Merge branch 'dev' of github.com:Cyan4973/zstd into dev
This commit is contained in:
commit
ba92046031
@ -67,9 +67,10 @@
|
||||
#define ZSTD_OPT_NUM (1<<12)
|
||||
#define ZSTD_DICT_MAGIC 0xEC30A437 /* v0.7+ */
|
||||
|
||||
#define ZSTD_REP_NUM 3 /* number of repcodes */
|
||||
#define ZSTD_REP_CHECK (ZSTD_REP_NUM-0) /* number of repcodes to check by the optimal parser */
|
||||
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
||||
#define ZSTD_REP_NUM 3 /* number of repcodes */
|
||||
#define ZSTD_REP_CHECK (ZSTD_REP_NUM) /* number of repcodes to check by the optimal parser */
|
||||
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
||||
#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
|
||||
static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
|
||||
|
||||
#define KB *(1 <<10)
|
||||
|
@ -2205,8 +2205,13 @@ static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int
|
||||
static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->params.cParams.strategy, zc->lowLimit < zc->dictLimit);
|
||||
const BYTE* const base = zc->base;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const U32 current = (U32)(istart-base);
|
||||
if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) return 0; /* don't even attempt compression below a certain srcSize */
|
||||
ZSTD_resetSeqStore(&(zc->seqStore));
|
||||
if (current > zc->nextToUpdate + 384)
|
||||
zc->nextToUpdate = current - MIN(192, (U32)(current - zc->nextToUpdate - 384)); /* update tree not updated after finding very long rep matches */
|
||||
blockCompressor(zc, src, srcSize);
|
||||
return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize);
|
||||
}
|
||||
|
@ -276,7 +276,7 @@ static U32 ZSTD_insertBtAndGetAllMatches (
|
||||
/* save best solution */
|
||||
if (currentMl > bestLength) {
|
||||
bestLength = currentMl;
|
||||
matches[mnum].off = ZSTD_REP_MOVE + current - matchIndex3;
|
||||
matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex3;
|
||||
matches[mnum].len = (U32)currentMl;
|
||||
mnum++;
|
||||
if (currentMl > ZSTD_OPT_NUM) goto update;
|
||||
@ -321,7 +321,7 @@ static U32 ZSTD_insertBtAndGetAllMatches (
|
||||
if (matchLength > bestLength) {
|
||||
if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength;
|
||||
bestLength = matchLength;
|
||||
matches[mnum].off = ZSTD_REP_MOVE + current - matchIndex;
|
||||
matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex;
|
||||
matches[mnum].len = (U32)matchLength;
|
||||
mnum++;
|
||||
if (matchLength > ZSTD_OPT_NUM) break;
|
||||
@ -452,11 +452,12 @@ void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
|
||||
litlen = (U32)(ip - anchor);
|
||||
|
||||
/* check repCode */
|
||||
{ U32 i;
|
||||
for (i=(ip == anchor); i<ZSTD_REP_CHECK; i++) {
|
||||
if ((rep[i]<(U32)(ip-prefixStart))
|
||||
&& (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(ip - rep[i], minMatch))) {
|
||||
mlen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-rep[i], iend) + minMatch;
|
||||
{ U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
|
||||
for (i=(ip == anchor); i<last_i; i++) {
|
||||
const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (ip==anchor)) ? (rep[0] - 1) : rep[i];
|
||||
if ( (repCur > 0) && (repCur < (S32)(ip-prefixStart))
|
||||
&& (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(ip - repCur, minMatch))) {
|
||||
mlen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repCur, iend) + minMatch;
|
||||
ZSTD_LOG_PARSER("%d: start try REP rep[%d]=%d mlen=%d\n", (int)(ip-base), i, (int)rep[i], (int)mlen);
|
||||
if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
|
||||
best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
|
||||
@ -491,7 +492,7 @@ void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
