The `avgJobSize` must not be lower than 256 KB for single-pass mode.
In `zstd.h` we say the minimum value for `ZSTD_p_jobSize` is 1 MB,
so ensure that we always pick a size >= 1 MB.
Found by libFuzzer fuzzer tests with large input limits.
Integrate ldm into zstdmt by running it in serial and in order in the first
step of each job, in the same place as the hash gets updated. The input
buffer is sized to fit the whole LDM window and 2 full buffers of slack.
Input buffers cannot be reused until the LDM step is done with them.
After the LDM step is finished, the jobs don't actually have access to the
full window, only the overlap.
Tested on a few different multi-GB files with and without sanitizers,
and with different numbers of threads.
* Computes the XXH hash in the worker threads.
* Workers get a sequence number and wait until ther number shows up. On
error, ensures that its sequence is finished, so future threads don't
get blocked.
* Sets up for ldm integration, which will go in the same spot.
Summary:
Allocate a single input buffer large enough to house each job, as well as
enough space for the IO thread to write 2 extra buffers. One goes in the
`POOL` queue, and one to fill, and then block on a full `POOL` queue.
Since we can't overlap with the prefix, we allocate space for 3 extra
input buffers.
Test Plan:
* CI
* With and without ASAN/UBSAN run zstdmt with different number of threads
on two large binaries, and verify that their checksums match.
* Test on the tip of the zstdmt ldm integration.
Reviewers: cyan
Differential Revision: https://phabricator.intern.facebook.com/D7284007
Tasks: T25664120
access negative compression levels from command line
for both compression and benchmark modes.
also : ensure proper propagation of parameters
through ZSTD_compress_generic() interface.
added relevant cli tests.
This makes it easier to explain that nbWorkers=0 --> single-threaded mode,
while nbWorkers=1 --> asynchronous mode (one mode thread on top of the "main" caller thread).
No need for an additional asynchronous mode flag.
nbWorkers>=2 works the same as nbThreads>=2 previously.
to avoid confusion with blocks.
also:
- jobs are cut into chunks of 512KB now, to reduce nb of mutex calls.
- fix function declaration ZSTD_getBlockSizeMax()
- fix outdated comment
Other job members are accessed directly.
This avoids a full job copy, which would access everything,
including a few members that are supposed to be used by worker only,
uselessly requiring additional locks to avoid race conditions.
writeLastEmptyBlock() must release srcBuffer
as mtctx assumes it's done by job worker.
minor : changed 2 job member names (src->srcBuffer, srcStart->prefixStart) for clarity
replaced by equivalent signal job->consumer == job->srcSize.
created additional functions
ZSTD_writeLastEmptyBlock()
and
ZSTDMT_writeLastEmptyBlock()
required when it's necessary to finish a frame with a last empty job, to create an "end of frame" marker.
It avoids creating a job with srcSize==0.
When ZSTD_e_end directive is provided,
the question is not only "are internal buffers completely flushed",
it is also "is current frame completed".
In some rare cases,
it was possible for internal buffers to be completely flushed,
triggering a @return == 0,
but frame was not completed as it needed a last null-size block to mark the end,
resulting in an unfinished frame.
no real consequence, but pollute tsan tests :
job->dstBuff is being modified inside worker,
while main thread might read it accidentally
because it copies whole job.
But since it doesn't used dstBuff, there is no real consequence.
Other potential solution : only copy useful data, instead of whole job
Produces 3 statistics for ongoing frame compression :
- ingested
- consumed (effectively compressed)
- produced
Ingested can be larger than consumed due to buffering effect.
For the time being, this patch mostly fixes the % ratio issue,
since it computes consumed / produced,
instead of ingested / produced.
That being said, update is not "smooth",
because on a slow enough setting,
fileio spends most of its time waiting for a worker to complete its job.
This could be improved thanks to more granular flushing
i.e. start flushing before ongoing job is fully completed.
would create too large buffers,
since default job size == window size * 4.
This would crash on 32-bit systems.
Also : jobSize being a 32-bit unsigned, it cannot be >= 4 GB,
so the formula was failing for large window sizes >= 1 GB.
Fixed now : max job Size is 2 GB, whatever the window size.