Merge remote-tracking branch 'refs/remotes/facebook/dev' into dev11

This commit is contained in:
Przemyslaw Skibinski 2016-12-07 09:13:47 +01:00
commit c37b8cb609
12 changed files with 771 additions and 509 deletions

View File

@ -130,20 +130,20 @@ ELSE ()
SET(LIBRARY_BASE_NAME libzstd)
ENDIF (MSVC)
# Define static and shared library names
SET(STATIC_LIBRARY_OUTPUT_NAME ${LIBRARY_BASE_NAME})
SET(SHARED_LIBRARY_OUTPUT_NAME ${LIBRARY_BASE_NAME}.${LIBVER_MAJOR}.${LIBVER_MINOR}.${LIBVER_RELEASE})
IF (MSVC)
IF (CMAKE_SIZEOF_VOID_P MATCHES "8")
SET(STATIC_LIBRARY_OUTPUT_NAME ${STATIC_LIBRARY_OUTPUT_NAME}_x64)
SET(SHARED_LIBRARY_OUTPUT_NAME ${SHARED_LIBRARY_OUTPUT_NAME}_x64)
SET(LIBRARY_ARCH_SUFFIX "_x64")
ELSE ()
SET(STATIC_LIBRARY_OUTPUT_NAME ${STATIC_LIBRARY_OUTPUT_NAME}_x86)
SET(SHARED_LIBRARY_OUTPUT_NAME ${SHARED_LIBRARY_OUTPUT_NAME}_x86)
SET(LIBRARY_ARCH_SUFFIX "_x86")
ENDIF (CMAKE_SIZEOF_VOID_P MATCHES "8")
ELSE ()
SET(LIBRARY_ARCH_SUFFIX "")
ENDIF (MSVC)
# Define static and shared library names
SET(STATIC_LIBRARY_OUTPUT_NAME ${LIBRARY_BASE_NAME}${LIBRARY_ARCH_SUFFIX} CACHE STRING "Static library output name")
SET(SHARED_LIBRARY_OUTPUT_NAME ${LIBRARY_BASE_NAME}.${LIBVER_MAJOR}.${LIBVER_MINOR}.${LIBVER_RELEASE}${LIBRARY_ARCH_SUFFIX} CACHE STRING "Shared library output name")
SET_TARGET_PROPERTIES(
libzstd_static
PROPERTIES

2
contrib/gen_html/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
# make artefact
gen_html