|
||||
best_mlen = matches[u].len;
|
||||
ZSTD_LOG_PARSER("%d: start Found mlen=%d off=%d best_mlen=%d last_pos=%d\n", (int)(ip-base), matches[u].len, matches[u].off, (int)best_mlen, (int)last_pos);
|
||||
while (mlen <= best_mlen) {
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off, mlen - MINMATCH);
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH);
|
||||
if (mlen > last_pos || price < opt[mlen].price)
|
||||
SET_PRICE(mlen, mlen, matches[u].off, litlen, price); /* note : macro modifies last_pos */
|
||||
mlen++;
|
||||
@ -528,26 +529,27 @@ void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
|
||||
continue;
|
||||
|
||||
mlen = opt[cur].mlen;
|
||||
if (opt[cur].off >= ZSTD_REP_NUM) {
|
||||
if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
|
||||
opt[cur].rep[2] = opt[cur-mlen].rep[1];
|
||||
opt[cur].rep[1] = opt[cur-mlen].rep[0];
|
||||
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE;
|
||||
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
|
||||
ZSTD_LOG_ENCODE("%d: COPYREP_OFF cur=%d mlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, mlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
} else {
|
||||
opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
|
||||
opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
|
||||
opt[cur].rep[0] = opt[cur-mlen].rep[opt[cur].off];
|
||||
opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
|
||||
ZSTD_LOG_ENCODE("%d: COPYREP_NOR cur=%d mlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, mlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
}
|
||||
|
||||
ZSTD_LOG_PARSER("%d: CURRENT_NoExt price[%d/%d]=%d off=%d mlen=%d litlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, last_pos, opt[cur].price, opt[cur].off, opt[cur].mlen, opt[cur].litlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
|
||||
best_mlen = minMatch;
|
||||
{ U32 i;
|
||||
for (i=(opt[cur].mlen != 1); i<ZSTD_REP_CHECK; i++) { /* check rep */
|
||||
if ((opt[cur].rep[i]<(U32)(inr-prefixStart))
|
||||
&& (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(inr - opt[cur].rep[i], minMatch))) {
|
||||
mlen = (U32)ZSTD_count(inr+minMatch, inr+minMatch - opt[cur].rep[i], iend) + minMatch;
|
||||
{ U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
|
||||
for (i=(opt[cur].mlen != 1); i<last_i; i++) { /* check rep */
|
||||
const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (opt[cur].mlen != 1)) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
|
||||
if ( (repCur > 0) && (repCur < (S32)(inr-prefixStart))
|
||||
&& (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(inr - repCur, minMatch))) {
|
||||
mlen = (U32)ZSTD_count(inr+minMatch, inr+minMatch - repCur, iend) + minMatch;
|
||||
ZSTD_LOG_PARSER("%d: Found REP %d/%d mlen=%d off=%d rep=%d opt[%d].off=%d\n", (int)(inr-base), i, ZSTD_REP_NUM, mlen, i, opt[cur].rep[i], cur, opt[cur].off);
|
||||
|
||||
if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
|
||||
@ -600,12 +602,12 @@ void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
|
||||
if (opt[cur].mlen == 1) {
|
||||
litlen = opt[cur].litlen;
|
||||
if (cur > litlen)
|
||||
price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off, mlen - MINMATCH);
|
||||
price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH);
|
||||
else
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off, mlen - MINMATCH);
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH);
|
||||
} else {
|
||||
litlen = 0;
|
||||
price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off, mlen - MINMATCH);
|
||||
price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH);
|
||||
}
|
||||
|
||||
