605d715ddd
git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@5109 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
800 lines
35 KiB
TeX
800 lines
35 KiB
TeX
\chapter{Introduction}\label{introduction}
|
|
\pagenumbering{arabic}%
|
|
\setheader{{\it CHAPTER \thechapter}}{}{}{}{}{{\it CHAPTER \thechapter}}%
|
|
\setfooter{\thepage}{}{}{}{}{\thepage}%
|
|
|
|
\section{What is wxWindows?}
|
|
|
|
wxWindows is a C++ framework providing GUI (Graphical User
|
|
Interface) and other facilities on more than one platform. Version 2.0 currently
|
|
supports MS Windows (16-bit, Windows 95 and Windows NT), Unix with GTK+, and Unix with Motif.
|
|
A Mac port is in an advanced state, an OS/2 port and a port to the MGL graphics library
|
|
have been started.
|
|
|
|
wxWindows was originally developed at the Artificial Intelligence
|
|
Applications Institute, University of Edinburgh, for internal use.
|
|
wxWindows has been released into the public domain in the hope
|
|
that others will also find it useful. Version 2.0 is written and
|
|
maintained by Julian Smart, Robert Roebling, Vadim Zeitlin and others.
|
|
|
|
This manual discusses wxWindows in the context of multi-platform
|
|
development.\helpignore{For more detail on the wxWindows version 2.0 API
|
|
(Application Programming Interface) please refer to the separate
|
|
wxWindows reference manual.}
|
|
|
|
Please note that in the following, ``MS Windows" often refers to all
|
|
platforms related to Microsoft Windows, including 16-bit and 32-bit
|
|
variants, unless otherwise stated. All trademarks are acknowledged.
|
|
|
|
\section{Why another cross-platform development tool?}
|
|
|
|
wxWindows was developed to provide a cheap and flexible way to maximize
|
|
investment in GUI application development. While a number of commercial
|
|
class libraries already existed for cross-platform development,
|
|
none met all of the following criteria:
|
|
|
|
\begin{enumerate}\itemsep=0pt
|
|
\item low price;
|
|
\item source availability;
|
|
\item simplicity of programming;
|
|
\item support for a wide range of compilers.
|
|
\end{enumerate}
|
|
|
|
Since wxWindows was started, several other free or almost-free GUI frameworks have
|
|
emerged. However, none has the range of features, flexibility, documentation and the
|
|
well-established development team that wxWindows has.
|
|
|
|
As public domain software and a project open to everyone, wxWindows has
|
|
benefited from comments, ideas, bug fixes, enhancements and the sheer
|
|
enthusiasm of users, especially via the Internet. This gives wxWindows a
|
|
certain advantage over its commercial competitors (and over free libraries
|
|
without an independent development team), plus a robustness against
|
|
the transience of one individual or company. This openness and
|
|
availability of source code is especially important when the future of
|
|
thousands of lines of application code may depend upon the longevity of
|
|
the underlying class library.
|
|
|
|
Version 2.0 goes much further than previous versions in terms of generality and features,
|
|
allowing applications to be produced
|
|
that are often indistinguishable from those produced using single-platform
|
|
toolkits such as Motif and MFC.
|
|
|
|
The importance of using a platform-independent class library cannot be
|
|
overstated, since GUI application development is very time-consuming,
|
|
and sustained popularity of particular GUIs cannot be guaranteed.
|
|
Code can very quickly become obsolete if it addresses the wrong
|
|
platform or audience. wxWindows helps to insulate the programmer from
|
|
these winds of change. Although wxWindows may not be suitable for
|
|
every application (such as an OLE-intensive program), it provides access to most of the functionality a
|
|
GUI program normally requires, plus some extras such as network programming
|
|
and PostScript output, and can of course be extended as needs dictate. As a bonus, it provides
|
|
a cleaner programming interface than the native
|
|
APIs. Programmers may find it worthwhile to use wxWindows even if they
|
|
are developing on only one platform.
|
|
|
|
It is impossible to sum up the functionality of wxWindows in a few paragraphs, but
|
|
here are some of the benefits:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item Low cost (free, in fact!)
|
|
\item You get the source.
|
|
\item Available on a variety of popular platforms.
|
|
\item Works with almost all popular C++ compilers and Python.
|
|
\item Over 40 example programs.
|
|
\item Over 900 pages of printable and on-line documentation.
|
|
\item Includes Tex2RTF, to allow you to produce your own documentation
|
|
in Windows Help, HTML and Word RTF formats.
|
|
\item Simple-to-use, object-oriented API.
|
|
\item Flexible event system.
|
|
\item Graphics calls include lines, rounded rectangles, splines, polylines, etc.
|
|
\item Constraint-based and sizer-based layouting.