View File

@ -0,0 +1,564 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>zstd 1.1.2 Manual</title>
</head>
<body>
<h1>zstd 1.1.2 Manual</h1>
<hr>
<a name="Contents"></a><h2>Contents</h2>
<ol>
<li><a href="#Chapter1">Introduction</a></li>
<li><a href="#Chapter2">Version</a></li>
<li><a href="#Chapter3">Simple API</a></li>
<li><a href="#Chapter4">Explicit memory management</a></li>
<li><a href="#Chapter5">Simple dictionary API</a></li>
<li><a href="#Chapter6">Fast dictionary API</a></li>
<li><a href="#Chapter7">Streaming</a></li>
<li><a href="#Chapter8">Streaming compression - HowTo</a></li>
<li><a href="#Chapter9">Streaming decompression - HowTo</a></li>
<li><a href="#Chapter10">START OF ADVANCED AND EXPERIMENTAL FUNCTIONS</a></li>
<li><a href="#Chapter11">Advanced types</a></li>
<li><a href="#Chapter12">Advanced compression functions</a></li>
<li><a href="#Chapter13">Advanced decompression functions</a></li>
<li><a href="#Chapter14">Advanced streaming functions</a></li>
<li><a href="#Chapter15">Buffer-less and synchronous inner streaming functions</a></li>
<li><a href="#Chapter16">Buffer-less streaming compression (synchronous mode)</a></li>
<li><a href="#Chapter17">Buffer-less streaming decompression (synchronous mode)</a></li>
<li><a href="#Chapter18">Block functions</a></li>
</ol>
<hr>
<a name="Chapter1"></a><h2>Introduction</h2><pre>
zstd, short for Zstandard, is a fast lossless compression algorithm, targeting real-time compression scenarios
at zlib-level and better compression ratios. The zstd compression library provides in-memory compression and
decompression functions. The library supports compression levels from 1 up to ZSTD_maxCLevel() which is 22.
Levels >= 20, labelled `--ultra`, should be used with caution, as they require more memory.
Compression can be done in:
- a single step (described as Simple API)
- a single step, reusing a context (described as Explicit memory management)
- unbounded multiple steps (described as Streaming compression)
The compression ratio achievable on small data can be highly improved using compression with a dictionary in:
- a single step (described as Simple dictionary API)
- a single step, reusing a dictionary (described as Fast dictionary API)
Advanced experimental functions can be accessed using #define ZSTD_STATIC_LINKING_ONLY before including zstd.h.
These APIs shall never be used with a dynamic library.
They are not "stable", their definition may change in the future. Only static linking is allowed.
<BR></pre>
<a name="Chapter2"></a><h2>Version</h2><pre></pre>
<pre><b>unsigned ZSTD_versionNumber(void); </b>/**< library version number; to be used when checking dll version */<b>
</b></pre><BR>
<a name="Chapter3"></a><h2>Simple API</h2><pre></pre>
<pre><b>size_t ZSTD_compress( void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
</b><p> Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
@return : compressed size written into `dst` (<= `dstCapacity),
or an error code if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>size_t ZSTD_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
</b><p> `compressedSize` : must be the _exact_ size of a single compressed frame.
`dstCapacity` is an upper bound of originalSize.
If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
</b><p> 'src' is the start of a zstd compressed frame.
@return : content size to be decompressed, as a 64-bits value _if known_, 0 otherwise.
note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
When `return==0`, data to decompress could be any size.
In which case, it's necessary to use streaming mode to decompress data.
Optionally, application can still use ZSTD_decompress() while relying on implied limits.
(For example, data may be necessarily cut into blocks <= 16 KB).
note 2 : decompressed size is always present when compression is done with ZSTD_compress()
note 3 : decompressed size can be very large (64-bits value),
potentially larger than what local system can handle as a single memory segment.
In which case, it's necessary to use streaming mode to decompress data.
note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
Always ensure result fits within application's authorized limits.
Each application can set its own limits.
note 5 : when `return==0`, if precise failure cause is needed, use ZSTD_getFrameParams() to know more.
</p></pre><BR>
<h3>Helper functions</h3><pre><b>int ZSTD_maxCLevel(void); </b>/*!< maximum compression level available */<b>
size_t ZSTD_compressBound(size_t srcSize); </b>/*!< maximum compressed size in worst case scenario */<b>
unsigned ZSTD_isError(size_t code); </b>/*!< tells if a `size_t` function result is an error code */<b>
const char* ZSTD_getErrorName(size_t code); </b>/*!< provides readable string from an error code */<b>
</b></pre><BR>
<a name="Chapter4"></a><h2>Explicit memory management</h2><pre></pre>
<pre><b>size_t ZSTD_compressCCtx(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel);
</b><p> Same as ZSTD_compress(), requires an allocated ZSTD_CCtx (see ZSTD_createCCtx()).
</p></pre><BR>
<h3>Decompression context</h3><pre><b>typedef struct ZSTD_DCtx_s ZSTD_DCtx;
ZSTD_DCtx* ZSTD_createDCtx(void);
size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
</b></pre><BR>
<pre><b>size_t ZSTD_decompressDCtx(ZSTD_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
</b><p> Same as ZSTD_decompress(), requires an allocated ZSTD_DCtx (see ZSTD_createDCtx()).
</p></pre><BR>
<a name="Chapter5"></a><h2>Simple dictionary API</h2><pre></pre>
<pre><b>size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
int compressionLevel);
</b><p> Compression using a predefined Dictionary (see dictBuilder/zdict.h).
Note : This function loads the dictionary, resulting in significant startup delay.
Note : When `dict == NULL || dictSize < 8` no dictionary is used.
</p></pre><BR>
<pre><b>size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
</b><p> Decompression using a predefined Dictionary (see dictBuilder/zdict.h).
Dictionary must be identical to the one used during compression.
Note : This function loads the dictionary, resulting in significant startup delay.
Note : When `dict == NULL || dictSize < 8` no dictionary is used.
</p></pre><BR>
<a name="Chapter6"></a><h2>Fast dictionary API</h2><pre></pre>
<pre><b>ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel);
</b><p> When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once.
ZSTD_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
ZSTD_CDict can be created once and used by multiple threads concurrently, as its usage is read-only.
`dict` can be released after ZSTD_CDict creation.
</p></pre><BR>
<pre><b>size_t ZSTD_freeCDict(ZSTD_CDict* CDict);
</b><p> Function frees memory allocated by ZSTD_createCDict().
</p></pre><BR>
<pre><b>size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict);
</b><p> Compression using a digested Dictionary.
Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
Note that compression level is decided during dictionary creation.
</p></pre><BR>
<pre><b>ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize);
</b><p> Create a digested dictionary, ready to start decompression operation without startup delay.
`dict` can be released after creation.
</p></pre><BR>
<pre><b>size_t ZSTD_freeDDict(ZSTD_DDict* ddict);
</b><p> Function frees memory allocated with ZSTD_createDDict()
</p></pre><BR>
<pre><b>size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_DDict* ddict);
</b><p> Decompression using a digested Dictionary.
Faster startup than ZSTD_decompress_usingDict(), recommended when same dictionary is used multiple times.
</p></pre><BR>
<a name="Chapter7"></a><h2>Streaming</h2><pre></pre>
<pre><b>typedef struct ZSTD_inBuffer_s {
const void* src; </b>/**< start of input buffer */<b>
size_t size; </b>/**< size of input buffer */<b>
size_t pos; </b>/**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */<b>
} ZSTD_inBuffer;
</b></pre><BR>
<pre><b>typedef struct ZSTD_outBuffer_s {
void* dst; </b>/**< start of output buffer */<b>
size_t size; </b>/**< size of output buffer */<b>
size_t pos; </b>/**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */<b>
} ZSTD_outBuffer;
</b></pre><BR>
<a name="Chapter8"></a><h2>Streaming compression - HowTo</h2><pre>
A ZSTD_CStream object is required to track streaming operation.
Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
It is recommended to re-use ZSTD_CStream in situations where many streaming operations will be achieved consecutively,
since it will play nicer with system's memory, by re-using already allocated memory.
Use one separate ZSTD_CStream per thread for parallel execution.
Start a new compression by initializing ZSTD_CStream.
Use ZSTD_initCStream() to start a new compression operation.
Use ZSTD_initCStream_usingDict() for a compression which requires a dictionary.
Use ZSTD_compressStream() repetitively to consume input stream.
The function will automatically update both `pos` fields.
Note that it may not consume the entire input, in which case `pos < size`,
and it's up to the caller to present again remaining data.
@return : a size hint, preferred nb of bytes to use as input for next function call
(it's just a hint, to help latency a little, any other value will work fine)
(note : the size hint is guaranteed to be <= ZSTD_CStreamInSize() )
or an error code, which can be tested using ZSTD_isError().
At any moment, it's possible to flush whatever data remains within buffer, using ZSTD_flushStream().
`output->pos` will be updated.
Note some content might still be left within internal buffer if `output->size` is too small.
@return : nb of bytes still present within internal buffer (0 if it's empty)
or an error code, which can be tested using ZSTD_isError().
ZSTD_endStream() instructs to finish a frame.
It will perform a flush and write frame epilogue.
The epilogue is required for decoders to consider a frame completed.
Similar to ZSTD_flushStream(), it may not be able to flush the full content if `output->size` is too small.
In which case, call again ZSTD_endStream() to complete the flush.
@return : nb of bytes still present within internal buffer (0 if it's empty)
or an error code, which can be tested using ZSTD_isError().
<BR></pre>
<h3>Streaming compression functions</h3><pre><b>typedef struct ZSTD_CStream_s ZSTD_CStream;
ZSTD_CStream* ZSTD_createCStream(void);
size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel);
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
</b></pre><BR>
<pre><b>size_t ZSTD_CStreamInSize(void); </b>/**< recommended size for input buffer */<b>
</b></pre><BR>
<pre><b>size_t ZSTD_CStreamOutSize(void); </b>/**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block in all circumstances. */<b>
</b></pre><BR>
<a name="Chapter9"></a><h2>Streaming decompression - HowTo</h2><pre>
A ZSTD_DStream object is required to track streaming operations.
Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
ZSTD_DStream objects can be re-used multiple times.
Use ZSTD_initDStream() to start a new decompression operation,
or ZSTD_initDStream_usingDict() if decompression requires a dictionary.
@return : recommended first input size
Use ZSTD_decompressStream() repetitively to consume your input.
The function will update both `pos` fields.
If `input.pos < input.size`, some input has not been consumed.
It's up to the caller to present again remaining data.
If `output.pos < output.size`, decoder has flushed everything it could.
@return : 0 when a frame is completely decoded and fully flushed,
an error code, which can be tested using ZSTD_isError(),
any other value > 0, which means there is still some decoding to do to complete current frame.
The return value is a suggested next input size (a hint to improve latency) that will never load more than the current frame.
<BR></pre>
<h3>Streaming decompression functions</h3><pre><b>typedef struct ZSTD_DStream_s ZSTD_DStream;
ZSTD_DStream* ZSTD_createDStream(void);
size_t ZSTD_freeDStream(ZSTD_DStream* zds);
size_t ZSTD_initDStream(ZSTD_DStream* zds);
size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
</b></pre><BR>
<pre><b>size_t ZSTD_DStreamInSize(void); </b>/*!< recommended size for input buffer */<b>
</b></pre><BR>
<pre><b>size_t ZSTD_DStreamOutSize(void); </b>/*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */<b>
</b></pre><BR>
<a name="Chapter10"></a><h2>START OF ADVANCED AND EXPERIMENTAL FUNCTIONS</h2><pre> The definitions in this section are considered experimental.
They should never be used with a dynamic library, as they may change in the future.
They are provided for advanced usages.
Use them only in association with static linking.
<BR></pre>
<a name="Chapter11"></a><h2>Advanced types</h2><pre></pre>
<pre><b>typedef enum { ZSTD_fast, ZSTD_dfast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2, ZSTD_btopt, ZSTD_btopt2 } ZSTD_strategy; </b>/* from faster to stronger */<b>
</b></pre><BR>
<pre><b>typedef struct {
unsigned windowLog; </b>/**< largest match distance : larger == more compression, more memory needed during decompression */<b>
unsigned chainLog; </b>/**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */<b>
unsigned hashLog; </b>/**< dispatch table : larger == faster, more memory */<b>
unsigned searchLog; </b>/**< nb of searches : larger == more compression, slower */<b>
unsigned searchLength; </b>/**< match length searched : larger == faster decompression, sometimes less compression */<b>