// ZSTD_LOG_PARSER("%d: Found2 mlen=%d best_mlen=%d off=%d price=%d litlen=%d\n", (int)(inr-base), mlen, best_mlen, matches[u].off, price, litlen);
|
||||
@ -652,27 +654,28 @@ _storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
|
||||
litLength = (U32)(ip - anchor);
|
||||
// ZSTD_LOG_ENCODE("%d/%d: ENCODE literals=%d mlen=%d off=%d rep[0]=%d rep[1]=%d\n", (int)(ip-base), (int)(iend-base), (int)(litLength), (int)mlen, (int)(offset), (int)rep[0], (int)rep[1]);
|
||||
|
||||
if (offset >= ZSTD_REP_NUM) {
|
||||
if (offset > ZSTD_REP_MOVE_OPT) {
|
||||
rep[2] = rep[1];
|
||||
rep[1] = rep[0];
|
||||
rep[0] = offset - ZSTD_REP_MOVE;
|
||||
rep[0] = offset - ZSTD_REP_MOVE_OPT;
|
||||
offset--;
|
||||
} else {
|
||||
if (offset != 0) {
|
||||
best_off = rep[offset];
|
||||
best_off = ((offset==ZSTD_REP_MOVE_OPT) && (litLength==0)) ? (rep[0] - 1) : (rep[offset]);
|
||||
if (offset != 1) rep[2] = rep[1];
|
||||
rep[1] = rep[0];
|
||||
rep[0] = best_off;
|
||||
}
|
||||
if ((litLength == 0) & (offset==0)) offset = rep[1]; /* protection, but should never happen */
|
||||
if ((litLength == 0) & (offset<=2)) offset--;
|
||||
if ((litLength==0) & (offset==0)) { ZSTD_LOG_ENCODE("ERROR (litLength==0) & (offset==0)\n"); };
|
||||
if (litLength==0) offset--;
|
||||
}
|
||||
|
||||
ZSTD_LOG_ENCODE("%d/%d: ENCODE literals=%d mlen=%d off=%d rep[0]=%d rep[1]=%d\n", (int)(ip-base), (int)(iend-base), (int)(litLength), (int)mlen, (int)(offset), (int)rep[0], (int)rep[1]);
|
||||
|
||||
#if ZSTD_OPT_DEBUG >= 5
|
||||
U32 ml2;
|
||||
if (offset >= ZSTD_REP_NUM)
|
||||
ml2 = (U32)ZSTD_count(ip, ip-(offset-ZSTD_REP_MOVE), iend);
|
||||
if (offset+1 > ZSTD_REP_MOVE_OPT)
|
||||
ml2 = (U32)ZSTD_count(ip, ip-(offset+1-ZSTD_REP_MOVE_OPT), iend);
|
||||
else
|
||||
ml2 = (U32)ZSTD_count(ip, ip-rep[0], iend);
|
||||
if ((offset >= 8) && (ml2 < mlen || ml2 < minMatch)) {
|
||||
@ -748,12 +751,13 @@ void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
|
||||
opt[0].litlen = (U32)(ip - anchor);
|
||||
|
||||
/* check repCode */
|
||||
{ U32 i;
|
||||
for (i = (ip==anchor); i<ZSTD_REP_CHECK; i++) {
|
||||
const U32 repIndex = (U32)(current - rep[i]);
|
||||
{ U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
|
||||
for (i = (ip==anchor); i<last_i; i++) {
|
||||
const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (ip==anchor)) ? (rep[0] - 1) : rep[i];
|
||||
const U32 repIndex = (U32)(current - repCur);
|
||||
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* const repMatch = repBase + repIndex;
|
||||
if ( (rep[i] <= current)
|
||||
if ( (repCur > 0 && repCur <= (S32)current)
|
||||
&& (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
|
||||
&& (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
|
||||
/* repcode detected we should take it */
|
||||
@ -801,7 +805,7 @@ void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
|
||||
ZSTD_LOG_PARSER("%d: start Found mlen=%d off=%d best_mlen=%d last_pos=%d\n", (int)(ip-base), matches[u].len, matches[u].off, (int)best_mlen, (int)last_pos);
|
||||
litlen = opt[0].litlen;
|
||||
while (mlen <= best_mlen) {
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off, mlen - MINMATCH);
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH);
|
||||
if (mlen > last_pos || price < opt[mlen].price)
|
||||
SET_PRICE(mlen, mlen, matches[u].off, litlen, price);
|
||||
mlen++;
|
||||
@ -836,27 +840,28 @@ void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
|
||||
continue;
|
||||
|
||||
mlen = opt[cur].mlen;
|
||||
if (opt[cur].off >= ZSTD_REP_NUM) {
|
||||
if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
|
||||
opt[cur].rep[2] = opt[cur-mlen].rep[1];
|
||||
opt[cur].rep[1] = opt[cur-mlen].rep[0];
|
||||
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE;
|
||||