|
|
\item Print/preview and document/view architectures.
|
|
\item Toolbar, notebook, tree control, advanced list control classes.
|
|
\item PostScript generation under Unix, normal MS Windows printing on the PC.
|
|
\item MDI (Multiple Document Interface) support.
|
|
\item Can be used to create DLLs under Windows, dynamic libraries on Unix.
|
|
\item Common dialogs for file browsing, printing, colour selection, etc.
|
|
\item Under MS Windows, support for creating metafiles and copying
|
|
them to the clipboard.
|
|
\item An API for invoking help from applications.
|
|
\item Ready to use HTML window (supporting a subset of HTML).
|
|
\item Dialog Editor for building dialogs.
|
|
\item Network support via a family of socket and protocol classes.
|
|
\item Support for platform independent image procesing.
|
|
\item Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).
|
|
\end{itemize}
|
|
|
|
\section{Changes from version 1.xx}\label{versionchanges}
|
|
|
|
These are a few of the major differences between versions 1.xx and 2.0.
|
|
|
|
Removals:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item XView is no longer supported;
|
|
\item all controls (panel items) no longer have labels attached to them;
|
|
\item wxForm has been removed;
|
|
\item wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC, wxPaintDC which
|
|
can be used for any window);
|
|
\item wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
|
|
\item classes no longer divided into generic and platform-specific parts, for efficiency.
|
|
\end{itemize}
|
|
|
|
Additions and changes:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item class hierarchy changed, and restrictions about subwindow nesting lifted;
|
|
\item header files reorganised to conform to normal C++ standards;
|
|
\item classes less dependent on each another, to reduce executable size;
|
|
\item wxString used instead of char* wherever possible;
|
|
\item the number of separate but mandatory utilities reduced;
|
|
\item the event system has been overhauled, with
|
|
virtual functions and callbacks being replaced with MFC-like event tables;
|
|
\item new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;
|
|
\item less inconsistency about what events can be handled, so for example
|
|
mouse clicks or key presses on controls can now be intercepted;
|
|
\item the status bar is now a separate class, wxStatusBar, and is
|
|
implemented in generic wxWindows code;
|
|
\item some renaming of controls for greater consistency;
|
|
\item wxBitmap has the notion of bitmap handlers to allow for extension to new formats
|
|
without ifdefing;
|
|
\item new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
|
|
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;
|
|
\item GDI objects are reference-counted and are now passed to most functions
|
|
by reference, making memory management far easier;
|
|
\item wxSystemSettings class allows querying for various system-wide properties
|
|
such as dialog font, colours, user interface element sizes, and so on;
|
|
\item better platform look and feel conformance;
|
|
\item toolbar functionality now separated out into a family of classes with the
|
|
same API;
|
|
\item device contexts are no longer accessed using wxWindow::GetDC - they are created
|
|
temporarily with the window as an argument;
|
|
\item events from sliders and scrollbars can be handled more flexibly;
|
|
\item the handling of window close events has been changed in line with the new
|
|
event system;
|
|
\item the concept of {\it validator} has been added to allow much easier coding of
|
|
the relationship between controls and application data;
|
|
\item the documentation has been revised, with more cross-referencing.
|
|
\end{itemize}
|
|
|
|
Platform-specific changes:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item The Windows header file (windows.h) is no longer included by wxWindows headers;
|
|
\item wx.dll supported under Visual C++;
|
|
\item the full range of Windows 95 window decorations are supported, such as modal frame
|
|
borders;
|
|
\item MDI classes brought out of wxFrame into separate classes, and made more flexible.
|
|
\end{itemize}
|
|
|
|
|
|
\section{Changes from version 2.0}\label{versionchanges20}
|
|
|
|
These are a few of the differences between versions 2.0 and 2.2.
|
|
|
|
Removals:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item GTK 1.0 no longer supported.
|
|
\end{itemize}
|
|
|
|
Additions and changes:
|
|
|
|
\begin{itemize}\itemsep=0pt
|
|
\item Corrected many classes to conform better to documented behaviour.
|
|
\item Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM, PNG, PNM).
|
|
\item Improved support for socket and network functions.
|
|
\item Support for different national font encodings.
|
|
\item Sizer based layout system.
|
|
\item HTML widget and help system.
|
|
\item Added some controls (e.g. wxSpinCtrl) and supplemented many.
|
|
\item Many optical improvements to GTK port.
|
|
\item Support for menu accelerators in GTK port.
|
|
\item Enhanced and improved support for scrolling, including child windows.
|
|
\item Complete rewrite of clipboard and drag'n'drop classes.
|
|
\item Improved support for ODBC databases.
|
|
\item Improved tab traversal in dialogs.