unsigned targetLength; </b>/**< acceptable match size for optimal parser (only) : larger == more compression, slower */<b>
ZSTD_strategy strategy;
} ZSTD_compressionParameters;
</b></pre><BR>
<pre><b>typedef struct {
unsigned contentSizeFlag; </b>/**< 1: content size will be in frame header (if known). */<b>
unsigned checksumFlag; </b>/**< 1: will generate a 22-bits checksum at end of frame, to be used for error detection by decompressor */<b>
unsigned noDictIDFlag; </b>/**< 1: no dict ID will be saved into frame header (if dictionary compression) */<b>
} ZSTD_frameParameters;
</b></pre><BR>
<pre><b>typedef struct {
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
} ZSTD_parameters;
</b></pre><BR>
<h3>Custom memory allocation functions</h3><pre><b>typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
</b></pre><BR>
<a name="Chapter12"></a><h2>Advanced compression functions</h2><pre></pre>
<pre><b>size_t ZSTD_estimateCCtxSize(ZSTD_compressionParameters cParams);
</b><p> Gives the amount of memory allocated for a ZSTD_CCtx given a set of compression parameters.
`frameContentSize` is an optional parameter, provide `0` if unknown
</p></pre><BR>
<pre><b>ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
</b><p> Create a ZSTD compression context using external alloc and free functions
</p></pre><BR>
<pre><b>size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
</b><p> Gives the amount of memory used by a given ZSTD_CCtx
</p></pre><BR>
<pre><b>ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
ZSTD_parameters params, ZSTD_customMem customMem);
</b><p> Create a ZSTD_CDict using external alloc and free, and customized compression parameters
</p></pre><BR>
<pre><b>size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict);
</b><p> Gives the amount of memory used by a given ZSTD_sizeof_CDict
</p></pre><BR>
<pre><b>ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize);
</b><p> same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of a `ZSTD_compressionParameters`.
All fields of `ZSTD_frameParameters` are set to default (0)
</p></pre><BR>
<pre><b>ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize);
</b><p> @return ZSTD_compressionParameters structure for a selected compression level and srcSize.
`srcSize` value is optional, select 0 if not known
</p></pre><BR>
<pre><b>size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
</b><p> Ensure param values remain within authorized range
</p></pre><BR>
<pre><b>ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
</b><p> optimize params for a given `srcSize` and `dictSize`.
both values are optional, select `0` if unknown.
</p></pre><BR>
<pre><b>size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params);
</b><p> Same as ZSTD_compress_usingDict(), with fine-tune control of each compression parameter
</p></pre><BR>
<a name="Chapter13"></a><h2>Advanced decompression functions</h2><pre></pre>
<pre><b>unsigned ZSTD_isFrame(const void* buffer, size_t size);
</b><p> Tells if the content of `buffer` starts with a valid Frame Identifier.
Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
Note 3 : Skippable Frame Identifiers are considered valid.
</p></pre><BR>
<pre><b>size_t ZSTD_estimateDCtxSize(void);
</b><p> Gives the potential amount of memory allocated to create a ZSTD_DCtx
</p></pre><BR>
<pre><b>ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
</b><p> Create a ZSTD decompression context using external alloc and free functions
</p></pre><BR>
<pre><b>size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
</b><p> Gives the amount of memory used by a given ZSTD_DCtx
</p></pre><BR>
<pre><b>size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
</b><p> Gives the amount of memory used by a given ZSTD_DDict
</p></pre><BR>
<pre><b>unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize);
</b><p> Provides the dictID stored within dictionary.
if @return == 0, the dictionary is not conformant with Zstandard specification.
It can still be loaded, but as a content-only dictionary.
</p></pre><BR>
<pre><b>unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict);
</b><p> Provides the dictID of the dictionary loaded into `ddict`.
If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
</p></pre><BR>
<pre><b>unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
</b><p> Provides the dictID required to decompressed the frame stored within `src`.
If @return == 0, the dictID could not be decoded.
This could for one of the following reasons :
- The frame does not require a dictionary to be decoded (most common case).
- The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
Note : this use case also happens when using a non-conformant dictionary.
- `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
- This is not a Zstandard frame.
When identifying the exact failure cause, it's possible to used ZSTD_getFrameParams(), which will provide a more precise error code.
</p></pre><BR>
<a name="Chapter14"></a><h2>Advanced streaming functions</h2><pre></pre>
<h3>Advanced Streaming compression functions</h3><pre><b>ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel);
size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize); </b>/**< pledgedSrcSize is optional and can be zero == unknown */<b>
size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict); </b>/**< note : cdict will just be referenced, and must outlive compression session */<b>
size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize); </b>/**< re-use compression parameters from previous init; skip dictionary loading stage; zcs must be init at least once before */<b>
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
</b></pre><BR>
<h3>Advanced Streaming decompression functions</h3><pre><b>typedef enum { ZSTDdsp_maxWindowSize } ZSTD_DStreamParameter_e;
ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
size_t ZSTD_setDStreamParameter(ZSTD_DStream* zds, ZSTD_DStreamParameter_e paramType, unsigned paramValue);
size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict); </b>/**< note : ddict will just be referenced, and must outlive decompression session */<b>
size_t ZSTD_resetDStream(ZSTD_DStream* zds); </b>/**< re-use decompression parameters from previous init; saves dictionary loading */<b>
size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds);
</b></pre><BR>
<a name="Chapter15"></a><h2>Buffer-less and synchronous inner streaming functions</h2><pre>
This is an advanced API, giving full control over buffer management, for users which need direct control over memory.
But it's also a complex one, with many restrictions (documented below).
Prefer using normal streaming API for an easier experience
<BR></pre>
<a name="Chapter16"></a><h2>Buffer-less streaming compression (synchronous mode)</h2><pre>
A ZSTD_CCtx object is required to track streaming operations.
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
ZSTD_CCtx object can be re-used multiple times within successive compression operations.
Start by initializing a context.
Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
or ZSTD_compressBegin_advanced(), for finer parameter control.
It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
Then, consume your input using ZSTD_compressContinue().
There are some important considerations to keep in mind when using this advanced function :
- ZSTD_compressContinue() has no internal buffer. It uses externally provided buffer only.
- Interface is synchronous : input is consumed entirely and produce 1+ (or more) compressed blocks.
- Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
Worst case evaluation is provided by ZSTD_compressBound().
ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
- ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
- ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
In which case, it will "discard" the relevant memory section from its history.
Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum.
It's possible to use a NULL,0 src content, in which case, it will write a final empty block to end the frame,
Without last block mark, frames will be considered unfinished (broken) by decoders.
You can then reuse `ZSTD_CCtx` (ZSTD_compressBegin()) to compress some new frame.
<BR></pre>
<h3>Buffer-less streaming compression functions</h3><pre><b>size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize);
size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize);
size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
</b></pre><BR>
<a name="Chapter17"></a><h2>Buffer-less streaming decompression (synchronous mode)</h2><pre>
A ZSTD_DCtx object is required to track streaming operations.
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
A ZSTD_DCtx object can be re-used multiple times.
First typical operation is to retrieve frame parameters, using ZSTD_getFrameParams().
It fills a ZSTD_frameParams structure which provide important information to correctly decode the frame,
such as the minimum rolling buffer size to allocate to decompress data (`windowSize`),
and the dictionary ID used.
(Note : content size is optional, it may not be present. 0 means : content size unknown).
Note that these values could be wrong, either because of data malformation, or because an attacker is spoofing deliberate false information.
As a consequence, check that values remain within valid application range, especially `windowSize`, before allocation.
Each application can set its own limit, depending on local restrictions. For extended interoperability, it is recommended to support at least 8 MB.
Frame parameters are extracted from the beginning of the compressed frame.
Data fragment must be large enough to ensure successful decoding, typically `ZSTD_frameHeaderSize_max` bytes.
@result : 0 : successful decoding, the `ZSTD_frameParams` structure is correctly filled.
>0 : `srcSize` is too small, please provide at least @result bytes on next attempt.
errorCode, which can be tested using ZSTD_isError().
Start decompression, with ZSTD_decompressBegin() or ZSTD_decompressBegin_usingDict().
Alternatively, you can copy a prepared context, using ZSTD_copyDCtx().
Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail.
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some metadata item.
It can also be an error code, which can be tested with ZSTD_isError().
ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize`.
They should preferably be located contiguously, prior to current block.
Alternatively, a round buffer of sufficient size is also possible. Sufficient size is determined by frame parameters.
ZSTD_decompressContinue() is very sensitive to contiguity,
if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
or that previous contiguous segment is large enough to properly handle maximum back-reference.
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
Context can then be reset to start a new decompression.
Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType().
This information is not required to properly decode a frame.
== Special case : skippable frames ==
Skippable frames allow integration of user-defined data into a flow of concatenated frames.
Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frames is as follows :
a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
c) Frame Content - any content (User Data) of length equal to Frame Size
For skippable frames ZSTD_decompressContinue() always returns 0.
For skippable frames ZSTD_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable.
It also returns Frame Size as fparamsPtr->frameContentSize.
<BR></pre>
<pre><b>typedef struct {
unsigned long long frameContentSize;
unsigned windowSize;
unsigned dictID;
unsigned checksumFlag;
} ZSTD_frameParams;
</b></pre><BR>
<h3>Buffer-less streaming decompression functions</h3><pre><b>size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize); </b>/**< doesn't consume input, see details below */<b>
size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
</b></pre><BR>
<a name="Chapter18"></a><h2>Block functions</h2><pre>
Block functions produce and decode raw zstd blocks, without frame metadata.
Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes).
User will have to take in charge required information to regenerate data, such as compressed and content sizes.
A few rules to respect :
- Compressing and decompressing require a context structure
+ Use ZSTD_createCCtx() and ZSTD_createDCtx()
- It is necessary to init context before starting
+ compression : ZSTD_compressBegin()
+ decompression : ZSTD_decompressBegin()
+ variants _usingDict() are also allowed
+ copyCCtx() and copyDCtx() work too
- Block size is limited, it must be <= ZSTD_getBlockSizeMax()
+ If you need to compress more, cut data into multiple blocks
+ Consider using the regular ZSTD_compress() instead, as frame metadata costs become negligible when source size is large.
- When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero.
In which case, nothing is produced into `dst`.
+ User must test for such outcome and deal directly with uncompressed data
+ ZSTD_decompressBlock() doesn't accept uncompressed data as input !!!
+ In case of multiple successive blocks, decoder must be informed of uncompressed block existence to follow proper history.
Use ZSTD_insertBlock() in such a case.
<BR></pre>
<h3>Raw zstd block functions</h3><pre><b>size_t ZSTD_getBlockSizeMax(ZSTD_CCtx* cctx);
size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); </b>/**< insert block into `dctx` history. Useful for uncompressed blocks */<b>
</b></pre><BR>
</html>
</body>