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
|
||||
ZSTD_LOG_ENCODE("%d: COPYREP_OFF cur=%d mlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, mlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
} else {
|
||||
opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
|
||||
opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
|
||||
opt[cur].rep[0] = opt[cur-mlen].rep[opt[cur].off];
|
||||
opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
|
||||
ZSTD_LOG_ENCODE("%d: COPYREP_NOR cur=%d mlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, mlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
}
|
||||
|
||||
ZSTD_LOG_PARSER("%d: CURRENT_Ext price[%d/%d]=%d off=%d mlen=%d litlen=%d rep[0]=%d rep[1]=%d\n", (int)(inr-base), cur, last_pos, opt[cur].price, opt[cur].off, opt[cur].mlen, opt[cur].litlen, opt[cur].rep[0], opt[cur].rep[1]);
|
||||
best_mlen = 0;
|
||||
|
||||
{ U32 i;
|
||||
for (i = (opt[cur].mlen != 1); i<ZSTD_REP_CHECK; i++) {
|
||||
const U32 repIndex = (U32)(current+cur - opt[cur].rep[i]);
|
||||
{ U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
|
||||
for (i = (mlen != 1); i<last_i; i++) {
|
||||
const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (opt[cur].mlen != 1)) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
|
||||
const U32 repIndex = (U32)(current+cur - repCur);
|
||||
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* const repMatch = repBase + repIndex;
|
||||
if ( (opt[cur].rep[i] <= current+cur)
|
||||
if ( (repCur > 0 && repCur <= (S32)(current+cur))
|
||||
&& (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
|
||||
&& (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
|
||||
/* repcode detected */
|
||||
@ -914,12 +919,12 @@ void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
|
||||
if (opt[cur].mlen == 1) {
|
||||
litlen = opt[cur].litlen;
|
||||
if (cur > litlen)
|
||||
price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off, mlen - MINMATCH);
|
||||
price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH);
|
||||
else
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off, mlen - MINMATCH);
|
||||
price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH);
|
||||
} else {
|
||||
litlen = 0;
|
||||
price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off, mlen - MINMATCH);
|
||||
price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH);
|
||||
}
|
||||
|
||||
// ZSTD_LOG_PARSER("%d: Found2 mlen=%d best_mlen=%d off=%d price=%d litlen=%d\n", (int)(inr-base), mlen, best_mlen, matches[u].off, price, litlen);
|
||||
@ -966,27 +971,29 @@ _storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
|
||||
litLength = (U32)(ip - anchor);
|
||||
// ZSTD_LOG_ENCODE("%d/%d: ENCODE1 literals=%d mlen=%d off=%d rep[0]=%d rep[1]=%d\n", (int)(ip-base), (int)(iend-base), (int)(litLength), (int)mlen, (int)(offset), (int)rep[0], (int)rep[1]);
|
||||
|
||||
if (offset >= ZSTD_REP_NUM) {
|
||||
if (offset > ZSTD_REP_MOVE_OPT) {
|
||||
rep[2] = rep[1];
|
||||
rep[1] = rep[0];
|
||||
rep[0] = offset - ZSTD_REP_MOVE;
|
||||
rep[0] = offset - ZSTD_REP_MOVE_OPT;
|
||||
offset--;
|
||||
} else {
|
||||
if (offset != 0) {
|
||||
best_off = rep[offset];
|
||||
best_off = ((offset==ZSTD_REP_MOVE_OPT) && (litLength==0)) ? (rep[0] - 1) : (rep[offset]);
|
||||
if (offset != 1) rep[2] = rep[1];
|
||||
rep[1] = rep[0];
|
||||
rep[0] = best_off;
|
||||
}
|
||||
if ((litLength==0) & (offset==0)) offset = rep[1]; /* protection, but should never happen */
|
||||
if ((litLength==0) & (offset<=2)) offset --;
|
||||
|
||||
if ((litLength==0) & (offset==0)) { ZSTD_LOG_ENCODE("ERROR (litLength==0) & (offset==0)\n"); };
|
||||
if (litLength==0) offset--;
|
||||
}
|
||||
|
||||