|
|
\end{itemize}
|
|
|
|
|
|
\section{wxWindows requirements}\label{requirements}
|
|
|
|
To make use of wxWindows, you currently need one or both of the
|
|
following setups.
|
|
|
|
(a) PC:
|
|
|
|
\begin{enumerate}\itemsep=0pt
|
|
\item A 486 or higher PC running MS Windows.
|
|
\item A Windows compiler: most are supported, but please see {\tt install.txt} for
|
|
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland C++, Cygwin,
|
|
Metrowerks CodeWarrior.
|
|
\item At least 60 MB of disk space.
|
|
\end{enumerate}
|
|
|
|
(b) Unix:
|
|
|
|
\begin{enumerate}\itemsep=0pt
|
|
\item Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
|
|
\item Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
|
|
\item At least 60 MB of disk space.
|
|
\end{enumerate}
|
|
|
|
\section{Availability and location of wxWindows}
|
|
|
|
wxWindows is available by anonymous FTP and World Wide Web
|
|
from \urlref{ftp://www.remstar.com/pub/wxwin}{ftp://www.remstar.com/pub/wxwin}
|
|
and/or \urlref{http://www.wxwindows.org}{http://www.wxwindows.org}
|
|
|
|
You can also buy a CD-ROM using the form on the Web site, or by contacting:
|
|
|
|
Julian Smart\\
|
|
12 North Street West\\
|
|
Uppingham\\
|
|
Rutland\\
|
|
LE15 9SG\\
|
|
julian.smart@ukonline.co.uk
|
|
|
|
\section{Acknowledgments}
|
|
|
|
Thanks are due to AIAI for being willing to release the original version of
|
|
wxWindows into the public domain, and to our patient partners.
|
|
|
|
We would particularly like to thank the following for their contributions to wxWindows, and the many others who have been involved in
|
|
the project over the years. Apologies for any unintentional omissions from this list.
|
|
|
|
Yiorgos Adamopoulos, Jamshid Afshar, Alejandro Aguilar-Sierra, AIAI, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai Bendorf, Yura Bidus, Keith
|
|
Gary Boyce, Chris Breeze, Pete Britton, Ian Brown, C. Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman, Robin
|
|
Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig, Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
|
|
Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer, Markus
|
|
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner, Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu
|
|
M\"{a}nnist\"{o}, Scott Maxwell, Thomas Myers, Oliver Niedung, Hernan Otero, Ian Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti,
|
|
Garrett Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton, Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith,
|
|
Kari Syst\"{a}, Arthur Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.
|
|
|
|
`Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos
|
|
T.J. van Eijndhoven of Eindhoven University of Technology. The code has
|
|
been used in wxGraphLayout with his permission.
|
|
|
|
We also acknowledge the author of XFIG, the excellent Unix drawing tool,
|
|
from the source of which we have borrowed some spline drawing code.
|
|
His copyright is included below.
|
|
|
|
{\it XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to
|
|
use, copy, modify, distribute, and sell this software and its
|
|
documentation for any purpose is hereby granted without fee, provided
|
|
that the above copyright notice appear in all copies and that both that
|
|
copyright notice and this permission notice appear in supporting
|
|
documentation, and that the name of M.I.T. not be used in advertising or
|
|
publicity pertaining to distribution of the software without specific,
|
|
written prior permission. M.I.T. makes no representations about the
|
|
suitability of this software for any purpose. It is provided ``as is''
|
|
without express or implied warranty.}
|
|
|
|
\chapter{Multi-platform development with wxWindows}\label{multiplat}
|
|
\setheader{{\it CHAPTER \thechapter}}{}{}{}{}{{\it CHAPTER \thechapter}}%
|
|
\setfooter{\thepage}{}{}{}{}{\thepage}%
|
|
|
|
This chapter describes the practical details of using wxWindows. Please
|
|
see the file install.txt for up-to-date installation instructions, and
|
|
changes.txt for differences between versions.
|
|
|
|
\section{Include files}
|
|
|
|
The main include file is {\tt "wx/wx.h"}; this includes the most commonly
|
|
used modules of wxWindows.
|
|
|
|
To save on compilation time, include only those header files relevant to the
|
|
source file. If you are using precompiled headers, you should include
|
|
the following section before any other includes:
|
|
|
|
\begin{verbatim}
|
|
// For compilers that support precompilation, includes "wx.h".
|
|
#include <wx/wxprec.h>
|
|
|
|
#ifdef __BORLANDC__
|
|
#pragma hdrstop
|
|
#endif
|
|
|
|
#ifndef WX_PRECOMP
|
|
// Include your minimal set of headers here, or wx.h
|
|
#include <wx/wx.h>
|
|
#endif
|
|
|
|
... now your other include files ...