View File

@ -15,17 +15,19 @@
* See 'lib/README.md'.
*****************************************************************/
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
/* *************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include <zstd.h> /* ZSTD_CStream, ZSTD_DStream */
/* ***************************************************************
@ -48,7 +50,7 @@ extern "C" {
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) /* disable deprecation warnings */
#else
# if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__)
# if (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) __attribute__((deprecated))
@ -70,7 +72,7 @@ extern "C" {
* ZBUFF and ZSTD are 100% interoperable,
* frames created by one can be decoded by the other one */
typedef struct ZBUFF_CCtx_s ZBUFF_CCtx;
typedef ZSTD_CStream ZBUFF_CCtx;
ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
@ -122,7 +124,7 @@ ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx*
* **************************************************/
typedef struct ZBUFF_DCtx_s ZBUFF_DCtx;
typedef ZSTD_DStream ZBUFF_DCtx;
ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
@ -172,9 +174,14 @@ ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(voi
ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
#endif /* ZSTD_BUFFERED_H_23987 */
#ifdef ZBUFF_STATIC_LINKING_ONLY
#ifndef ZBUFF_STATIC_H_30298098432
#define ZBUFF_STATIC_H_30298098432
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used in association with a dynamic library, as they may change in the future.
@ -203,11 +210,11 @@ ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_adv
ZSTD_parameters params, unsigned long long pledgedSrcSize);
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#endif /* ZBUFF_STATIC_H_30298098432 */
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_BUFFERED_H_23987 */