ZSTD_LOG_ENCODE("%d/%d: ENCODE literals=%d mlen=%d off=%d rep[0]=%d rep[1]=%d\n", (int)(ip-base), (int)(iend-base), (int)(litLength), (int)mlen, (int)(offset), (int)rep[0], (int)rep[1]);
|
||||
|
||||
#if ZSTD_OPT_DEBUG >= 5
|
||||
U32 ml2;
|
||||
if (offset >= ZSTD_REP_NUM) {
|
||||
best_off = offset - ZSTD_REP_MOVE;
|
||||
if (offset+1 > ZSTD_REP_MOVE_OPT) {
|
||||
best_off = offset+1 - ZSTD_REP_MOVE_OPT;
|
||||
if (best_off > (size_t)(ip - prefixStart)) {
|
||||
const BYTE* match = dictEnd - (best_off - (ip - prefixStart));
|
||||
ml2 = ZSTD_count_2segments(ip, match, iend, dictEnd, prefixStart);
|
||||
|
@ -133,14 +133,6 @@ typedef struct
|
||||
size_t resSize;
|
||||
} blockParam_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
double ratio;
|
||||
size_t cSize;
|
||||
double cSpeed;
|
||||
double dSpeed;
|
||||
} benchResult_t;
|
||||
|
||||
|
||||
#define MIN(a,b) ((a)<(b) ? (a) : (b))
|
||||
#define MAX(a,b) ((a)>(b) ? (a) : (b))
|
||||
@ -148,7 +140,7 @@ typedef struct
|
||||
static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
|
||||
const char* displayName, int cLevel,
|
||||
const size_t* fileSizes, U32 nbFiles,
|
||||
const void* dictBuffer, size_t dictBufferSize, benchResult_t *result)
|
||||
const void* dictBuffer, size_t dictBufferSize)
|
||||
{
|
||||
size_t const blockSize = (g_blockSize>=32 ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
|
||||
size_t const avgSize = MIN(g_blockSize, (srcSize / nbFiles));
|
||||
@ -332,10 +324,14 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
|
||||
#endif
|
||||
} /* for (testNb = 1; testNb <= (g_nbIterations + !g_nbIterations); testNb++) */
|
||||
|
||||
result->ratio = ratio;
|
||||
result->cSize = cSize;
|
||||
result->cSpeed = (double)srcSize / fastestC;
|
||||
result->dSpeed = (double)srcSize / fastestD;
|
||||
if (g_displayLevel == 1) {
|
||||
double cSpeed = (double)srcSize / fastestC;
|
||||
double dSpeed = (double)srcSize / fastestD;
|
||||
if (g_additionalParam)
|
||||
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, g_additionalParam);
|
||||
else
|
||||
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
|
||||
}
|
||||
DISPLAYLEVEL(2, "%2i#\n", cLevel);
|
||||
} /* Bench */
|
||||
|
||||
@ -372,7 +368,6 @@ static void BMK_benchCLevel(void* srcBuffer, size_t benchedSize,
|
||||
const size_t* fileSizes, unsigned nbFiles,
|
||||
const void* dictBuffer, size_t dictBufferSize)
|
||||
{
|
||||
benchResult_t result;
|
||||
int l;
|
||||
|
||||
const char* pch = strrchr(displayName, '\\'); /* Windows */
|
||||
@ -381,8 +376,6 @@ static void BMK_benchCLevel(void* srcBuffer, size_t benchedSize,
|
||||
|
||||
SET_HIGH_PRIORITY;
|
||||
|
||||
memset(&result, 0, sizeof(result));
|
||||
|
||||
if (g_displayLevel == 1 && !g_additionalParam)
|
||||
DISPLAY("bench %s %s: input %u bytes, %i iterations, %u KB blocks\n", ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING, (U32)benchedSize, g_nbIterations, (U32)(g_blockSize>>10));
|
||||
|
||||
@ -392,13 +385,8 @@ static void BMK_benchCLevel(void* srcBuffer, size_t benchedSize,
|
||||
BMK_benchMem(srcBuffer, benchedSize,
|
||||
displayName, l,
|
||||
fileSizes, nbFiles,
|
||||
dictBuffer, dictBufferSize, &result);
|
||||
if (g_displayLevel == 1) {
|
||||
if (g_additionalParam)
|
||||
DISPLAY("%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", -l, (int)result.cSize, result.ratio, result.cSpeed, result.dSpeed, displayName, g_additionalParam);
|
||||
else
|
||||
DISPLAY("%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", -l, (int)result.cSize, result.ratio, result.cSpeed, result.dSpeed, displayName);
|
||||
} }
|
||||
dictBuffer, dictBufferSize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -403,8 +403,8 @@ in order to properly allocate destination buffer.
