zstd/lib/legacy/zstd_v02.c

3746 lines
134 KiB
C
Raw Normal View History

/* ******************************************************************
Error codes and messages
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h> /* size_t, ptrdiff_t */
#include "zstd_v02.h"
/******************************************
* Compiler-specific
******************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#elif defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/******************************************
* Error Management
******************************************/
#define PREFIX(name) ZSTD_error_##name
#define ERROR(name) (size_t)-PREFIX(name)
#define ERROR_LIST(ITEM) \
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
ITEM(PREFIX(memory_allocation)) \
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
ITEM(PREFIX(maxCode))
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
/* ******************************************************************
mem.h
low-level memory access routines
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Includes
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/******************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define MEM_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/****************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets generating assembly depending on alignment.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
# elif defined(__INTEL_COMPILER) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif // MEM_FORCE_MEMORY_ACCESS
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian())
{
MEM_write16(memPtr, val);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
{
MEM_write32(memPtr, val32);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val32;
p[1] = (BYTE)(val32>>8);
p[2] = (BYTE)(val32>>16);
p[3] = (BYTE)(val32>>24);
}
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
{
MEM_write64(memPtr, val64);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val64;
p[1] = (BYTE)(val64>>8);
p[2] = (BYTE)(val64>>16);
p[3] = (BYTE)(val64>>24);
p[4] = (BYTE)(val64>>32);
p[5] = (BYTE)(val64>>40);
p[6] = (BYTE)(val64>>48);
p[7] = (BYTE)(val64>>56);
}
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
/* ******************************************************************
bitstream
Part of NewGen Entropy library
header file (to include)
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which highly benefit from being inlined.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/**********************************************
* bitStream decompression API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/*
* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is manually filled from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream()
*/
/******************************************
* unsafe API
******************************************/
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/****************************************************************
* Helper functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
{
# if defined(_MSC_VER) /* Visual */
2015-11-23 12:34:21 +00:00
unsigned long r=0;
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/**********************************************************
* bitStream decoding
**********************************************************/
/*!BIT_initDStream
* Initialize a BIT_DStream_t.
* @bitD : a pointer to an already allocated BIT_DStream_t structure
* @srcBuffer must point at the beginning of a bitStream
* @srcSize must be the exact size of the bitStream
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
if (srcSize >= sizeof(size_t)) /* normal case */
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
default:;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
/*!BIT_lookBits
* Provides next n bits from local register
* local register is not modified (bits are still present for next read/look)
* On 32-bits, maxNbBits==25
* On 64-bits, maxNbBits==57
* @return : value extracted
*/
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}
/*! BIT_lookBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*!BIT_readBits
* Read next n bits from local register.
* pay attention to not read more than nbBits contained into local register.
* @return : extracted value.
*/
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*!BIT_readBitsFast :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t value = BIT_lookBitsFast(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
return result;
}
}
/*! BIT_endOfDStream
* @return Tells if DStream has reached its exact end
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
/* ******************************************************************
Error codes and messages
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Compiler-specific
******************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#elif defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/******************************************
* Error Management
******************************************/
#define PREFIX(name) ZSTD_error_##name
#define ERROR(name) (size_t)-PREFIX(name)
#define ERROR_LIST(ITEM) \
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
ITEM(PREFIX(maxCode))
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
static const char* codeError = "Unspecified error code";
if (ERR_isError(code)) return ERR_strings[-(int)(code)];
return codeError;
}
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
/*
Constructor and Destructor of type FSE_CTable
Note that its size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/* ******************************************************************
FSE : Finite State Entropy coder
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation
******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/******************************************
* FSE advanced API
******************************************/
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
/******************************************
* FSE symbol decompression API
******************************************/
typedef struct
{
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/*
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/******************************************
* FSE unsafe API
******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/******************************************
* Implementation of inline functions
******************************************/
/* decompression */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
header file for static linking (only)
Copyright (C) 2013-2015, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
/******************************************
* Static allocation macros
******************************************/
/* Huff0 buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of Huff0's DTable */
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
/******************************************
* Advanced functions
******************************************/
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Version
***************************************/
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
#if defined (__cplusplus)
}
#endif
/*
zstd - standard compression library
Header File for static linking only
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* The objects defined into this file should be considered experimental.
