switchable bit-approximation / fractional-bit accuracy modes
also : makes it possible to select nb of fractional bits.
This commit is contained in:
parent
ba2ad9b6b9
commit
c0da0f5e9e
@ -582,16 +582,20 @@ MEM_STATIC U32 FSE_getMaxNbBits(const FSE_symbolCompressionTransform* symbolTT,
|
||||
|
||||
/* FSE_bitCost_b256() :
|
||||
* Approximate symbol cost,
|
||||
* provide fractional value, using fixed-point format (8 bit) */
|
||||
MEM_STATIC U32 FSE_bitCost_b256(const FSE_symbolCompressionTransform* symbolTT, U32 tableLog, U32 symbolValue)
|
||||
* provide fractional value, using fixed-point format (accuracyLog fractional bits) */
|
||||
MEM_STATIC U32 FSE_bitCost(const FSE_symbolCompressionTransform* symbolTT, U32 tableLog, U32 symbolValue, U32 accuracyLog)
|
||||
{
|
||||
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
|
||||
U32 const threshold = (minNbBits+1) << 16;
|
||||
assert(symbolTT[symbolValue].deltaNbBits + (1<<tableLog) <= threshold);
|
||||
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + (1 << tableLog));
|
||||
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << 8) >> tableLog; /* linear interpolation (very approximate) */
|
||||
assert(normalizedDeltaFromThreshold <= 256);
|
||||
return (minNbBits+1)*256 - normalizedDeltaFromThreshold;
|
||||
assert(tableLog < 16);
|
||||
U32 const tableSize = 1 << tableLog;
|
||||
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
|
||||
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
|
||||
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
|
||||
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
|
||||
U32 const bitMultiplier = 1 << accuracyLog;
|
||||
assert(normalizedDeltaFromThreshold <= bitMultiplier);
|
||||
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
|
||||
}
|
||||
|
||||
|
||||
|
@ -91,6 +91,15 @@ static void ZSTD_rescaleFreqs(optState_t* const optPtr,
|
||||
ZSTD_setLog2Prices(optPtr);
|
||||
}
|
||||
|
||||
#if 1 /* approximation at bit level */
|
||||
# define BITCOST_ACCURACY 0
|
||||
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
|
||||
# define BITCOST_SYMBOL(t,l,s) ((void)l, FSE_getMaxNbBits(t,s)*BITCOST_MULTIPLIER)
|
||||
#else /* fractional bit accuracy */
|
||||
# define BITCOST_ACCURACY 8
|
||||
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
|
||||
# define BITCOST_SYMBOL(t,l,s) FSE_bitCost(t,l,s,BITCOST_ACCURACY)
|
||||
#endif
|
||||
|
||||
/* ZSTD_rawLiteralsCost() :
|
||||
* cost of literals (only) in specified segment (which length can be 0).
|
||||
@ -98,23 +107,23 @@ static void ZSTD_rescaleFreqs(optState_t* const optPtr,
|
||||
static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
|
||||
const optState_t* const optPtr)
|
||||
{
|
||||
if (litLength == 0) return 0;
|
||||
if (optPtr->priceType == zop_predef) return (litLength*6); /* 6 bit per literal - no statistic used */
|
||||
if (optPtr->priceType == zop_static) {
|
||||
U32 u, cost;
|
||||
assert(optPtr->symbolCosts != NULL);
|
||||
assert(optPtr->symbolCosts->hufCTable_repeatMode == HUF_repeat_valid);
|
||||
for (u=0, cost=0; u < litLength; u++)
|
||||
cost += HUF_getNbBits(optPtr->symbolCosts->hufCTable, literals[u]);
|
||||
return cost << 8;
|
||||
return cost * BITCOST_MULTIPLIER;
|
||||
}
|
||||
if (optPtr->priceType == zop_predef) return (litLength*6); /* 6 bit per literal - no statistic used */
|
||||
if (litLength == 0) return 0;
|
||||
|
||||
/* literals */
|
||||
/* dynamic statistics */
|
||||
{ U32 u;
|
||||
U32 cost = litLength * optPtr->log2litSum;
|
||||
for (u=0; u < litLength; u++)
|
||||
cost -= ZSTD_highbit32(optPtr->litFreq[literals[u]]+1);
|
||||
return cost << 8;
|
||||
return cost * BITCOST_MULTIPLIER;
|
||||
}