View File

@ -12,19 +12,10 @@
/* *************************************
* Dependencies
***************************************/
#include <stdlib.h>
#include "error_private.h"
#include "zstd_internal.h" /* MIN, ZSTD_BLOCKHEADERSIZE, defaultCustomMem */
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
/* *************************************
* Constants
***************************************/
static size_t const ZBUFF_endFrameSize = ZSTD_BLOCKHEADERSIZE;
/*-***********************************************************
* Streaming compression
*
@ -58,59 +49,19 @@ static size_t const ZBUFF_endFrameSize = ZSTD_BLOCKHEADERSIZE;
* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
* ***********************************************************/
typedef enum { ZBUFFcs_init, ZBUFFcs_load, ZBUFFcs_flush, ZBUFFcs_final } ZBUFF_cStage;
/* *** Resources *** */
struct ZBUFF_CCtx_s {
ZSTD_CCtx* zc;
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
size_t blockSize;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZBUFF_cStage stage;
U32 checksum;
U32 frameEnded;
ZSTD_customMem customMem;
}; /* typedef'd tp ZBUFF_CCtx within "zbuff.h" */
ZBUFF_CCtx* ZBUFF_createCCtx(void)
{
return ZBUFF_createCCtx_advanced(defaultCustomMem);
return ZSTD_createCStream();
}
ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
{
ZBUFF_CCtx* zbc;
if (!customMem.customAlloc && !customMem.customFree)
customMem = defaultCustomMem;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
zbc = (ZBUFF_CCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_CCtx));
if (zbc==NULL) return NULL;
memset(zbc, 0, sizeof(ZBUFF_CCtx));
memcpy(&zbc->customMem, &customMem, sizeof(ZSTD_customMem));
zbc->zc = ZSTD_createCCtx_advanced(customMem);
if (zbc->zc == NULL) { ZBUFF_freeCCtx(zbc); return NULL; }
return zbc;
return ZSTD_createCStream_advanced(customMem);
}
size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
{
if (zbc==NULL) return 0; /* support free on NULL */
ZSTD_freeCCtx(zbc->zc);
if (zbc->inBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff);
if (zbc->outBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff);
zbc->customMem.customFree(zbc->customMem.opaque, zbc);
return 0;
return ZSTD_freeCStream(zbc);
}
@ -120,148 +71,40 @@ size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
/* allocate buffers */
{ size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
if (zbc->inBuffSize < neededInBuffSize) {
zbc->inBuffSize = neededInBuffSize;
zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff); /* should not be necessary */
zbc->inBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, neededInBuffSize);
if (zbc->inBuff == NULL) return ERROR(memory_allocation);
}
zbc->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
}
if (zbc->outBuffSize < ZSTD_compressBound(zbc->blockSize)+1) {
zbc->outBuffSize = ZSTD_compressBound(zbc->blockSize)+1;
zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff); /* should not be necessary */
zbc->outBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, zbc->outBuffSize);
if (zbc->outBuff == NULL) return ERROR(memory_allocation);
}
{ size_t const errorCode = ZSTD_compressBegin_advanced(zbc->zc, dict, dictSize, params, pledgedSrcSize);
if (ZSTD_isError(errorCode)) return errorCode; }
zbc->inToCompress = 0;
zbc->inBuffPos = 0;
zbc->inBuffTarget = zbc->blockSize;
zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
zbc->stage = ZBUFFcs_load;
zbc->checksum = params.fParams.checksumFlag > 0;
zbc->frameEnded = 0;
return 0; /* ready to go */
return ZSTD_initCStream_advanced(zbc, dict, dictSize, params, pledgedSrcSize);
}
size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
return ZBUFF_compressInit_advanced(zbc, dict, dictSize, params, 0);
return ZSTD_initCStream_usingDict(zbc, dict, dictSize, compressionLevel);
}
size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
{
return ZBUFF_compressInitDictionary(zbc, NULL, 0, compressionLevel);
return ZSTD_initCStream(zbc, compressionLevel);
}
/* internal util function */
MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
memcpy(dst, src, length);
return length;
}
/* ====== Compression ====== */
typedef enum { zbf_gather, zbf_flush, zbf_end } ZBUFF_flush_e;
static size_t ZBUFF_compressContinue_generic(ZBUFF_CCtx* zbc,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr,
ZBUFF_flush_e const flush)
{
U32 someMoreWork = 1;
const char* const istart = (const char*)src;
const char* const iend = istart + *srcSizePtr;
const char* ip = istart;
char* const ostart = (char*)dst;
char* const oend = ostart + *dstCapacityPtr;
char* op = ostart;
while (someMoreWork) {
switch(zbc->stage)
{
case ZBUFFcs_init: return ERROR(init_missing); /* call ZBUFF_compressInit() first ! */
case ZBUFFcs_load:
/* complete inBuffer */
{ size_t const toLoad = zbc->inBuffTarget - zbc->inBuffPos;
size_t const loaded = ZBUFF_limitCopy(zbc->inBuff + zbc->inBuffPos, toLoad, ip, iend-ip);
zbc->inBuffPos += loaded;
ip += loaded;
if ( (zbc->inBuffPos==zbc->inToCompress) || (!flush && (toLoad != loaded)) ) {
someMoreWork = 0; break; /* not enough input to get a full block : stop there, wait for more */
} }
/* compress current block (note : this stage cannot be stopped in the middle) */
{ void* cDst;
size_t cSize;
size_t const iSize = zbc->inBuffPos - zbc->inToCompress;
size_t oSize = oend-op;
if (oSize >= ZSTD_compressBound(iSize))
cDst = op; /* compress directly into output buffer (avoid flush stage) */
else
cDst = zbc->outBuff, oSize = zbc->outBuffSize;
cSize = (flush == zbf_end) ?
ZSTD_compressEnd(zbc->zc, cDst, oSize, zbc->inBuff + zbc->inToCompress, iSize) :
ZSTD_compressContinue(zbc->zc, cDst, oSize, zbc->inBuff + zbc->inToCompress, iSize);
if (ZSTD_isError(cSize)) return cSize;
if (flush == zbf_end) zbc->frameEnded = 1;
/* prepare next block */
zbc->inBuffTarget = zbc->inBuffPos + zbc->blockSize;
if (zbc->inBuffTarget > zbc->inBuffSize)
zbc->inBuffPos = 0, zbc->inBuffTarget = zbc->blockSize; /* note : inBuffSize >= blockSize */
zbc->inToCompress = zbc->inBuffPos;
if (cDst == op) { op += cSize; break; } /* no need to flush */
zbc->outBuffContentSize = cSize;
zbc->outBuffFlushedSize = 0;
zbc->stage = ZBUFFcs_flush; /* continue to flush stage */
}
case ZBUFFcs_flush:
{ size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
op += flushed;
zbc->outBuffFlushedSize += flushed;
if (toFlush!=flushed) { someMoreWork = 0; break; } /* dst too small to store flushed data : stop there */
zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
zbc->stage = ZBUFFcs_load;
break;
}
case ZBUFFcs_final:
someMoreWork = 0; /* do nothing */
break;
default:
return ERROR(GENERIC); /* impossible */
}
}
*srcSizePtr = ip - istart;
*dstCapacityPtr = op - ostart;
if (zbc->frameEnded) return 0;
{ size_t hintInSize = zbc->inBuffTarget - zbc->inBuffPos;
if (hintInSize==0) hintInSize = zbc->blockSize;
return hintInSize;
}
}
size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
return ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, src, srcSizePtr, zbf_gather);
size_t result;
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_compressStream(zbc, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
@ -270,44 +113,27 @@ size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t srcSize = 0;
ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, &srcSize, &srcSize, zbf_flush); /* use a valid src address instead of NULL */
return zbc->outBuffContentSize - zbc->outBuffFlushedSize;
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_flushStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + *dstCapacityPtr;
BYTE* op = ostart;
if (zbc->stage != ZBUFFcs_final) {
/* flush whatever remains */
size_t outSize = *dstCapacityPtr;
size_t srcSize = 0;
size_t const notEnded = ZBUFF_compressContinue_generic(zbc, dst, &outSize, &srcSize, &srcSize, zbf_end); /* use a valid address instead of NULL */
size_t const remainingToFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
op += outSize;
if (remainingToFlush) {
*dstCapacityPtr = op-ostart;
return remainingToFlush + ZBUFF_endFrameSize + (zbc->checksum * 4);
}
/* create epilogue */
zbc->stage = ZBUFFcs_final;
zbc->outBuffContentSize = !notEnded ? 0 :
ZSTD_compressEnd(zbc->zc, zbc->outBuff, zbc->outBuffSize, NULL, 0); /* write epilogue into outBuff */
}
/* flush epilogue */
{ size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
op += flushed;
zbc->outBuffFlushedSize += flushed;
*dstCapacityPtr = op-ostart;
if (toFlush==flushed) zbc->stage = ZBUFFcs_init; /* end reached */
return toFlush - flushed;
}
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_endStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
@ -315,5 +141,5 @@ size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize; }
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); }
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); }