|
|
\end{verbatim}
|
|
|
|
The file {\tt "wx/wxprec.h"} includes {\tt "wx/wx.h"}. Although this incantation
|
|
may seem quirky, it is in fact the end result of a lot of experimentation,
|
|
and several Windows compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
|
|
and Watcom C++).
|
|
|
|
Borland precompilation is largely automatic. Visual C++ requires specification of {\tt "wx/wxprec.h"} as
|
|
the file to use for precompilation. Watcom C++ is automatic apart from the specification of
|
|
the .pch file. Watcom C++ is strange in requiring the precompiled header to be used only for
|
|
object files compiled in the same directory as that in which the precompiled header was created.
|
|
Therefore, the wxWindows Watcom C++ makefiles go through hoops deleting and recreating
|
|
a single precompiled header file for each module, thus preventing an accumulation of many
|
|
multi-megabyte .pch files.
|
|
|
|
\section{Libraries}
|
|
|
|
The GTK and Motif ports of wxWindow can create either a static library or a shared
|
|
library on most Unix or Unix-like systems. The static library is called libwx\_gtk.a
|
|
and libwx\_motif.a whereas the name of the shared library is dependent on the
|
|
system it is created on and the version you are using. The library name for the
|
|
GTK version of wxWindows 2.2 on Linux and Solaris will be libwx\_gtk-2.2.so.0.0.0,
|
|
on HP-UX, it will be libwx\_gtk-2.2.sl, on AIX just libwx\_gtk.a etc.
|
|
|
|
Under Windows, use the library wx.lib for stand-alone Windows
|
|
applications, or wxdll.lib for creating DLLs.
|
|
|
|
\section{Configuration}
|
|
|
|
Options are configurable in the file
|
|
\rtfsp{\tt "wx/XXX/setup.h"} where XXX is the required platform (such as msw, motif, gtk, mac). Some
|
|
settings are a matter of taste, some help with platform-specific problems, and
|
|
others can be set to minimize the size of the library. Please see the setup.h file
|
|
and {\tt install.txt} files for details on configuration.
|
|
|
|
Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
|
|
when configuring the wxWindows using the "configure" script. When using the RPM packages
|
|
for installing wxWindows on Linux, a correct setup.h is shipped in the package and
|
|
this must not be changed.
|
|
|
|
\section{Makefiles}
|
|
|
|
At the moment there is no attempt to make Unix makefiles and
|
|
PC makefiles compatible, i.e. one makefile is required for
|
|
each environment. The Unix ports use a sophisticated system based
|
|
on the GNU autoconf tool and this system will create the
|
|
makefiles as required on the respective platform. Although the
|
|
makefiles are not identical in Windows, Mac and Unix, care has
|
|
been taken to make them relatively similar so that moving from
|
|
one platform to another will be painless.
|
|
|
|
Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland
|
|
C++ (.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos
|
|
and utilities.
|
|
|
|
The controlling makefile for wxWindows is in the MS-Windows
|
|
directory {\tt src/msw} for the different Windows compiler and
|
|
in the build directory when using the Unix ports. The build
|
|
directory can be chosen by the user. It is the directory in
|
|
which the "configure" script is run. This can be the normal
|
|
base directory (by running {\tt ./configure} there) or any other
|
|
directory (e.g. {\tt ../configure} after creating a build-directory
|
|
in the directory level above the base directory).
|
|
|
|
Please see the platform-specific {\tt install.txt} file for further details.
|
|
|
|
\section{Windows-specific files}
|
|
|
|
wxWindows application compilation under MS Windows requires at least two
|
|
extra files, resource and module definition files.
|
|
|
|
\subsection{Resource file}\label{resources}
|
|
|
|
The least that must be defined in the Windows resource file (extension RC)
|
|
is the following statement:
|
|
|
|
\begin{verbatim}
|
|
rcinclude "wx/msw/wx.rc"
|
|
\end{verbatim}
|
|
|
|
which includes essential internal wxWindows definitions. The resource script
|
|
may also contain references to icons, cursors, etc., for example:
|
|
|
|
\begin{verbatim}
|
|
wxicon icon wx.ico
|
|
\end{verbatim}
|
|
|
|
The icon can then be referenced by name when creating a frame icon. See
|
|
the MS Windows SDK documentation.