|
||||
See [`Data_Block`](#the-structure-of-data_block) for more details.
|
||||
|
||||
A compressed block consists of 2 sections :
|
||||
- [Literals section](#literals-section)
|
||||
- [Sequences section](#sequences-section)
|
||||
- [`Literals_Section`](#literals_section)
|
||||
- [`Sequences_Section`](#sequences_section)
|
||||
|
||||
### Prerequisites
|
||||
To decode a compressed block, the following elements are necessary :
|
||||
@ -415,95 +415,96 @@ To decode a compressed block, the following elements are necessary :
|
||||
(literals, litLength, matchLength, offset).
|
||||
|
||||
|
||||
### Literals section
|
||||
### `Literals_Section`
|
||||
|
||||
During sequence phase, literals will be entangled with match copy operations.
|
||||
All literals are regrouped in the first part of the block.
|
||||
They can be decoded first, and then copied during sequence operations,
|
||||
or they can be decoded on the flow, as needed by sequence commands.
|
||||
|
||||
| Literals section header | [Huffman Tree Description] | Stream1 | [Stream2] | [Stream3] | [Stream4] |
|
||||
| ----------------------- | -------------------------- | ------- | --------- | --------- | --------- |
|
||||
| `Literals_Section_Header` | [`Huffman_Tree_Description`] | Stream1 | [Stream2] | [Stream3] | [Stream4] |
|
||||
| ------------------------- | ---------------------------- | ------- | --------- | --------- | --------- |
|
||||
|
||||
Literals can be stored uncompressed or compressed using Huffman prefix codes.
|
||||
When compressed, an optional tree description can be present,
|
||||
followed by 1 or 4 streams.
|
||||
|
||||
|
||||
#### Literals section header
|
||||
#### `Literals_Section_Header`
|
||||
|
||||
Header is in charge of describing how literals are packed.
|
||||
It's a byte-aligned variable-size bitfield, ranging from 1 to 5 bytes,
|
||||
using little-endian convention.
|
||||
|
||||
| Literals Block Type | sizes format | regenerated size | [compressed size] |
|
||||
| ------------------- | ------------ | ---------------- | ----------------- |
|
||||
| 2 bits | 1 - 2 bits | 5 - 20 bits | 0 - 18 bits |
|
||||
| `Literals_Block_Type` | `Size_Format` | `Regenerated_Size` | [`Compressed_Size`] |
|
||||
| --------------------- | ------------- | ------------------ | ----------------- |
|
||||
| 2 bits | 1 - 2 bits | 5 - 20 bits | 0 - 18 bits |
|
||||
|
||||
In this representation, bits on the left are smallest bits.
|
||||
|
||||
__Literals Block Type__ :
|
||||
__`Literals_Block_Type`__
|
||||
|
||||
This field uses 2 lowest bits of first byte, describing 4 different block types :
|
||||
|
||||
| Value | 0 | 1 | 2 | 3 |
|
||||
| ------------------- | --- | --- | ---------- | ----------- |
|
||||
| Literals Block Type | Raw | RLE | Compressed | RepeatStats |
|
||||
| Value | 0 | 1 | 2 | 3 |
|
||||
| --------------------- | -------------------- | -------------------- | --------------------------- | ----------------------------- |
|
||||
| `Literals_Block_Type` | `Raw_Literals_Block` | `RLE_Literals_Block` | `Compressed_Literals_Block` | `Repeat_Stats_Literals_Block` |
|
||||
|
||||
- Raw literals block - Literals are stored uncompressed.