|
||||
}
|
||||
|
||||
@ -126,15 +135,15 @@ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optP
|
||||
U32 const llCode = ZSTD_LLcode(litLength);
|
||||
FSE_CState_t cstate;
|
||||
FSE_initCState(&cstate, optPtr->symbolCosts->litlengthCTable);
|
||||
U32 const price = LL_bits[llCode]*256 + FSE_bitCost_b256(cstate.symbolTT, cstate.stateLog, llCode);
|
||||
DEBUGLOG(8, "ZSTD_litLengthPrice: ll=%u, bitCost=%.2f", litLength, (double)price / 256);
|
||||
U32 const price = LL_bits[llCode]*BITCOST_MULTIPLIER + BITCOST_SYMBOL(cstate.symbolTT, cstate.stateLog, llCode);
|
||||
DEBUGLOG(8, "ZSTD_litLengthPrice: ll=%u, bitCost=%.2f", litLength, (double)price / BITCOST_MULTIPLIER);
|
||||
return price;
|
||||
}
|
||||
if (optPtr->priceType == zop_predef) return ZSTD_highbit32((U32)litLength+1);
|
||||
|
||||
/* dynamic statistics */
|
||||
{ U32 const llCode = ZSTD_LLcode(litLength);
|
||||
return (LL_bits[llCode] + optPtr->log2litLengthSum - ZSTD_highbit32(optPtr->litLengthFreq[llCode]+1)) << 8;
|
||||
return (LL_bits[llCode] + optPtr->log2litLengthSum - ZSTD_highbit32(optPtr->litLengthFreq[llCode]+1)) * BITCOST_MULTIPLIER;
|
||||
}
|
||||
}
|
||||
|
||||
@ -158,18 +167,18 @@ static int ZSTD_litLengthContribution(U32 const litLength, const optState_t* con
|
||||
U32 const llCode = ZSTD_LLcode(litLength);
|
||||
FSE_CState_t cstate;
|
||||
FSE_initCState(&cstate, optPtr->symbolCosts->litlengthCTable);
|
||||
return (int)(LL_bits[llCode] * 256)
|
||||
+ FSE_bitCost_b256(cstate.symbolTT, cstate.stateLog, llCode)
|
||||
- FSE_bitCost_b256(cstate.symbolTT, cstate.stateLog, 0);
|
||||
return (int)(LL_bits[llCode] * BITCOST_MULTIPLIER)
|
||||
+ BITCOST_SYMBOL(cstate.symbolTT, cstate.stateLog, llCode)
|
||||
- BITCOST_SYMBOL(cstate.symbolTT, cstate.stateLog, 0);
|
||||
}
|
||||
if (optPtr->priceType >= zop_predef) return ZSTD_highbit32(litLength+1);
|
||||
|
||||
/* literal Length */
|
||||
/* dynamic statistics */
|
||||
{ U32 const llCode = ZSTD_LLcode(litLength);
|
||||
int const contribution = (LL_bits[llCode]
|
||||
+ ZSTD_highbit32(optPtr->litLengthFreq[0]+1)
|
||||
- ZSTD_highbit32(optPtr->litLengthFreq[llCode]+1))
|
||||
* 256;
|
||||
* BITCOST_MULTIPLIER;
|
||||
#if 1
|
||||
return contribution;
|
||||
#else
|
||||
@ -209,13 +218,14 @@ ZSTD_getMatchPrice(U32 const offset, U32 const matchLength,
|
||||
FSE_CState_t mlstate, offstate;
|
||||
FSE_initCState(&mlstate, optPtr->symbolCosts->matchlengthCTable);
|
||||
FSE_initCState(&offstate, optPtr->symbolCosts->offcodeCTable);
|
||||
return FSE_bitCost_b256(offstate.symbolTT, offstate.stateLog, offCode) + offCode*256
|
||||
+ FSE_bitCost_b256(mlstate.symbolTT, mlstate.stateLog, mlCode) + ML_bits[mlCode]*256;
|
||||
return BITCOST_SYMBOL(offstate.symbolTT, offstate.stateLog, offCode) + offCode*BITCOST_MULTIPLIER
|
||||
+ BITCOST_SYMBOL(mlstate.symbolTT, mlstate.stateLog, mlCode) + ML_bits[mlCode]*BITCOST_MULTIPLIER;
|
||||
}
|
||||
|
||||
if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */
|
||||
return ZSTD_highbit32(mlBase+1) + 16 + offCode;
|
||||
|
||||
/* dynamic statistics */
|
||||
price = offCode + optPtr->log2offCodeSum - ZSTD_highbit32(optPtr->offCodeFreq[offCode]+1);
|
||||
if ((optLevel<2) /*static*/ && offCode >= 20) price += (offCode-19)*2; /* handicap for long distance offsets, favor decompression speed */
|
||||
|
||||
@ -225,7 +235,7 @@ ZSTD_getMatchPrice(U32 const offset, U32 const matchLength,
|
||||
}
|
||||
|
||||
DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
|
||||
return price << 8;
|
||||
return price * BITCOST_MULTIPLIER;
|
||||
}
|
||||
|
||||
static void ZSTD_updateStats(optState_t* const optPtr,
|
||||
|
Loading…
Reference in New Issue
Block a user