* They are not labelled stable, as their prototype may change in the future.
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Streaming functions
***************************************/
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
/*
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/
#if defined (__cplusplus)
}
#endif
/* ******************************************************************
FSE : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_COMMONDEFS_ONLY
/****************************************************************
* Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/* FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/****************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
/****************************************************************
* Byte symbol type
****************************************************************/
#endif /* !FSE_COMMONDEFS_ONLY */
/****************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# ifdef __GNUC__
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/****************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/****************************************************************
* Complex types
****************************************************************/
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/****************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
#define FSE_DECODE_TYPE FSE_TYPE_NAME(FSE_decode_t, FSE_FUNCTION_EXTENSION)
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
static size_t FSE_FUNCTION_NAME(FSE_buildDTable, FSE_FUNCTION_EXTENSION)
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* ptr = dt+1;
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr;
FSE_DTableHeader DTableH;
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
DTableH.tableLog = (U16)tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
DTableH.fastMode = (U16)noLarge;
memcpy(dt, &DTableH, sizeof(DTableH)); /* memcpy(), to avoid strict aliasing warnings */
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/******************************************
* FSE helper functions
******************************************/
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
/****************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a)
{
return a<0 ? -a : a;
}
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
if (ip < iend-5)
{
ip+=2;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
{
bitStream >>= 16;
bitCount+=16;
}
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
}
else
bitStream >>= 2;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
{
ip += bitCount>>3;
bitCount &= 7;
}
else
{
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return ERROR(GENERIC);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
return ip-istart;
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
{
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1)
{
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = FSE_GETSYMBOL(&state1);
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = FSE_GETSYMBOL(&state2);
}
/* end ? */
if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
return op-ostart;
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
return ERROR(corruption_detected);
}
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
FSE_DTableHeader DTableH;
memcpy(&DTableH, dt, sizeof(DTableH));
/* select fast mode (static) */
if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode;
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}
#endif /* FSE_COMMONDEFS_ONLY */
/* ******************************************************************
Huff0 : Huffman coder, part of New Generation Entropy library
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/****************************************************************
* Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
# define inline __inline
#else
# define inline /* disable inline */
#endif
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#else
# ifdef __GNUC__
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
/****************************************************************
* Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/******************************************
* Helper functions
******************************************/
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
#define HUF_MAX_SYMBOL_VALUE 255
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
/*********************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/*! HUF_readStats
Read compact Huffman tree, saved by HUF_writeCTable
@huffWeight : destination buffer
@return : size read from `src`
*/
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
U32 tableLog;
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
size_t oSize;
U32 n;
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) /* special header */
{
if (iSize >= (242)) /* RLE */
{
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
