removed "cached" structure.
prices are now saved in the optimal table.
Primarily done for simplification.
Might improve speed by a little.
But actually, and surprisingly, also improves ratio in some circumstances.
this patch makes btultra do 2 passes on the first block,
the first one being dedicated to collecting statistics
so that the 2nd pass is more accurate.
It translates into a very small compression ratio gain :
enwik7, level 20:
blocks 4K : 2.142 -> 2.153
blocks 16K : 2.447 -> 2.457
blocks 64K : 2.716 -> 2.726
On the other hand, the cpu cost is doubled.
The trade off looks bad.
Though, that's ultimately a price to pay to reach better compression ratio.
So it's only enabled when setting btultra.
this improves compression ratio by a *tiny* amount.
It also reduces speed by a small amount.
Consequently, bit-fractional evaluation is only turned on for btultra.
for FSE symbols.
While it seems to work, the gains are negligible compared to rough maxNbBits evaluation.
There are even a few losses sometimes, that still need to be explained.
Furthermode, there are still cases where btlazy2 does a better job than btopt,
which seems rather strange too.
for proper estimation of symbol's weights
when using dictionary compression.
Note : using only huffman costs is not good enough,
presumably because sequence symbol costs are incorrect.
This is a pretty nice speed win.
The new strategy consists in stacking new candidates as if it was a hash chain.
Then, only if there is a need to actually consult the chain, they are batch-updated,
before starting the match search itself.
This is supposed to be beneficial when skipping positions,
which happens a lot when using lazy strategy.
The baseline performance for btlazy2 on my laptop is :
15#calgary.tar : 3265536 -> 955985 (3.416), 7.06 MB/s , 618.0 MB/s
15#enwik7 : 10000000 -> 3067341 (3.260), 4.65 MB/s , 521.2 MB/s
15#silesia.tar : 211984896 -> 58095131 (3.649), 6.20 MB/s , 682.4 MB/s
(only level 15 remains for btlazy2, as this strategy is squeezed between lazy2 and btopt)
After this patch, and keeping all parameters identical,
speed is increased by a pretty good margin (+30-50%),
but compression ratio suffers a bit :
15#calgary.tar : 3265536 -> 958060 (3.408), 9.12 MB/s , 621.1 MB/s
15#enwik7 : 10000000 -> 3078318 (3.249), 6.37 MB/s , 525.1 MB/s
15#silesia.tar : 211984896 -> 58444111 (3.627), 9.89 MB/s , 680.4 MB/s
That's because I kept `1<<searchLog` as a maximum number of candidates to update.
But for a hash chain, this represents the total number of candidates in the chain,
while for the binary, it represents the maximum depth of searches.
Keep in mind that a lot of candidates won't even be visited in the btree,
since they are filtered out by the binary sort.
As a consequence, in the new implementation,
the effective depth of the binary tree is substantially shorter.
To compensate, it's enough to increase `searchLog` value.
Here is the result after adding just +1 to searchLog (level 15 setting in this patch):
15#calgary.tar : 3265536 -> 956311 (3.415), 8.32 MB/s , 611.4 MB/s
15#enwik7 : 10000000 -> 3067655 (3.260), 5.43 MB/s , 535.5 MB/s
15#silesia.tar : 211984896 -> 58113144 (3.648), 8.35 MB/s , 679.3 MB/s
aka, almost the same compression ratio as before,
but with a noticeable speed increase (+20-30%).
This modification makes btlazy2 more competitive.
A new round of paramgrill will be necessary to determine which levels are impacted and could adopt the new strategy.