|
|
|
|
\normalbox{Note: include wx.rc {\it after} any ICON statements
|
|
so programs that search your executable for icons (such
|
|
as the Program Manager) find your application icon first.}
|
|
|
|
\subsection{Module definition file}
|
|
|
|
A module definition file (extension DEF) is required for 16-bit applications, and
|
|
looks like the following:
|
|
|
|
\begin{verbatim}
|
|
NAME Hello
|
|
DESCRIPTION 'Hello'
|
|
EXETYPE WINDOWS
|
|
STUB 'WINSTUB.EXE'
|
|
CODE PRELOAD MOVEABLE DISCARDABLE
|
|
DATA PRELOAD MOVEABLE MULTIPLE
|
|
HEAPSIZE 1024
|
|
STACKSIZE 8192
|
|
\end{verbatim}
|
|
|
|
The only lines which will usually have to be changed per application are
|
|
NAME and DESCRIPTION.
|
|
|
|
\section{Allocating and deleting wxWindows objects}
|
|
|
|
In general, classes derived from wxWindow must dynamically allocated
|
|
with {\it new} and deleted with {\it delete}. If you delete a window,
|
|
all of its children and descendants will be automatically deleted,
|
|
so you don't need to delete these descendants explicitly.
|
|
|
|
When deleting a frame or dialog, use {\bf Destroy} rather than {\bf delete} so
|
|
that the wxWindows delayed deletion can take effect. This waits until idle time
|
|
(when all messages have been processed) to actually delete the window, to avoid
|
|
problems associated with the GUI sending events to deleted windows.
|
|
|
|
Don't create a window on the stack, because this will interfere
|
|
with delayed deletion.
|
|
|
|
If you decide to allocate a C++ array of objects (such as wxBitmap) that may
|
|
be cleaned up by wxWindows, make sure you delete the array explicitly
|
|
before wxWindows has a chance to do so on exit, since calling {\it delete} on
|
|
array members will cause memory problems.
|
|
|
|
wxColour can be created statically: it is not automatically cleaned
|
|
up and is unlikely to be shared between other objects; it is lightweight
|
|
enough for copies to be made.
|
|
|
|
Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
|
|
Windows is particularly sensitive to this: so make sure you
|
|
make calls like wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting
|
|
a drawing object that may be in use. Code that doesn't do this will probably work
|
|
fine on some platforms, and then fail under Windows.
|
|
|
|
\section{Architecture dependency}
|
|
|
|
A problem which sometimes arises from writing multi-platform programs is that
|
|
the basic C types are not defiend the same on all platforms. This holds true
|
|
for both the length in bits of the standard types (such as int and long) as
|
|
well as their byte order, which might be little endian (typically
|
|
on Intel computers) or big endian (typically on some Unix workstations). wxWindows
|
|
defines types and macros that make it easy to write architecture independent
|
|
code. The types are:
|
|
|
|
wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte
|
|
|
|
where wxInt32 stands for a 32-bit signed integer type etc. You can also check
|
|
which architecture the program is compiled on using the wxBYTE\_ORDER define
|
|
which is either wxBIG\_ENDIAN or wxLITTLE\_ENDIAN (in the future maybe wxPDP\_ENDIAN
|
|
as well).
|
|
|
|
The macros handling bit-swapping with respect to the applications endianness
|
|
are described in the \helpref{Macros}{macros} section.
|
|
|
|
\section{Conditional compilation}
|
|
|
|
One of the purposes of wxWindows is to reduce the need for conditional
|
|
compilation in source code, which can be messy and confusing to follow.
|
|
However, sometimes it is necessary to incorporate platform-specific
|
|
features (such as metafile use under MS Windows). The symbols
|
|
listed in the file {\tt symbols.txt} may be used for this purpose,
|
|
along with any user-supplied ones.
|
|
|
|
\section{C++ issues}
|
|
|
|
The following documents some miscellaneous C++ issues.
|
|
|
|
\subsection{Templates}
|
|
|
|
wxWindows does not use templates since it is a notoriously unportable feature.
|
|
|
|
\subsection{RTTI}
|
|
|
|
wxWindows does not use run-time type information since wxWindows provides
|
|
its own run-time type information system, implemented using macros.
|
|
|
|
\subsection{Type of NULL}
|
|
|
|
Some compilers (e.g. the native IRIX cc) define NULL to be 0L so that
|
|
no conversion to pointers is allowed. Because of that, all these
|
|
occurences of NULL in the GTK port use an explicit conversion such
|
|
as
|
|
|
|
{\small
|
|
\begin{verbatim}
|
|
wxWindow *my_window = (wxWindow*) NULL;
|
|
\end{verbatim}
|
|
}
|
|
|
|
It is recommended to adhere to this in all code using wxWindows as
|
|
this make the code (a bit) more portable.
|
|
|
|
\subsection{Precompiled headers}
|
|
|
|
Some compilers, such as Borland C++ and Microsoft C++, support
|
|
precompiled headers. This can save a great deal of compiling time. The
|
|
recommended approach is to precompile {\tt "wx.h"}, using this
|
|
precompiled header for compiling both wxWindows itself and any
|
|
wxWindows applications. For Windows compilers, two dummy source files
|
|
are provided (one for normal applications and one for creating DLLs)
|
|
to allow initial creation of the precompiled header.