oSize = l[iSize-242];
memset(huffWeight, 1, hwSize);
iSize = 0;
}
else /* Incompressible */
{
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
for (n=0; n<oSize; n+=2)
{
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
}
}
}
else /* header compressed with FSE (normal case) */
{
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
weightTotal = 0;
for (n=0; n<oSize; n++)
{
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
/* get last non-null symbol weight (implied, total must be 2^n) */
tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
{
U32 total = 1 << tableLog;
U32 rest = total - weightTotal;
U32 verif = 1 << BIT_highbit32(rest);
U32 lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
}
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
*tableLogPtr = tableLog;
return iSize+1;
}
/**************************/
/* single-symbol decoding */
/**************************/
static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
U32 nbSymbols = 0;
U32 n;
U32 nextRankStart;
void* ptr = DTable+1;
HUF_DEltX2* const dt = (HUF_DEltX2*)ptr;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
/* Prepare ranks */
nextRankStart = 0;
for (n=1; n<=tableLog; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
/* fill DTable */
for (n=0; n<nbSymbols; n++)
{
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
U32 i;
HUF_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize;
}
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
const BYTE c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
{
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/***************************/
/* double-symbols decoding */
/***************************/
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX4 DElt;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 s;
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
{
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
}
}
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++)
{
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
{
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
}
else
{
U32 i;
const U32 end = start + length;
HUF_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
for (i = start; i < end; i++)
DTable[i] = DElt;
}
rankVal[weight] += length;
}
}
static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
rankVal_t rankVal;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
const U32 memLog = DTable[0];
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
void* ptr = DTable;
HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1;
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
HUF_fillDTableX4(dt, memLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
return iSize;
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else
{
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
}
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
{
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* ptr = DTable;
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
{
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* quad-symbol decoding */
/**********************************/
typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
/* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
{
const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
const int minBits = nbBitsBaseline - maxWeight;
const U32 level = DDesc.nbBytes;
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
U32 symbolStartPos, s;
/* local rankVal, will be modified */
memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
/* fill skipped values */
if (minWeight>1)
{
U32 i;
const U32 skipSize = rankVal[minWeight];
for (i = 0; i < skipSize; i++)
{
DSequence[i] = baseSeq;
DDescription[i] = DDesc;
}
}
/* fill DTable */
DDesc.nbBytes++;
symbolStartPos = rankStart[minWeight];
for (s=symbolStartPos; s<sortedListSize; s++)
{
const BYTE symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */
const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */
const int totalBits = consumed+nbBits;
const U32 start = rankVal[weight];
const U32 length = 1 << (sizeLog-nbBits);
baseSeq.byte[level] = symbol;
DDesc.nbBits = (BYTE)totalBits;
if ((level<3) && (sizeLog-totalBits >= minBits)) /* enough room for another symbol */
{
int nextMinWeight = totalBits + scaleLog;
if (nextMinWeight < 1) nextMinWeight = 1;
HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
rankValOrigin, totalBits, nextMinWeight, maxWeight,
sortedSymbols, sortedListSize, rankStart,
nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */
}
else
{
U32 i;
const U32 end = start + length;
for (i = start; i < end; i++)
{
DDescription[i] = DDesc;
DSequence[i] = baseSeq;
}
}
rankVal[weight] += length;
}
}
/* note : same preparation as X4 */
static size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
{
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
U32* const rankStart = rankStart0+1;
U32 tableLog, maxW, sizeOfSort, nbSymbols;
rankVal_t rankVal;