View File

@ -12,68 +12,23 @@
/* *************************************
* Dependencies
***************************************/
#include <stdlib.h>
#include "error_private.h"
#include "zstd_internal.h" /* MIN, ZSTD_blockHeaderSize, ZSTD_BLOCKSIZE_MAX */
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
/* *** Resource management *** */
struct ZBUFF_DCtx_s {
ZSTD_DCtx* zd;
ZSTD_frameParams fParams;
ZBUFF_dStage stage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t blockSize;
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t lhSize;
ZSTD_customMem customMem;
}; /* typedef'd to ZBUFF_DCtx within "zbuff.h" */
ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
return ZBUFF_createDCtx_advanced(defaultCustomMem);
return ZSTD_createDStream();
}
ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
{
ZBUFF_DCtx* zbd;
if (!customMem.customAlloc && !customMem.customFree)
customMem = defaultCustomMem;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
zbd = (ZBUFF_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_DCtx));
if (zbd==NULL) return NULL;
memset(zbd, 0, sizeof(ZBUFF_DCtx));
memcpy(&zbd->customMem, &customMem, sizeof(ZSTD_customMem));
zbd->zd = ZSTD_createDCtx_advanced(customMem);
if (zbd->zd == NULL) { ZBUFF_freeDCtx(zbd); return NULL; }
zbd->stage = ZBUFFds_init;
return zbd;
return ZSTD_createDStream_advanced(customMem);
}
size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
{
if (zbd==NULL) return 0; /* support free on null */
ZSTD_freeDCtx(zbd->zd);
if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
zbd->customMem.customFree(zbd->customMem.opaque, zbd);
return 0;
return ZSTD_freeDStream(zbd);
}
@ -81,23 +36,12 @@ size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
{
zbd->stage = ZBUFFds_loadHeader;
zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
return ZSTD_decompressBegin_usingDict(zbd->zd, dict, dictSize);
return ZSTD_initDStream_usingDict(zbd, dict, dictSize);
}
size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
{
return ZBUFF_decompressInitDictionary(zbd, NULL, 0);
}
/* internal util function */
MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
memcpy(dst, src, length);
return length;
return ZSTD_initDStream(zbd);
}
@ -107,146 +51,24 @@ size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
const char* const istart = (const char*)src;
const char* const iend = istart + *srcSizePtr;
const char* ip = istart;
char* const ostart = (char*)dst;
char* const oend = ostart + *dstCapacityPtr;
char* op = ostart;
U32 someMoreWork = 1;
while (someMoreWork) {
switch(zbd->stage)
{
case ZBUFFds_init :
return ERROR(init_missing);
case ZBUFFds_loadHeader :
{ size_t const hSize = ZSTD_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
if (ZSTD_isError(hSize)) return hSize;
if (hSize != 0) { /* need more input */
size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
zbd->lhSize += iend-ip;
*dstCapacityPtr = 0;
return (hSize - zbd->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
}
memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
break;
} }
/* Consume header */
{ size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zbd->zd); /* == ZSTD_frameHeaderSize_min */
size_t const h1Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
if (ZSTD_isError(h1Result)) return h1Result; /* should not happen : already checked */
if (h1Size < zbd->lhSize) { /* long header */
size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zbd->zd);
size_t const h2Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
if (ZSTD_isError(h2Result)) return h2Result;
} }
zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
/* Frame header instruct buffer sizes */
{ size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
size_t const neededOutSize = zbd->fParams.windowSize + blockSize;
zbd->blockSize = blockSize;
if (zbd->inBuffSize < blockSize) {
zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
zbd->inBuffSize = blockSize;
zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize);
if (zbd->inBuff == NULL) return ERROR(memory_allocation);
}
if (zbd->outBuffSize < neededOutSize) {
zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
zbd->outBuffSize = neededOutSize;
zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize);
if (zbd->outBuff == NULL) return ERROR(memory_allocation);
} }
zbd->stage = ZBUFFds_read;
/* pass-through */
case ZBUFFds_read:
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
if (neededInSize==0) { /* end of frame */
zbd->stage = ZBUFFds_init;
someMoreWork = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart),
ip, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize && !isSkipFrame) break; /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
break;
}
if (ip==iend) { someMoreWork = 0; break; } /* no more input */
zbd->stage = ZBUFFds_load;
/* pass-through */
}
case ZBUFFds_load:
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
size_t loadedSize;
if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZBUFF_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
ip += loadedSize;
zbd->inPos += loadedSize;
if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
/* decode loaded input */
{ const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
zbd->inBuff, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
zbd->inPos = 0; /* input is consumed */
if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
zbd->outEnd = zbd->outStart + decodedSize;
zbd->stage = ZBUFFds_flush;
/* pass-through */
} }
case ZBUFFds_flush:
{ size_t const toFlushSize = zbd->outEnd - zbd->outStart;
size_t const flushedSize = ZBUFF_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
op += flushedSize;
zbd->outStart += flushedSize;
if (flushedSize == toFlushSize) { /* flush completed */
zbd->stage = ZBUFFds_read;
if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
zbd->outStart = zbd->outEnd = 0;
break;
}
/* cannot flush everything */
someMoreWork = 0;
break;
}
default: return ERROR(GENERIC); /* impossible */
} }
/* result */
*srcSizePtr = ip-istart;
*dstCapacityPtr = op-ostart;
{ size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbd->zd);
if (!nextSrcSizeHint) return (zbd->outEnd != zbd->outStart); /* return 0 only if fully flushed too */
nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zbd->zd) == ZSTDnit_block);
if (zbd->inPos > nextSrcSizeHint) return ERROR(GENERIC); /* should never happen */
nextSrcSizeHint -= zbd->inPos; /* already loaded*/
return nextSrcSizeHint;
}
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
size_t result;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_decompressStream(zbd, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX + ZSTD_blockHeaderSize /* block header size*/ ; }
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); }
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); }

View File

@ -63,7 +63,7 @@ extern "C" {
#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
ZSTDLIB_API unsigned ZSTD_versionNumber (void);
ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< library version number; to be used when checking dll version */
/***************************************
@ -117,9 +117,9 @@ ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readab
* Explicit memory management
***************************************/
/*= Compression context
* When compressing many messages / blocks,
* When compressing many times,
* it is recommended to allocate a context just once, and re-use it for each successive compression operation.
* This will make the situation much easier for the system's memory.
* This will make workload friendlier for system's memory.
* Use one context per thread for parallel execution in multi-threaded environments. */
typedef struct ZSTD_CCtx_s ZSTD_CCtx;
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void);

View File

@ -125,8 +125,15 @@ zstd-compress: $(ZSTDCOMMON_FILES) $(ZSTDCOMP_FILES) zstdcli.c fileio.c
$(CC) $(FLAGS) -DZSTD_NOBENCH -DZSTD_NODICT -DZSTD_NODECOMPRESS $^ -o $@$(EXT)
gzstd: clean_decomp_o
echo "int main(){}" | $(CC) -o have_zlib -x c - -lz && echo found zlib || echo did not found zlib
if [ -s have_zlib ]; then echo building gzstd && rm have_zlib$(EXT) && CPPFLAGS=-DZSTD_GZDECOMPRESS LDFLAGS="-lz" $(MAKE) zstd; else echo building plain zstd && $(MAKE) zstd; fi
@echo "int main(){}" | $(CC) -o have_zlib -x c - -lz && echo found zlib || echo did not found zlib
@if [ -s have_zlib ]; then \
echo building gzstd with .gz decompression support \
&& rm have_zlib$(EXT) \
&& CPPFLAGS=-DZSTD_GZDECOMPRESS LDFLAGS="-lz" $(MAKE) zstd; \
else \
echo "WARNING : no zlib, building gzstd with only .zst files support : NO .gz SUPPORT !!!" \
&& $(MAKE) zstd; \
fi
generate_res:
windres\generate_res.bat

