exist at all if
@c __WXDEBUG__ is not defined.
@param stream
Stream on which to output dump information.
@remarks Currently wxWidgets does not define Dump for derived classes,
but programmers may wish to use it for their own
applications. Be sure to call the Dump member of the
class's base class to allow all information to be
dumped.
*/
void Dump(ostream& stream);
/**
This virtual function is redefined for every class that requires run-time
type information, when using DECLARE_CLASS macros.
*/
wxClassInfo* GetClassInfo();
/**
Returns the @b m_refData pointer.
@see Ref(), UnRef(), wxObject::m_refData, SetRefData(),
wxObjectRefData
*/
wxObjectRefData* GetRefData() const;
/**
Determines whether this class is a subclass of (or the same class as)
the given class.
@param info
A pointer to a class information object, which may be obtained
by using the CLASSINFO macro.
@returns @true if the class represented by info is the same class as this
one or is derived from it.
*/
bool IsKindOf(wxClassInfo* info);
/**
Returns @true if this object has the same data pointer as @e obj. Notice
that @true is returned if the data pointers are @NULL in both objects.
This function only does a shallow comparison, i.e. it doesn't compare
the objects pointed to by the data pointers of these objects.
*/
bool IsSameAs(const wxObject& obj);
/**
Makes this object refer to the data in @e clone.
@param clone
The object to 'clone'.
@remarks First this function calls UnRef() on itself to decrement
(and perhaps free) the data it is currently referring
to.
@see UnRef(), wxObject::m_refData, SetRefData(),
GetRefData(), wxObjectRefData
*/
void Ref(const wxObject& clone);
/**
Sets the @b m_refData pointer.
@see Ref(), UnRef(), wxObject::m_refData, GetRefData(),
wxObjectRefData
*/
void SetRefData(wxObjectRefData* data);
/**
Decrements the reference count in the associated data, and if it is zero,
deletes the data.
The @b m_refData member is set to @NULL.
@see Ref(), wxObject::m_refData, SetRefData(),
GetRefData(), wxObjectRefData
*/
void UnRef();
/**
Ensure that this object's data is not shared with any other object.
if we have no
data, it is created using CreateRefData() below, if we have shared data
it is copied using CloneRefData(), otherwise nothing is done.
*/
void UnShare();
/**
wxObjectRefData* m_refData
Pointer to an object which is the object's reference-counted data.
@see Ref(), UnRef(), SetRefData(),
GetRefData(), wxObjectRefData
*/
/**
The @e delete operator is defined for debugging versions of the library only,
when
the identifier __WXDEBUG__ is defined. It takes over memory deallocation,
allowing
wxDebugContext operations.
*/
void delete(void buf);
/**
The @e new operator is defined for debugging versions of the library only, when
the identifier __WXDEBUG__ is defined. It takes over memory allocation, allowing
wxDebugContext operations.
*/
void* new(size_t size, const wxString& filename = NULL,
int lineNum = 0);
};
/**
@class wxClassInfo
@wxheader{object.h}
This class stores meta-information about classes. Instances of this class are
not generally defined directly by an application, but indirectly through use
of macros such as @b DECLARE_DYNAMIC_CLASS and @b IMPLEMENT_DYNAMIC_CLASS.
@library{wxbase}
@category{rtti}
@see Overview(), wxObject
*/
class wxClassInfo
{
public:
/**
Constructs a wxClassInfo object. The supplied macros implicitly construct
objects of this
class, so there is no need to create such objects explicitly in an application.
*/
wxClassInfo(const wxChar* className,
const wxClassInfo* baseClass1,
const wxClassInfo* baseClass2,
int size, wxObjectConstructorFn fn);
/**
Creates an object of the appropriate kind. Returns @NULL if the class has not
been declared
dynamically creatable (typically, it is an abstract class).
*/
wxObject* CreateObject() const;
/**
Finds the wxClassInfo object for a class of the given string name.
*/
static wxClassInfo* FindClass(wxChar* name);
/**
Returns the name of the first base class (@NULL if none).
*/
wxChar* GetBaseClassName1() const;
/**
Returns the name of the second base class (@NULL if none).
*/
wxChar* GetBaseClassName2() const;
/**
Returns the string form of the class name.
*/
wxChar* GetClassName() const;
/**
Returns the size of the class.
*/
int GetSize() const;
/**
Initializes pointers in the wxClassInfo objects for fast execution
of IsKindOf. Called in base wxWidgets library initialization.