const U32 memLog = DTable[0];
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{
U32 w, nextRankStart = 0;
for (w=1; w<=maxW; w++)
{
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{
U32 s;
for (s=0; s<nbSymbols; s++)
{
U32 w = weightList[s];
U32 r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{
const U32 minBits = tableLog+1 - maxW;
U32 nextRankVal = 0;
U32 w, consumed;
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
U32* rankVal0 = rankVal[0];
for (w=1; w<=maxW; w++)
{
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
}
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
{
U32* rankValPtr = rankVal[consumed];
for (w = 1; w <= maxW; w++)
{
rankValPtr[w] = rankVal0[w] >> consumed;
}
}
}
/* fill tables */
{
void* ptr = DTable+1;
HUF_DDescX6* DDescription = (HUF_DDescX6*)(ptr);
void* dSeqStart = DTable + 1 + ((size_t)1<<(memLog-1));
HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(dSeqStart);
HUF_DSeqX6 DSeq;
HUF_DDescX6 DDesc;
DSeq.sequence = 0;
DDesc.nbBits = 0;
DDesc.nbBytes = 0;
HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
(const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
sortedSymbol, sizeOfSort, rankStart0,
tableLog+1, DSeq, DDesc);
}
return iSize;
}
static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, ds+val, sizeof(HUF_DSeqX6));
BIT_skipBits(DStream, dd[val].nbBits);
return dd[val].nbBytes;
}
static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
{
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
U32 length = dd[val].nbBytes;
if (length <= maxL)
{
memcpy(op, ds+val, length);
BIT_skipBits(DStream, dd[val].nbBits);
return length;
}
memcpy(op, ds+val, maxL);
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
{
BIT_skipBits(DStream, dd[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
}
return maxL;
}
#define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
#define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
{
const void* ddPtr = DTable+1;
const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
BYTE* const pStart = p;
/* up to 16 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16))
{
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
}
/* closer to the end, up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
while (p <= pEnd-4)
HUF_DECODE_SYMBOLX6_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
while (p < pEnd)
p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
return p-pStart;
}
static size_t HUF_decompress4X6_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const U32* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const U32 dtLog = DTable[0];
const void* ddPtr = DTable+1;
const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr);
const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr);
size_t errorCode;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode;
errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode;
/* 16-64 symbols per loop (4-16 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; )
{
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize;
cSrcSize -= hSize;
return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
/**********************************/
/* Generic decompression selector */
/**********************************/
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
/* estimate decompression time */
U32 Q;
const U32 D256 = (U32)(dstSize >> 8);
U32 Dtime[3];
U32 algoNb = 0;
int n;
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
/* decoder timing evaluation */
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
for (n=0; n<3; n++)
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
if (Dtime[1] < Dtime[0]) algoNb = 1;
if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
}
/*
zstd - standard compression library
Copyright (C) 2014-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
*/
#define ZSTD_MEMORY_USAGE 17
/*!
* HEAPMODE :
* Select how default compression functions will allocate memory for their hash table,
* in memory stack (0, fastest), or in memory heap (1, requires malloc())
* Note that compression context is fairly large, as a consequence heap memory is recommended.
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif /* ZSTD_HEAPMODE */
/*!
* LEGACY_SUPPORT :
* decompressor can decode older formats (starting from Zstd 0.1+)
*/
#ifndef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 1
#endif
/* *******************************************************
* Includes
*********************************************************/
#include <stdlib.h> /* calloc */
#include <string.h> /* memcpy, memmove */
#include <stdio.h> /* debug : printf */
/* *******************************************************
* Compiler specifics
*********************************************************/
#ifdef __AVX2__
# include <immintrin.h> /* AVX2 intrinsics */
#endif
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#else
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