View File

@ -74,7 +74,7 @@ static clock_t g_time = 0;
DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", error); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, "\n"); \
DISPLAYLEVEL(1, " \n"); \
exit(error); \
}
@ -84,7 +84,8 @@ static clock_t g_time = 0;
***************************************/
static U32 g_nbSeconds = NBSECONDS;
static size_t g_blockSize = 0;
int g_additionalParam = 0;
static int g_additionalParam = 0;
static U32 g_decodeOnly = 0;
void BMK_setNotificationLevel(unsigned level) { g_displayLevel=level; }
@ -102,18 +103,18 @@ void BMK_SetBlockSize(size_t blockSize)
DISPLAYLEVEL(2, "using blocks of size %u KB \n", (U32)(blockSize>>10));
}
void BMK_setDecodeOnly(unsigned decodeFlag) { g_decodeOnly = (decodeFlag>0); }
/* ********************************************************
* Bench functions
**********************************************************/
typedef struct
{
const char* srcPtr;
typedef struct {
const void* srcPtr;
size_t srcSize;
char* cPtr;
void* cPtr;
size_t cRoom;
size_t cSize;
char* resPtr;
void* resPtr;
size_t resSize;
} blockParam_t;
@ -126,15 +127,18 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, U32 nbFiles,
const void* dictBuffer, size_t dictBufferSize)
{
size_t const blockSize = (g_blockSize>=32 ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
size_t const blockSize = ((g_blockSize>=32 && !g_decodeOnly) ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
size_t const avgSize = MIN(g_blockSize, (srcSize / nbFiles));
U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
blockParam_t* const blockTable = (blockParam_t*) malloc(maxNbBlocks * sizeof(blockParam_t));
size_t const maxCompressedSize = ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024); /* add some room for safety */
void* const compressedBuffer = malloc(maxCompressedSize);
void* const resultBuffer = malloc(srcSize);
void* resultBuffer = malloc(srcSize);
ZSTD_CCtx* const ctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
size_t const loadedCompressedSize = srcSize;
size_t cSize = 0;
double ratio = 0.;
U32 nbBlocks;
UTIL_time_t ticksPerSecond;
@ -146,6 +150,27 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
if (strlen(displayName)>17) displayName += strlen(displayName)-17; /* can only display 17 characters */
UTIL_initTimer(&ticksPerSecond);
if (g_decodeOnly) {
const char* srcPtr = (const char*) srcBuffer;
U64 dSize64 = 0;
U32 fileNb;
for (fileNb=0; fileNb<nbFiles; fileNb++) {
U64 const fSize64 = ZSTD_getDecompressedSize(srcPtr, fileSizes[fileNb]);
if (fSize64==0) EXM_THROW(32, "Impossible to determine original size ");
dSize64 += fSize64;
srcPtr += fileSizes[fileNb];
}
{ size_t const decodedSize = (size_t)dSize64;
if (dSize64 > decodedSize) EXM_THROW(32, "original size is too large");
if (decodedSize==0) EXM_THROW(32, "Impossible to determine original size ");
free(resultBuffer);
resultBuffer = malloc(decodedSize);
if (!resultBuffer) EXM_THROW(33, "not enough memory");
cSize = srcSize;
srcSize = decodedSize;
ratio = (double)srcSize / (double)cSize;
} }
/* Init blockTable data */
{ const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
@ -153,15 +178,17 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
U32 fileNb;
for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
size_t remaining = fileSizes[fileNb];
U32 const nbBlocksforThisFile = (U32)((remaining + (blockSize-1)) / blockSize);
U32 const nbBlocksforThisFile = g_decodeOnly ? 1 : (U32)((remaining + (blockSize-1)) / blockSize);
U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
for ( ; nbBlocks<blockEnd; nbBlocks++) {
size_t const thisBlockSize = MIN(remaining, blockSize);
blockTable[nbBlocks].srcPtr = srcPtr;
blockTable[nbBlocks].cPtr = cPtr;
blockTable[nbBlocks].resPtr = resPtr;
blockTable[nbBlocks].srcPtr = (const void*)srcPtr;
blockTable[nbBlocks].srcSize = thisBlockSize;
blockTable[nbBlocks].cRoom = ZSTD_compressBound(thisBlockSize);
blockTable[nbBlocks].cPtr = (void*)cPtr;
blockTable[nbBlocks].cRoom = g_decodeOnly ? thisBlockSize : ZSTD_compressBound(thisBlockSize);
blockTable[nbBlocks].cSize = blockTable[nbBlocks].cRoom;
blockTable[nbBlocks].resPtr = (void*)resPtr;
blockTable[nbBlocks].resSize = g_decodeOnly ? (size_t) ZSTD_getDecompressedSize(srcPtr, thisBlockSize) : thisBlockSize;
srcPtr += thisBlockSize;
cPtr += blockTable[nbBlocks].cRoom;
resPtr += thisBlockSize;
@ -173,22 +200,19 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
/* Bench */
{ U64 fastestC = (U64)(-1LL), fastestD = (U64)(-1LL);
U64 const crcOrig = XXH64(srcBuffer, srcSize, 0);
U64 const crcOrig = g_decodeOnly ? 0 : XXH64(srcBuffer, srcSize, 0);
UTIL_time_t coolTime;
U64 const maxTime = (g_nbSeconds * TIMELOOP_MICROSEC) + 1;
U64 totalCTime=0, totalDTime=0;
U32 cCompleted=0, dCompleted=0;
U32 cCompleted=g_decodeOnly, dCompleted=0;
# define NB_MARKS 4
const char* const marks[NB_MARKS] = { " |", " /", " =", "\\" };
U32 markNb = 0;
size_t cSize = 0;
double ratio = 0.;
UTIL_getTime(&coolTime);
DISPLAYLEVEL(2, "\r%79s\r", "");
while (!cCompleted | !dCompleted) {
while (!cCompleted || !dCompleted) {
UTIL_time_t clockStart;
U64 clockLoop = g_nbSeconds ? TIMELOOP_MICROSEC : 1;
/* overheat protection */
if (UTIL_clockSpanMicro(coolTime, ticksPerSecond) > ACTIVEPERIOD_MICROSEC) {
@ -197,53 +221,58 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
UTIL_getTime(&coolTime);
}
/* Compression */
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (U32)srcSize);
if (!cCompleted) memset(compressedBuffer, 0xE5, maxCompressedSize); /* warm up and erase result buffer */
if (!g_decodeOnly) {
/* Compression */
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (U32)srcSize);
if (!cCompleted) memset(compressedBuffer, 0xE5, maxCompressedSize); /* warm up and erase result buffer */
UTIL_sleepMilli(1); /* give processor time to other processes */
UTIL_waitForNextTick(ticksPerSecond);
UTIL_getTime(&clockStart);
UTIL_sleepMilli(1); /* give processor time to other processes */
UTIL_waitForNextTick(ticksPerSecond);
UTIL_getTime(&clockStart);
if (!cCompleted) { /* still some time to do compression tests */
ZSTD_parameters const zparams = ZSTD_getParams(cLevel, avgSize, dictBufferSize);
ZSTD_customMem const cmem = { NULL, NULL, NULL };
U32 nbLoops = 0;
ZSTD_CDict* cdict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, zparams, cmem);
if (cdict==NULL) EXM_THROW(1, "ZSTD_createCDict_advanced() allocation failure");
do {
U32 blockNb;
size_t rSize;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
if (dictBufferSize) {
rSize = ZSTD_compress_usingCDict(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize,
cdict);
} else {
rSize = ZSTD_compressCCtx (ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize, cLevel);
if (!cCompleted) { /* still some time to do compression tests */
ZSTD_parameters const zparams = ZSTD_getParams(cLevel, avgSize, dictBufferSize);
ZSTD_customMem const cmem = { NULL, NULL, NULL };
U64 clockLoop = g_nbSeconds ? TIMELOOP_MICROSEC : 1;
U32 nbLoops = 0;
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, zparams, cmem);
if (cdict==NULL) EXM_THROW(1, "ZSTD_createCDict_advanced() allocation failure");
do {
U32 blockNb;
size_t rSize;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
if (dictBufferSize) {
rSize = ZSTD_compress_usingCDict(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize,
cdict);
} else {
rSize = ZSTD_compressCCtx (ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr,blockTable[blockNb].srcSize, cLevel);
}
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_compress_usingCDict() failed : %s", ZSTD_getErrorName(rSize));
blockTable[blockNb].cSize = rSize;
}
if (ZSTD_isError(rSize)) EXM_THROW(1, "ZSTD_compress_usingCDict() failed : %s", ZSTD_getErrorName(rSize));
blockTable[blockNb].cSize = rSize;
}
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart, ticksPerSecond) < clockLoop);
ZSTD_freeCDict(cdict);
{ U64 const clockSpan = UTIL_clockSpanMicro(clockStart, ticksPerSecond);
if (clockSpan < fastestC*nbLoops) fastestC = clockSpan / nbLoops;
totalCTime += clockSpan;
cCompleted = (totalCTime >= maxTime);
} }
nbLoops++;
} while (UTIL_clockSpanMicro(clockStart, ticksPerSecond) < clockLoop);
ZSTD_freeCDict(cdict);
{ U64 const clockSpan = UTIL_clockSpanMicro(clockStart, ticksPerSecond);
if (clockSpan < fastestC*nbLoops) fastestC = clockSpan / nbLoops;
totalCTime += clockSpan;
cCompleted = (totalCTime >= maxTime);
} }
cSize = 0;
{ U32 blockNb; for (blockNb=0; blockNb<nbBlocks; blockNb++) cSize += blockTable[blockNb].cSize; }
ratio = (double)srcSize / (double)cSize;
markNb = (markNb+1) % NB_MARKS;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.3f),%6.1f MB/s\r",
marks[markNb], displayName, (U32)srcSize, (U32)cSize, ratio,
(double)srcSize / fastestC );
cSize = 0;
{ U32 blockNb; for (blockNb=0; blockNb<nbBlocks; blockNb++) cSize += blockTable[blockNb].cSize; }
ratio = (double)srcSize / (double)cSize;
markNb = (markNb+1) % NB_MARKS;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.3f),%6.1f MB/s\r",
marks[markNb], displayName, (U32)srcSize, (U32)cSize, ratio,
(double)srcSize / fastestC );
} else { /* g_decodeOnly */
memcpy(compressedBuffer, srcBuffer, loadedCompressedSize);
}
(void)fastestD; (void)crcOrig; /* unused when decompression disabled */
#if 1
@ -255,14 +284,15 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
UTIL_getTime(&clockStart);
if (!dCompleted) {
U64 clockLoop = g_nbSeconds ? TIMELOOP_MICROSEC : 1;
U32 nbLoops = 0;
ZSTD_DDict* ddict = ZSTD_createDDict(dictBuffer, dictBufferSize);
ZSTD_DDict* const ddict = ZSTD_createDDict(dictBuffer, dictBufferSize);
if (!ddict) EXM_THROW(2, "ZSTD_createDDict() allocation failure");
do {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
size_t const regenSize = ZSTD_decompress_usingDDict(dctx,
blockTable[blockNb].resPtr, blockTable[blockNb].srcSize,
blockTable[blockNb].resPtr, blockTable[blockNb].resSize,
blockTable[blockNb].cPtr, blockTable[blockNb].cSize,
ddict);
if (ZSTD_isError(regenSize)) {
@ -290,7 +320,7 @@ static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
/* CRC Checking */
{ U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if (crcOrig!=crcCheck) {
if (!g_decodeOnly && (crcOrig!=crcCheck)) {
size_t u;
DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x \n", displayName, (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
@ -492,7 +522,7 @@ int BMK_benchFiles(const char** fileNamesTable, unsigned nbFiles,
if (cLevel > ZSTD_maxCLevel()) cLevel = ZSTD_maxCLevel();
if (cLevelLast > ZSTD_maxCLevel()) cLevelLast = ZSTD_maxCLevel();
if (cLevelLast < cLevel) cLevelLast = cLevel;
if (cLevelLast > cLevel) DISPLAYLEVEL(2, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast);
if (cLevelLast > cLevel) DISPLAYLEVEL(2, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast);
if (nbFiles == 0)
BMK_syntheticTest(cLevel, cLevelLast, compressibility);