|
||||
- RLE literals block - Literals consist of a single byte value repeated N times.
|
||||
- Compressed literals block - This is a standard huffman-compressed block,
|
||||
starting with a huffman tree description.
|
||||
- `Raw_Literals_Block` - Literals are stored uncompressed.
|
||||
- `RLE_Literals_Block` - Literals consist of a single byte value repeated N times.
|
||||
- `Compressed_Literals_Block` - This is a standard Huffman-compressed block,
|
||||
starting with a Huffman tree description.
|
||||
See details below.
|
||||
- Repeat Stats literals block - This is a huffman-compressed block,
|
||||
using huffman tree _from previous huffman-compressed literals block_.
|
||||
- `Repeat_Stats_Literals_Block` - This is a Huffman-compressed block,
|
||||
using Huffman tree _from previous Huffman-compressed literals block_.
|
||||
Huffman tree description will be skipped.
|
||||
|
||||
__Sizes format__ :
|
||||
__`Size_Format`__
|
||||
|
||||
Sizes format are divided into 2 families :
|
||||
`Size_Format` is divided into 2 families :
|
||||
|
||||
- For compressed block, it requires to decode both the compressed size
|
||||
and the decompressed size. It will also decode the number of streams.
|
||||
- For Raw or RLE blocks, it's enough to decode the size to regenerate.
|
||||
- For `Compressed_Block`, it requires to decode both `Compressed_Size`
|
||||
and `Regenerated_Size` (the decompressed size). It will also decode the number of streams.
|
||||
- For `Raw_Block` and `RLE_Block` it's enough to decode `Regenerated_Size`.
|
||||
|
||||
For values spanning several bytes, convention is Little-endian.
|
||||
|
||||
__Sizes format for Raw and RLE literals block__ :
|
||||
__`Size_Format` for `Raw_Literals_Block` and `RLE_Literals_Block`__ :
|
||||
|
||||
- Value : x0 : Regenerated size uses 5 bits (0-31).
|
||||
- Value : x0 : `Regenerated_Size` uses 5 bits (0-31).
|
||||
Total literal header size is 1 byte.
|
||||
`size = h[0]>>3;`
|
||||
- Value : 01 : Regenerated size uses 12 bits (0-4095).
|
||||
- Value : 01 : `Regenerated_Size` uses 12 bits (0-4095).
|
||||
Total literal header size is 2 bytes.
|
||||
`size = (h[0]>>4) + (h[1]<<4);`
|
||||
- Value : 11 : Regenerated size uses 20 bits (0-1048575).
|
||||
- Value : 11 : `Regenerated_Size` uses 20 bits (0-1048575).
|
||||
Total literal header size is 3 bytes.
|
||||
`size = (h[0]>>4) + (h[1]<<4) + (h[2]<<12);`
|
||||
|
||||
Note : it's allowed to represent a short value (ex : `13`)
|
||||
using a long format, accepting the reduced compacity.
|
||||
|
||||
__Sizes format for Compressed literals block and Repeat Stats literals block__ :
|
||||
__`Size_Format` for `Compressed_Literals_Block` and `Repeat_Stats_Literals_Block`__ :
|
||||
|
||||
- Value : 00 : _Single stream_.
|
||||
Compressed and regenerated sizes use 10 bits (0-1023).
|
||||
`Compressed_Size` and `Regenerated_Size` use 10 bits (0-1023).
|
||||
Total literal header size is 3 bytes.
|
||||
- Value : 01 : 4 streams.
|
||||
Compressed and regenerated sizes use 10 bits (0-1023).
|
||||
`Compressed_Size` and `Regenerated_Size` use 10 bits (0-1023).
|
||||
Total literal header size is 3 bytes.
|
||||
- Value : 10 : 4 streams.
|
||||
Compressed and regenerated sizes use 14 bits (0-16383).
|
||||
`Compressed_Size` and `Regenerated_Size` use 14 bits (0-16383).
|
||||
Total literal header size is 4 bytes.
|
||||
- Value : 11 : 4 streams.
|
||||
Compressed and regenerated sizes use 18 bits (0-262143).
|
||||
`Compressed_Size` and `Regenerated_Size` use 18 bits (0-262143).