/* *******************************************************
* Constants
*********************************************************/
#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
#define HASH_TABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASH_TABLESIZE - 1)
#define KNUTH 2654435761
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BLOCKSIZE (128 KB) /* define, for static allocation */
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
#define IS_RAW BIT0
#define IS_RLE BIT1
#define WORKPLACESIZE (BLOCKSIZE*3)
#define MINMATCH 4
#define MLbits 7
#define LLbits 6
#define Offbits 5
#define MaxML ((1<<MLbits )-1)
#define MaxLL ((1<<LLbits )-1)
#define MaxOff 31
#define LitFSELog 11
#define MLFSELog 10
#define LLFSELog 10
#define OffFSELog 9
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MaxSeq MAX(MaxLL, MaxML)
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
/* *******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
static void ZSTD_wildcopy(void* dst, const void* src, size_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do COPY8(op, ip) while (op < oend);
}
/* **************************************
* Local structures
****************************************/
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
typedef struct
{
blockType_t blockType;
U32 origSize;
} blockProperties_t;
typedef struct {
void* buffer;
U32* offsetStart;
U32* offset;
BYTE* offCodeStart;
BYTE* offCode;
BYTE* litStart;
BYTE* lit;
BYTE* litLengthStart;
BYTE* litLength;
BYTE* matchLengthStart;
BYTE* matchLength;
BYTE* dumpsStart;
BYTE* dumps;
} seqStore_t;
/* *************************************
* Error Management
***************************************/
/*! ZSTD_isError
* tells if a return value is an error code */
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/* *************************************
* Function body to include
***************************************/
static size_t ZSTD_read_ARCH(const void* p) { size_t r; memcpy(&r, p, sizeof(r)); return r; }
MEM_STATIC unsigned ZSTD_NbCommonBytes (register size_t val)
{
if (MEM_isLittleEndian())
{
if (MEM_64bits())
{
# if defined(_MSC_VER) && defined(_WIN64) && !defined(LZ4_FORCE_SW_BITCOUNT)
unsigned long r = 0;
_BitScanForward64( &r, (U64)val );
return (int)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
}
else /* 32 bits */
{
# if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
unsigned long r;
_BitScanForward( &r, (U32)val );
return (int)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
}
else /* Big Endian CPU */
{
if (MEM_32bits())
{
# if defined(_MSC_VER) && defined(_WIN64) && !defined(LZ4_FORCE_SW_BITCOUNT)
unsigned long r = 0;
_BitScanReverse64( &r, val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
}
else /* 32 bits */
{
# if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
unsigned long r = 0;
_BitScanReverse( &r, (unsigned long)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
}
}
}
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* pInLimit)
{
const BYTE* const pStart = pIn;
while ((pIn<pInLimit-(sizeof(size_t)-1)))
{
size_t diff = ZSTD_read_ARCH(pMatch) ^ ZSTD_read_ARCH(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
}
if (MEM_32bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/* *************************************************************
* Decompression section
***************************************************************/
struct ZSTD_DCtx_s
{
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
void* previousDstEnd;
void* base;
size_t expected;
blockType_t bType;
U32 phase;
const BYTE* litPtr;
size_t litBufSize;
size_t litSize;
BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
const BYTE* const in = (const BYTE* const)src;
BYTE headerFlags;
U32 cSize;
if (srcSize < 3) return ERROR(srcSize_wrong);
headerFlags = *in;
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
if (bpPtr->blockType == bt_end) return 0;
if (bpPtr->blockType == bt_rle) return 1;
return cSize;
}
static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
memcpy(dst, src, srcSize);
return srcSize;
}
/** ZSTD_decompressLiterals
@return : nb of bytes read from src, or an error code*/
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
*maxDstSizePtr = litSize;
return litCSize + 5;
}
/** ZSTD_decodeLiteralsBlock
@return : nb of bytes read from src (< srcSize )*/
static size_t ZSTD_decodeLiteralsBlock(void* ctx,
const void* src, size_t srcSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* const istart = (const BYTE* const)src;
/* any compressed block with literals segment must be at least this size */
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
switch(*istart & 3)
{
default:
case 0:
{
size_t litSize = BLOCKSIZE;
const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
dctx->litPtr = dctx->litBuffer;
dctx->litBufSize = BLOCKSIZE;
dctx->litSize = litSize;
return readSize; /* works if it's an error too */
}