*/
static void InitializeClasses();
/**
Returns @true if this class info can create objects of the associated class.
*/
bool IsDynamic() const;
/**
Returns @true if this class is a kind of (inherits from) the given class.
*/
bool IsKindOf(wxClassInfo* info);
};
/**
@class wxObjectDataPtrT
@wxheader{object.h}
This is helper template class primarily written to avoid memory
leaks because of missing calls to wxObjectRefData::DecRef.
Despite the name this template can actually be used as a
smart pointer for any class implementing the reference
counting interface which only consists of the two methods
@b T::IncRef() and @b T::DecRef().
The difference to wxSharedPtr is that
wxObjectDataPtr relies on the reference counting to be in
the class pointed to where as wxSharedPtr implements the
reference counting itself.
@library{wxbase}
@category{FIXME}
@see wxObject, wxObjectRefData, @ref overview_trefcount "Reference counting"
*/
class wxObjectDataPtr<T>
{
public:
//@{
/**
This copy constructor increases the count of the reference
counted object to which @a tocopy points and then this
class will point to, as well.
*/
wxObjectDataPtrT(T* ptr = NULL);
wxObjectDataPtrT(const wxObjectDataPtr<T>& tocopy);
//@}
/**
Decreases the reference count of the object to which this
class points.
*/
~wxObjectDataPtrT();
/**
Gets a pointer to the reference counted object to which
this class points.
*/
T* get() const;
/**
Conversion to a boolean expression (in a variant which is not
convertable to anything but a boolean expression). If this class
contains a valid pointer it will return @e @true, if it contains
a @NULL pointer it will return @e @false.
*/
operator unspecified_bool_type() const;
/**
Returns a reference to the object. If the internal pointer is @NULL
this method will cause an assert in debug mode.
*/
T operator*() const;
/**
Returns a pointer to the reference counted object to which
this class points. If this the internal pointer is @NULL,
this method will assert in debug mode.
*/
T* operator-() const;
//@{
/**
Assignment operators.
*/
wxObjectDataPtrT& operator operator=(const wxObjectDataPtr<T>& tocopy);
wxObjectDataPtrT& operator operator=(T* ptr);
//@}
};
// ============================================================================
// Global functions/macros
// ============================================================================
/** @ingroup group_funcmacro_rtti */
//@{
/**
Returns a pointer to the wxClassInfo object associated with this class.
@header{wx/object.h}
*/
#define CLASSINFO( className )
/**
Used inside a class declaration to declare that the class should be made
known to the class hierarchy, but objects of this class cannot be created
dynamically. The same as DECLARE_ABSTRACT_CLASS().
@header{wx/object.h}
*/
#define DECLARE_CLASS( className )
/**
Used inside a class declaration to declare that the class should be
made known to the class hierarchy, but objects of this class cannot be created
dynamically. The same as DECLARE_CLASS().
@header{wx/object.h}
Example:
@code
class wxCommand: public wxObject
{
DECLARE_ABSTRACT_CLASS(wxCommand)
private:
...
public:
...
};
@endcode
*/
#define DECLARE_ABSTRACT_CLASS( className )
/**
Used inside a class declaration to make the class known to wxWidgets RTTI
system and also declare that the objects of this class should be
dynamically creatable from run-time type information. Notice that this
implies that the class should have a default constructor, if this is not
the case consider using DECLARE_CLASS().
@header{wx/object.h}
Example:
@code
class wxFrame: public wxWindow
{
DECLARE_DYNAMIC_CLASS(wxFrame)
private:
const wxString& frameTitle;
public:
...
};
@endcode
*/
#define DECLARE_DYNAMIC_CLASS( className )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information. The same as IMPLEMENT_ABSTRACT_CLASS().
@header{wx/object.h}
*/
#define IMPLEMENT_CLASS( className, baseClassName )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information and two base classes. The same as
IMPLEMENT_ABSTRACT_CLASS2().
@header{wx/object.h}
*/
#define IMPLEMENT_CLASS2( className, baseClassName1, baseClassName2 )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information. The same as IMPLEMENT_CLASS().
@header{wx/object.h}
Example:
@code
IMPLEMENT_ABSTRACT_CLASS(wxCommand, wxObject)
wxCommand::wxCommand(void)
{
...