|
||||
Total literal header size is 5 bytes.
|
||||
|
||||
Compressed and regenerated size fields follow little-endian convention.
|
||||
`Compressed_Size` and `Regenerated_Size` fields follow little-endian convention.
|
||||
|
||||
#### Huffman Tree description
|
||||
|
||||
This section is only present when literals block type is `Compressed` (`2`).
|
||||
#### `Huffman_Tree_Description`
|
||||
|
||||
This section is only present when `Literals_Block_Type` type is `Compressed_Block` (`2`).
|
||||
|
||||
Prefix coding represents symbols from an a priori known alphabet
|
||||
by bit sequences (codewords), one codeword for each symbol,
|
||||
@ -533,7 +534,7 @@ by completing to the nearest power of 2.
|
||||
This power of 2 gives `maxBits`, the depth of the current tree.
|
||||
|
||||
__Example__ :
|
||||
Let's presume the following huffman tree must be described :
|
||||
Let's presume the following Huffman tree must be described :
|
||||
|
||||
| literal | 0 | 1 | 2 | 3 | 4 | 5 |
|
||||
| ------- | --- | --- | --- | --- | --- | --- |
|
||||
@ -575,7 +576,7 @@ which tells how to decode the list of weights.
|
||||
the serie of weights is compressed by FSE.
|
||||
The length of the FSE-compressed serie is `headerByte` (0-127).
|
||||
|
||||
##### FSE (Finite State Entropy) compression of huffman weights
|
||||
##### FSE (Finite State Entropy) compression of Huffman weights
|
||||
|
||||
The serie of weights is compressed using FSE compression.
|
||||
It's a single bitstream with 2 interleaved states,
|
||||
@ -590,7 +591,7 @@ and last symbol value is not represented.
|
||||
An FSE bitstream starts by a header, describing probabilities distribution.
|
||||
It will create a Decoding Table.
|
||||
Table must be pre-allocated, which requires to support a maximum accuracy.
|
||||
For a list of huffman weights, maximum accuracy is 7 bits.
|
||||
For a list of Huffman weights, maximum accuracy is 7 bits.
|
||||
|
||||
FSE header is [described in relevant chapter](#fse-distribution-table--condensed-format),
|
||||
and so is [FSE bitstream](#bitstream).
|
||||
@ -602,7 +603,7 @@ by tracking bitStream overflow condition.
|
||||
When both states have overflowed the bitstream, end is reached.
|
||||
|
||||
|
||||
##### Conversion from weights to huffman prefix codes
|
||||
##### Conversion from weights to Huffman prefix codes
|
||||
|
||||
All present symbols shall now have a `weight` value.
|
||||
It is possible to transform weights into nbBits, using this formula :
|
||||
@ -634,7 +635,7 @@ it gives the following distribution :
|
||||
##### Bitstreams sizes
|
||||
|
||||
As seen in a previous paragraph,
|
||||
there are 2 flavors of huffman-compressed literals :
|
||||
there are 2 flavors of Huffman-compressed literals :
|
||||
single stream, and 4-streams.
|
||||
|
||||
4-streams is useful for CPU with multiple execution units and OoO operations.
|
||||
@ -685,7 +686,7 @@ hence reaching exactly its beginning position with _all_ bits consumed,
|
||||
the decoding process is considered faulty.
|
||||
|
||||
|
||||
### Sequences section
|
||||
### `Sequences_Section`
|
||||
|
||||
A compressed block is a succession of _sequences_ .
|
||||
A sequence is a literal copy command, followed by a match copy command.
|
||||
@ -1144,6 +1145,6 @@ __Content__ : Where the actual dictionary content is.
|
||||
Version changes
|
||||
---------------
|
||||
- 0.2.0 : numerous format adjustments for zstd v0.8
|
||||
- 0.1.2 : limit huffman tree depth to 11 bits
|
||||
- 0.1.2 : limit Huffman tree depth to 11 bits
|
||||
- 0.1.1 : reserved dictID ranges
|
||||
- 0.1.0 : initial release
|
||||
|
Loading…
Reference in New Issue
Block a user