zstd streaming API was adding a null-block at end of frame for small input.
Reason is : on small input, a single block is enough.
ZSTD_CStream would size its input buffer to expect a single block of this size,
automatically triggering a flush on reaching this size.
Unfortunately, that last byte was generally received before the "end" directive (at least in `fileio`).
The later "end" directive would force the creation of a 3-bytes last block to indicate end of frame.
The solution is to not flush automatically, which is btw the expected behavior.
It happens in this case because blocksize is defined with exactly the same size as input.
Just adding one-byte is enough to stop triggering the automatic flush.
I initially looked at another solution, solving the problem directly in the compression context.
But it felt awkward.
Now, the underlying compression API `ZSTD_compressContinue()` would take the decision the close a frame
on reaching its expected end (`pledgedSrcSize`).
This feels awkward, a responsability over-reach, beyond the definition of this API.
ZSTD_compressContinue() is clearly documented as a guaranteed flush,
with ZSTD_compressEnd() generating a guaranteed end.
I faced similar issue when trying to port a similar mechanism at the higher streaming layer.
Having ZSTD_CStream end a frame automatically on reaching `pledgedSrcSize` can surprise the caller,
since it did not explicitly requested an end of frame.
The only sensible action remaining after that is to end the frame with no additional input.
This adds additional logic in the ZSTD_CStream state to check this condition.
Plus some potential confusion on the meaning of ZSTD_endStream() with no additional input (ending confirmation ? new 0-size frame ?)
In the end, just enlarging input buffer by 1 byte feels the least intrusive change.
It's also a contract remaining inside the streaming layer, so the logic is contained in this part of the code.
The patch also introduces a new test checking that size of small frame is as expected, without additional 3-bytes null block.
- building cli from /tests preserves potential flags in MOREFLAGS (such as asan/usan)
- MT dictionary tests check for MT capability (MT is not enabled by default for zstd32)
* Maximum window size in 32-bit mode is 1GB, since allocations for 2GB fail
on my Mac.
* Maximum window size in 64-bit mode is 2GB, since that is the largest
power of 2 that works with the overflow prevention.
* Allow `--long=windowLog` to set the window log, along with
`--zstd=wlog=#`. These options also set the window size during
decompression, but don't override `--memory=#` if it is set.
* Present a helpful error message when the window size is too large during
decompression.
* The long range matcher defaults to a hash log 7 less than the window log,
which keeps it at 20 for window log 27.
* Keep the default long range matcher window size and the default maximum
window size at 27 for the API and CLI.
* Add tests that use the maximum window size and hash size for compression
and decompression.
The zstd format specification doesn't enforce that Huffman compressed
literals (including the table) have to be smaller than the uncompressed
literals. The compressor will never Huffman compress literals if the
compressed size is larger than the uncompressed size. The decompresser
doesn't accept Huffman compressed literals with 4 streams whose compressed
size is at least as large as the uncompressed size.
* Make the decompresser accept Huffman compressed literals whose size
increases.
* Add a test case that exposes the bug. The compressed file has to be
statically generated, since the compressor won't normally produce files
that expose the bug.