case IS_RAW:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litBufSize = BLOCKSIZE;
dctx->litSize = litSize;
return litSize+3;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+3;
dctx->litBufSize = srcSize-3;
dctx->litSize = litSize;
return litSize+3;
}
case IS_RLE:
{
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[3], litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litBufSize = BLOCKSIZE;
dctx->litSize = litSize;
return 4;
}
}
}
static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* ip = istart;
const BYTE* const iend = istart + srcSize;
U32 LLtype, Offtype, MLtype;
U32 LLlog, Offlog, MLlog;
size_t dumpsLength;
/* check */
if (srcSize < 5) return ERROR(srcSize_wrong);
/* SeqHead */
*nbSeq = MEM_readLE16(ip); ip+=2;
LLtype = *ip >> 6;
Offtype = (*ip >> 4) & 3;
MLtype = (*ip >> 2) & 3;
if (*ip & 2)
{
dumpsLength = ip[2];
dumpsLength += ip[1] << 8;
ip += 3;
}
else
{
dumpsLength = ip[1];
dumpsLength += (ip[0] & 1) << 8;
ip += 2;
}
*dumpsPtr = ip;
ip += dumpsLength;
*dumpsLengthPtr = dumpsLength;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* sequences */
{
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
size_t headerSize;
/* Build DTables */
switch(LLtype)
{
U32 max;
case bt_rle :
LLlog = 0;
FSE_buildDTable_rle(DTableLL, *ip++); break;
case bt_raw :
LLlog = LLbits;
FSE_buildDTable_raw(DTableLL, LLbits); break;
default :
max = MaxLL;
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (LLlog > LLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableLL, norm, max, LLlog);
}
switch(Offtype)
{
U32 max;
case bt_rle :
Offlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
break;
case bt_raw :
Offlog = Offbits;
FSE_buildDTable_raw(DTableOffb, Offbits); break;
default :
max = MaxOff;
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (Offlog > OffFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableOffb, norm, max, Offlog);
}
switch(MLtype)
{
U32 max;
case bt_rle :
MLlog = 0;
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
FSE_buildDTable_rle(DTableML, *ip++); break;
case bt_raw :
MLlog = MLbits;
FSE_buildDTable_raw(DTableML, MLbits); break;
default :
max = MaxML;
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
if (FSE_isError(headerSize)) return ERROR(GENERIC);
if (MLlog > MLFSELog) return ERROR(corruption_detected);
ip += headerSize;
FSE_buildDTable(DTableML, norm, max, MLlog);
}
}
return ip-istart;
}
typedef struct {
size_t litLength;
size_t offset;
size_t matchLength;
} seq_t;
typedef struct {
BIT_DStream_t DStream;
FSE_DState_t stateLL;
FSE_DState_t stateOffb;
FSE_DState_t stateML;
size_t prevOffset;
const BYTE* dumps;
const BYTE* dumpsEnd;
} seqState_t;
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
size_t litLength;
size_t prevOffset;
size_t offset;
size_t matchLength;
const BYTE* dumps = seqState->dumps;
const BYTE* const de = seqState->dumpsEnd;
/* Literal length */
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
U32 add = *dumps++;
if (add < 255) litLength += add;
else
{
litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
/* Offset */
{
static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
U32 offsetCode, nbBits;
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
nbBits = offsetCode - 1;
if (offsetCode==0) nbBits = 0; /* cmove */
offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
if (offsetCode==0) offset = prevOffset; /* cmove */
}
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
U32 add = *dumps++;
if (add < 255) matchLength += add;
else
{
matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
/* save result */
seq->litLength = litLength;
seq->offset = offset;
seq->matchLength = matchLength;
seqState->dumps = dumps;
}
static size_t ZSTD_execSequence(BYTE* op,
seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */
const BYTE* const ostart = op;
BYTE* const oLitEnd = op + sequence.litLength;
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_8 = oend-8;
const BYTE* const litEnd = *litPtr + sequence.litLength;
/* checks */
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
if (litEnd > litLimit-8) return ERROR(corruption_detected); /* overRead beyond lit buffer */
/* copy Literals */
ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = litEnd; /* update for next sequence */
/* copy Match */
{
const BYTE* match = op - sequence.offset;
/* check */
if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
//if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
if (match < base) return ERROR(corruption_detected);
/* close range match, overlap */
if (sequence.offset < 8)
{
const int dec64 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= dec64;
}
else
{
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-12)
{
if (op < oend_8)
{
ZSTD_wildcopy(op, match, oend_8 - op);
match += oend_8 - op;
op = oend_8;
}
while (op < oMatchEnd) *op++ = *match++;
}
else
{
ZSTD_wildcopy(op, match, sequence.matchLength-8); /* works even if matchLength < 8 */
}
}
return oMatchEnd - ostart;
}