|
|
|
|
However, there are several downsides to using precompiled headers. One
|
|
is that to take advantage of the facility, you often need to include
|
|
more header files than would normally be the case. This means that
|
|
changing a header file will cause more recompilations (in the case of
|
|
wxWindows, everything needs to be recompiled since everything includes {\tt "wx.h"}!)
|
|
|
|
A related problem is that for compilers that don't have precompiled
|
|
headers, including a lot of header files slows down compilation
|
|
considerably. For this reason, you will find (in the common
|
|
X and Windows parts of the library) conditional
|
|
compilation that under Unix, includes a minimal set of headers;
|
|
and when using Visual C++, includes {\tt wx.h}. This should help provide
|
|
the optimal compilation for each compiler, although it is
|
|
biassed towards the precompiled headers facility available
|
|
in Microsoft C++.
|
|
|
|
\section{File handling}
|
|
|
|
When building an application which may be used under different
|
|
environments, one difficulty is coping with documents which may be
|
|
moved to different directories on other machines. Saving a file which
|
|
has pointers to full pathnames is going to be inherently unportable. One
|
|
approach is to store filenames on their own, with no directory
|
|
information. The application searches through a number of locally
|
|
defined directories to find the file. To support this, the class {\bf
|
|
wxPathList} makes adding directories and searching for files easy, and
|
|
the global function {\bf wxFileNameFromPath} allows the application to
|
|
strip off the filename from the path if the filename must be stored.
|
|
This has undesirable ramifications for people who have documents of the
|
|
same name in different directories.
|
|
|
|
As regards the limitations of DOS 8+3 single-case filenames versus
|
|
unrestricted Unix filenames, the best solution is to use DOS filenames
|
|
for your application, and also for document filenames {\it if} the user
|
|
is likely to be switching platforms regularly. Obviously this latter
|
|
choice is up to the application user to decide. Some programs (such as
|
|
YACC and LEX) generate filenames incompatible with DOS; the best
|
|
solution here is to have your Unix makefile rename the generated files
|
|
to something more compatible before transferring the source to DOS.
|
|
Transferring DOS files to Unix is no problem, of course, apart from EOL
|
|
conversion for which there should be a utility available (such as
|
|
dos2unix).
|
|
|
|
See also the File Functions section of the reference manual for
|
|
descriptions of miscellaneous file handling functions.
|
|
|
|
\begin{comment}
|
|
\chapter{Utilities supplied with wxWindows}\label{utilities}
|
|
\setheader{{\it CHAPTER \thechapter}}{}{}{}{}{{\it CHAPTER \thechapter}}%
|
|
\setfooter{\thepage}{}{}{}{}{\thepage}%
|
|
|
|
A number of `extras' are supplied with wxWindows, to complement
|
|
the GUI functionality in the main class library. These are found
|
|
below the utils directory and usually have their own source, library
|
|
and documentation directories. For other user-contributed packages,
|
|
see the directory ftp://www.remstar.com/pub/wxwin/contrib, which is
|
|
more easily accessed via the Contributions page on the Web site.
|
|
|
|
\section{wxHelp}\label{wxhelp}
|
|
|
|
wxHelp is a stand-alone program, written using wxWindows,
|
|
for displaying hypertext help. It is necessary since not all target
|
|
systems (notably X) supply an adequate
|
|
standard for on-line help. wxHelp is modelled on the MS Windows help
|
|
system, with contents, search and browse buttons, but does not reformat
|
|
text to suit the size of window, as WinHelp does, and its input files
|
|
are uncompressed ASCII with some embedded font commands and an .xlp
|
|
extension. Most wxWindows documentation (user manuals and class
|
|
references) is supplied in wxHelp format, and also in Windows Help
|
|
format. The wxWindows 2.0 project will presently use an HTML widget
|
|
in a new and improved wxHelp implementation, under X.
|
|
|
|
Note that an application can be programmed to use Windows Help under
|
|
MS Windows, and wxHelp under X. An alternative help viewer under X is
|
|
Mosaic, a World Wide Web viewer that uses HTML as its native hypertext
|
|
format. However, this is not currently integrated with wxWindows
|
|
applications.
|
|
|
|
wxHelp works in two modes---edit and end-user. In edit mode, an ASCII
|
|
file may be marked up with different fonts and colours, and divided into
|
|
sections. In end-user mode, no editing is possible, and the user browses
|
|
principally by clicking on highlighted blocks.