View File

@ -11,7 +11,7 @@
#ifndef BENCH_H_121279284357
#define BENCH_H_121279284357
#include <stddef.h>
#include <stddef.h> /* size_t */
int BMK_benchFiles(const char** fileNamesTable, unsigned nbFiles,
const char* dictFileName, int cLevel, int cLevelLast);
@ -21,5 +21,6 @@ void BMK_SetNbSeconds(unsigned nbLoops);
void BMK_SetBlockSize(size_t blockSize);
void BMK_setAdditionalParam(int additionalParam);
void BMK_setNotificationLevel(unsigned level);
void BMK_setDecodeOnly(unsigned decodeFlag);
#endif /* BENCH_H_121279284357 */
#endif /* BENCH_H_121279284357 */

View File

@ -334,7 +334,11 @@ int main(int argCount, const char* argv[])
case 'z': operation=zom_compress; argument++; break;
/* Decoding */
case 'd': operation=zom_decompress; argument++; break;
case 'd':
#ifndef ZSTD_NOBENCH
if (operation==zom_bench) { BMK_setDecodeOnly(1); argument++; break; } /* benchmark decode (hidden option) */
#endif
operation=zom_decompress; argument++; break;
/* Force stdout, even if stdout==console */
case 'c': forceStdout=1; outFileName=stdoutmark; argument++; break;

View File

@ -31,10 +31,10 @@ case "$OS" in
;;
esac
MD5SUM="md5sum"
if [[ "$OSTYPE" == "darwin"* ]]; then
MD5SUM="md5 -r"
fi
case "$OSTYPE" in
darwin*) MD5SUM="md5 -r" ;;
*) MD5SUM="md5sum" ;;
esac
$ECHO "\nStarting playTests.sh isWindows=$isWindows ZSTD='$ZSTD'"
@ -228,11 +228,10 @@ cp ../programs/*.h dirTestDict
$MD5SUM dirTestDict/* > tmph1
$ZSTD -f --rm dirTestDict/* -D tmpDictC
$ZSTD -d --rm dirTestDict/*.zst -D tmpDictC # note : use internal checksum by default
if [[ "$OSTYPE" == "darwin"* ]]; then
$ECHO "md5sum -c not supported on OS-X : test skipped" # not compatible with OS-X's md5
else
$MD5SUM -c tmph1
fi
case "$OSTYPE" in
darwin*) $ECHO "md5sum -c not supported on OS-X : test skipped" ;; # not compatible with OS-X's md5
*) $MD5SUM -c tmph1 ;;
esac
rm -rf dirTestDict
rm tmp*