static size_t ZSTD_decompressSequences(
void* ctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t errorCode, dumpsLength;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litMax = litPtr + dctx->litBufSize;
const BYTE* const litEnd = litPtr + dctx->litSize;
int nbSeq;
const BYTE* dumps;
U32* DTableLL = dctx->LLTable;
U32* DTableML = dctx->MLTable;
U32* DTableOffb = dctx->OffTable;
BYTE* const base = (BYTE*) (dctx->base);
/* Build Decoding Tables */
errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
DTableLL, DTableML, DTableOffb,
ip, iend-ip);
if (ZSTD_isError(errorCode)) return errorCode;
ip += errorCode;
/* Regen sequences */
{
seq_t sequence;
seqState_t seqState;
memset(&sequence, 0, sizeof(sequence));
seqState.dumps = dumps;
seqState.dumpsEnd = dumps + dumpsLength;
seqState.prevOffset = 1;
errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
{
size_t oneSeqSize;
nbSeq--;
ZSTD_decodeSequence(&sequence, &seqState);
oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litMax, base, oend);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* check if reached exact end */
if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
/* last literal segment */
{
size_t lastLLSize = litEnd - litPtr;
if (litPtr > litEnd) return ERROR(corruption_detected);
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
if (op != litPtr) memmove(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static size_t ZSTD_decompressBlock(
void* ctx,
void* dst, size_t maxDstSize,
const void* src, size_t srcSize)
{
/* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* Decode literals sub-block */
size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
}
static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* iend = ip + srcSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + maxDstSize;
size_t remainingSize = srcSize;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t decodedSize=0;
size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
break;
case bt_raw :
decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet supported */
break;
case bt_end :
/* end of frame */
if (remainingSize) return ERROR(srcSize_wrong);
break;
default:
return ERROR(GENERIC); /* impossible */
}
if (cBlockSize == 0) break; /* bt_end */
if (ZSTD_isError(decodedSize)) return decodedSize;
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
}
return op-ostart;
}
static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
ZSTD_DCtx ctx;
ctx.base = dst;
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
/*******************************
* Streaming Decompression API
*******************************/
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
{
dctx->expected = ZSTD_frameHeaderSize;
dctx->phase = 0;
dctx->previousDstEnd = NULL;
dctx->base = NULL;
return 0;
}
static ZSTD_DCtx* ZSTD_createDCtx(void)
{
ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
if (dctx==NULL) return NULL;
ZSTD_resetDCtx(dctx);
return dctx;
}
static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
free(dctx);
return 0;
}
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
{
return dctx->expected;
}
static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
/* Sanity check */
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
if (dst != ctx->previousDstEnd) /* not contiguous */
ctx->base = dst;
/* Decompress : frame header */
if (ctx->phase == 0)
{
/* Check frame magic header */
U32 magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
return 0;
}
/* Decompress : block header */
if (ctx->phase == 1)
{
blockProperties_t bp;
size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(blockSize)) return blockSize;
if (bp.blockType == bt_end)
{
ctx->expected = 0;
ctx->phase = 0;
}
else
{
ctx->expected = blockSize;
ctx->bType = bp.blockType;
ctx->phase = 2;
}
return 0;
}
/* Decompress : block content */
{
size_t rSize;
switch(ctx->bType)
{
case bt_compressed:
rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
break;
case bt_raw :
rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
break;
case bt_rle :
return ERROR(GENERIC); /* not yet handled */
break;
case bt_end : /* should never happen (filtered at phase 1) */
rSize = 0;
break;
default:
return ERROR(GENERIC);
}
ctx->phase = 1;
ctx->expected = ZSTD_blockHeaderSize;
ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
return rSize;
}
}
/* wrapper layer */
unsigned ZSTDv02_isError(size_t code)
{
return ZSTD_isError(code);
}
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize)
{
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
}
ZSTDv02_Dctx* ZSTDv02_createDCtx(void)
{
2015-10-30 10:51:26 +00:00
return (ZSTDv02_Dctx*)ZSTD_createDCtx();
}
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx)
{
return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx)
{
return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx)
{
return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
}
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
}