|
|
|
|
When an application invokes wxHelp, subsequent sections, blocks or
|
|
files may be viewed using the same instance of wxHelp since the two
|
|
programs are linked using wxWindows interprocess communication
|
|
facilities. When the application exits, that application's instance of
|
|
wxHelp may be made to exit also. See the {\bf wxHelpControllerBase} entry in the
|
|
reference section for how an application controls wxHelp.
|
|
|
|
\section{Tex2RTF}\label{textortf}
|
|
|
|
Supplied with wxWindows is a utility called Tex2RTF for converting\rtfsp
|
|
\LaTeX\ manuals to the following formats:
|
|
|
|
\begin{description}
|
|
\item[wxHelp]
|
|
wxWindows help system format (XLP).
|
|
\item[Linear RTF]
|
|
Rich Text Format suitable for importing into a word processor.
|
|
\item[Windows Help RTF]
|
|
Rich Text Format suitable for compiling into a WinHelp HLP file with the
|
|
help compiler.
|
|
\item[HTML]
|
|
HTML is the native format for Mosaic, the main hypertext viewer for
|
|
the World Wide Web. Since it is freely available it is a good candidate
|
|
for being the wxWindows help system under X, as an alternative to wxHelp.
|
|
\end{description}
|
|
|
|
Tex2RTF is used for the wxWindows manuals and can be used independently
|
|
by authors wishing to create on-line and printed manuals from the same\rtfsp
|
|
\LaTeX\ source. Please see the separate documentation for Tex2RTF.
|
|
|
|
\section{wxTreeLayout}
|
|
|
|
This is a simple class library for drawing trees in a reasonably pretty
|
|
fashion. It provides only minimal default drawing capabilities, since
|
|
the algorithm is meant to be used for implementing custom tree-based
|
|
tools.
|
|
|
|
Directed graphs may also be drawn using this library, if cycles are
|
|
removed before the nodes and arcs are passed to the algorithm.
|
|
|
|
Tree displays are used in many applications: directory browsers,
|
|
hypertext systems, class browsers, and decision trees are a few
|
|
possibilities.
|
|
|
|
See the separate manual and the directory utils/wxtree.
|
|
|
|
\section{wxGraphLayout}
|
|
|
|
The wxGraphLayout class is based on a tool called `graphplace' by Dr.
|
|
Jos T.J. van Eijndhoven of Eindhoven University of Technology. Given a
|
|
(possibly cyclic) directed graph, it does its best to lay out the nodes
|
|
in a sensible manner. There are many applications (such as diagramming)
|
|
where it is required to display a graph with no human intervention. Even
|
|
if manual repositioning is later required, this algorithm can make a good
|
|
first attempt.
|
|
|
|
See the separate manual and the directory utils/wxgraph.
|
|
|
|
\section{Colours}\label{coloursampler}
|
|
|
|
A colour sampler for viewing colours and their names on each
|
|
platform.
|
|
|
|
%
|
|
\chapter{Tutorial}\label{tutorial}
|
|
\setheader{{\it CHAPTER \thechapter}}{}{}{}{}{{\it CHAPTER \thechapter}}%
|
|
\setfooter{\thepage}{}{}{}{}{\thepage}%
|
|
|
|
To be written.
|
|
\end{comment}
|
|
|
|
\chapter{Programming strategies}\label{strategies}
|
|
\setheader{{\it CHAPTER \thechapter}}{}{}{}{}{{\it CHAPTER \thechapter}}%
|
|
\setfooter{\thepage}{}{}{}{}{\thepage}%
|
|
|
|
This chapter is intended to list strategies that may be useful when
|
|
writing and debugging wxWindows programs. If you have any good tips,
|
|
please submit them for inclusion here.
|
|
|
|
\section{Strategies for reducing programming errors}
|
|
|
|
\subsection{Use ASSERT}
|
|
|
|
Although I haven't done this myself within wxWindows, it is good
|
|
practice to use ASSERT statements liberally, that check for conditions that
|
|
should or should not hold, and print out appropriate error messages.
|
|
These can be compiled out of a non-debugging version of wxWindows
|
|
and your application. Using ASSERT is an example of `defensive programming':
|
|
it can alert you to problems later on.
|
|
|
|
\subsection{Use wxString in preference to character arrays}
|
|
|
|
Using wxString can be much safer and more convenient than using char *.
|
|
Again, I haven't practised what I'm preaching, but I'm now trying to use
|
|
wxString wherever possible. You can reduce the possibility of memory
|
|
leaks substantially, and it's much more convenient to use the overloaded
|
|
operators than functions such as strcmp. wxString won't add a significant
|
|
overhead to your program; the overhead is compensated for by easier
|
|
manipulation (which means less code).
|
|
|
|
The same goes for other data types: use classes wherever possible.