}
@endcode
*/
#define IMPLEMENT_ABSTRACT_CLASS( className, baseClassName )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information and two base classes. The same as
IMPLEMENT_CLASS2().
@header{wx/object.h}
*/
#define IMPLEMENT_ABSTRACT_CLASS2( className, baseClassName1, baseClassName2 )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information, and whose instances can be created
dynamically.
@header{wx/object.h}
Example:
@code
IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)
wxFrame::wxFrame(void)
{
...
}
@endcode
*/
#define IMPLEMENT_DYNAMIC_CLASS( className, baseClassName )
/**
Used in a C++ implementation file to complete the declaration of a class
that has run-time type information, and whose instances can be created
dynamically. Use this for classes derived from two base classes.
@header{wx/object.h}
*/
#define IMPLEMENT_DYNAMIC_CLASS2( className, baseClassName1, baseClassName2 )
/**
Same as const_cast<T>(x) if the compiler supports const cast or (T)x for
old compilers. Unlike wxConstCast(), the cast it to the type T and not to
T * and also the order of arguments is the same as for the standard cast.
@header{wx/defs.h}
@see wx_reinterpret_cast(), wx_static_cast()
*/
#define wx_const_cast(T, x)
/**
Same as reinterpret_cast<T>(x) if the compiler supports reinterpret cast or
(T)x for old compilers.
@header{wx/defs.h}
@see wx_const_cast(), wx_static_cast()
*/
#define wx_reinterpret_cast(T, x)
/**
Same as static_cast<T>(x) if the compiler supports static cast or (T)x for
old compilers. Unlike wxStaticCast(), there are no checks being done and
the meaning of the macro arguments is exactly the same as for the standard
static cast, i.e. T is the full type name and star is not appended to it.
@header{wx/defs.h}
@see wx_const_cast(), wx_reinterpret_cast(), wx_truncate_cast()
*/
#define wx_static_cast(T, x)
/**
This case doesnt correspond to any standard cast but exists solely to make
casts which possibly result in a truncation of an integer value more
readable.
@header{wx/defs.h}
*/
#define wx_truncate_cast(T, x)
/**
This macro expands into const_cast<classname *>(ptr) if the compiler
supports const_cast or into an old, C-style cast, otherwise.
@header{wx/defs.h}
@see wx_const_cast(), wxDynamicCast(), wxStaticCast()
*/
#define wxConstCast( ptr, classname )
/**
This is defined in debug mode to be call the redefined new operator
with filename and line number arguments. The definition is:
@code
#define WXDEBUG_NEW new(__FILE__,__LINE__)
@endcode
In non-debug mode, this is defined as the normal new operator.
@header{wx/object.h}
*/
#define WXDEBUG_NEW( arg )
/**
This macro returns the pointer @e ptr cast to the type @e classname * if
the pointer is of this type (the check is done during the run-time) or
@NULL otherwise. Usage of this macro is preferred over obsoleted
wxObject::IsKindOf() function.
The @e ptr argument may be @NULL, in which case @NULL will be returned.
@header{wx/object.h}
Example:
@code
wxWindow *win = wxWindow::FindFocus();
wxTextCtrl *text = wxDynamicCast(win, wxTextCtrl);
if ( text )
{
// a text control has the focus...
}
else
{
// no window has the focus or it is not a text control
}
@endcode
@see @ref overview_runtimeclassoverview "RTTI Overview",
wxDynamicCastThis(), wxConstCast(), wxStaticCast()
*/
#define wxDynamicCast( ptr, classname )
/**
This macro is equivalent to wxDynamicCast() but the latter provokes
spurious compilation warnings from some compilers (because it tests whether
@c this pointer is non-@NULL which is always true), so this macro should be
used to avoid them.
@header{wx/object.h}
@see wxDynamicCast()
*/
#define wxDynamicCastThis( classname )
/**
This macro checks that the cast is valid in debug mode (an assert failure
will result if wxDynamicCast(ptr, classname) == @NULL) and then returns the
result of executing an equivalent of static_cast<classname *>(ptr).
@header{wx/object.h}
@see wx_static_cast(), wxDynamicCast(), wxConstCast()
*/
#define wxStaticCast( ptr, classname )
/**
Creates and returns an object of the given class, if the class has been
registered with the dynamic class system using DECLARE... and IMPLEMENT...
macros.
@header{wx/object.h}
*/
wxObject *wxCreateDynamicObject(const wxString& className);
//@}