wxWidgets/interface/wx/affinematrix2d.h
Vadim Zeitlin 0e5d4c38a3 Add wxAffineMatrix2D and related classes.
This class represents an affine 2D transformation and will be used in wxDC for
now and maybe in wxGC later.

Closes #13143.

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@67520 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
2011-04-17 00:09:56 +00:00

162 lines
4.0 KiB
Objective-C

/////////////////////////////////////////////////////////////////////////////
// Name: affinematrix2d.h
// Purpose: interface of wxAffineMatrix2D
// Author: wxWidgets team
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
/**
@class wxAffineMatrix2D
A 3x2 matrix representing an affine 2D transformation.
@library{wxcore}
@category{misc}
@since 2.9.2
*/
class wxAffineMatrix2D
{
public:
/**
Default constructor.
The matrix elements are initialize to the identity matrix.
*/
wxAffineMatrix2D();
/**
Get the component values of the matrix.
@param mat2D
The rotational components of the matrix (upper 2 x 2), must be
non-@NULL.
@param tr
The translational components of the matrix, may be @NULL.
*/
void Get(wxMatrix2D* mat2D, wxPoint2DDouble* tr) const;
/**
Set all elements of this matrix.
@param mat2D
The rotational components of the matrix (upper 2 x 2).
@param tr
The translational components of the matrix.
*/
void Set(const wxMatrix2D& mat2D, const wxPoint2DDouble& tr);
/**
Concatenate this matrix with another one.
The parameter matrix is the multiplicand.
@param wxAffineMatrix2DBase
The multiplicand.
@code
// | t.m_11 t.m_12 0 | | m_11 m_12 0 |
// matrix' = | t.m_21 t.m_22 0 | x | m_21 m_22 0 |
// | t.m_tx t.m_ty 1 | | m_tx m_ty 1 |
@endcode
*/
void Concat(const wxAffineMatrix2DBase& t);
/**
Invert this matrix.
If the matrix is not invertible, i.e. if its determinant is 0, returns
false and doesn't modify it.
@code
// | m_11 m_12 0 |
// Invert | m_21 m_22 0 |
// | m_tx m_ty 1 |
@endcode
*/
bool Invert();
/**
Check if this is the identity matrix.
*/
bool IsIdentity() const;
//@{
/**
Check that this matrix is identical with @t.
@param wxAffineMatrix2DBase
The matrix compared with this.
*/
void IsEqual(const wxAffineMatrix2DBase& t);
bool operator==(const wxAffineMatrix2DBase& t) const;
//@}
/**
Check that this matrix differs from @t.
@param wxAffineMatrix2DBase
The matrix compared with this.
*/
bool operator!=(const wxAffineMatrix2DBase& t) const;
/**
Add the translation to this matrix.
@param dx
The translation in x direction.
@param dy
The translation in y direction.
*/
void Translate(wxDouble dx, wxDouble dy);
/**
Add scaling to this matrix.
@param xScale
Scaling in x direction.
@param yScale
Scaling in y direction.
*/
void Scale(wxDouble xScale, wxDouble yScale);
/**
Add mirroring to this matrix.
@param direction
The direction(s) used for mirroring. One of wxHORIZONTAL,
wxVERTICAL or their combination wxBOTH.
*/
void Mirror(int direction = wxHORIZONTAL);
/**
Add counter clockwise rotation to this matrix.
@param ccRadians
Rotation angle in radians.
*/
void Rotate(wxDouble ccRadians);
/**
Applies this matrix to the point.
@param src
The point receiving the transformations.
@return The point with the transformations applied.
*/
wxPoint2DDouble TransformPoint(const wxPoint2DDouble& p) const;
void TransformPoint(wxDouble* x, wxDouble* y) const;
/**
Applies the linear part of this matrix, i.e. without translation.
@param src
The source receiving the transformations.
@return The source with the transformations applied.
*/
wxPoint2DDouble TransformDistance(const wxPoint2DDouble& p) const;
void TransformDistance(wxDouble* dx, wxDouble* dy) const;
};