|
|
|
|
\section{Strategies for portability}
|
|
|
|
\subsection{Use relative positioning or constraints}
|
|
|
|
Don't use absolute panel item positioning if you can avoid it. Different GUIs have
|
|
very differently sized panel items. Consider using the constraint system, although this
|
|
can be complex to program.
|
|
|
|
Alternatively, you could use alternative .wrc (wxWindows resource files) on different
|
|
platforms, with slightly different dimensions in each. Or space your panel items out
|
|
to avoid problems.
|
|
|
|
\subsection{Use wxWindows resource files}
|
|
|
|
Use .wrc (wxWindows resource files) where possible, because they can be easily changed
|
|
independently of source code. Bitmap resources can be set up to load different
|
|
kinds of bitmap depending on platform (see the section on resource files).
|
|
|
|
\section{Strategies for debugging}\label{debugstrategies}
|
|
|
|
\subsection{Positive thinking}
|
|
|
|
It's common to blow up the problem in one's imagination, so that it seems to threaten
|
|
weeks, months or even years of work. The problem you face may seem insurmountable:
|
|
but almost never is. Once you have been programming for some time, you will be able
|
|
to remember similar incidents that threw you into the depths of despair. But
|
|
remember, you always solved the problem, somehow!
|
|
|
|
Perseverance is often the key, even though a seemingly trivial problem
|
|
can take an apparently inordinate amount of time to solve. In the end,
|
|
you will probably wonder why you worried so much. That's not to say it
|
|
isn't painful at the time. Try not to worry -- there are many more important
|
|
things in life.
|
|
|
|
\subsection{Simplify the problem}
|
|
|
|
Reduce the code exhibiting the problem to the smallest program possible
|
|
that exhibits the problem. If it is not possible to reduce a large and
|
|
complex program to a very small program, then try to ensure your code
|
|
doesn't hide the problem (you may have attempted to minimize the problem
|
|
in some way: but now you want to expose it).
|
|
|
|
With luck, you can add a small amount of code that causes the program
|
|
to go from functioning to non-functioning state. This should give a clue
|
|
to the problem. In some cases though, such as memory leaks or wrong
|
|
deallocation, this can still give totally spurious results!
|
|
|
|
\subsection{Use a debugger}
|
|
|
|
This sounds like facetious advice, but it's surprising how often people
|
|
don't use a debugger. Often it's an overhead to install or learn how to
|
|
use a debugger, but it really is essential for anything but the most
|
|
trivial programs.
|
|
|
|
\subsection{Use logging functions}
|
|
|
|
There is a variety of logging functions that you can use in your program:
|
|
see \helpref{Logging functions}{logfunctions}.
|
|
|
|
Using tracing statements may be more convenient than using the debugger
|
|
in some circumstances (such as when your debugger doesn't support a lot
|
|
of debugging code, or you wish to print a bunch of variables).
|
|
|
|
\subsection{Use the wxWindows debugging facilities}
|
|
|
|
You can use wxDebugContext to check for
|
|
memory leaks and corrupt memory: in fact in debugging mode, wxWindows will
|
|
automatically check for memory leaks at the end of the program if wxWindows is suitably
|
|
configured. Depending on the operating system and compiler, more or less
|
|
specific information about the problem will be logged.
|
|
|
|
You should also use \helpref{debug macros}{debugmacros} as part of a `defensive programming' strategy,
|
|
scattering wxASSERTs liberally to test for problems in your code as early as possible. Forward thinking
|
|
will save a surprising amount of time in the long run.
|
|
|
|
See the \helpref{debugging overview}{debuggingoverview} for further information.
|
|
|
|
\subsection{Check Windows debug messages}
|
|
|
|
Under Windows, it's worth running your program with
|
|
\urlref{DbgView}{http://www.sysinternals.com} running or
|
|
some other program that shows Windows-generated debug messages. It's
|
|
possible it'll show invalid handles being used. You may have fun seeing
|
|
what commercial programs cause these normally hidden errors! Microsoft
|
|
recommend using the debugging version of Windows, which shows up even
|
|
more problems. However, I doubt it's worth the hassle for most
|
|
applications. wxWindows is designed to minimize the possibility of such
|
|
errors, but they can still happen occasionally, slipping through unnoticed
|
|
because they are not severe enough to cause a crash.
|
|
|
|
\subsection{Genetic mutation}
|
|
|
|
If we had sophisticated genetic algorithm tools that could be applied
|
|
to programming, we could use them. Until then, a common -- if rather irrational --
|
|
technique is to just make arbitrary changes to the code until something
|
|
different happens. You may have an intuition why a change will make a difference;
|
|
otherwise, just try altering the order of code, comment lines out, anything
|
|
to get over an impasse. Obviously, this is usually a last resort.
|
|
|