The order you set parameters in the advanced API is not supposed to matter.
However, once you call `ZSTD_CCtx_refCDict()` the compression parameters
cannot be changed. Remove that restriction, and document what parameters
are used when using a CDict.
If the CCtx is in dictionary mode, then the CDict's parameters are used.
If the CCtx is not in dictionary mode, then its requested parameters are
used.
As documented in `zstd.h`, ZSTD_decompressBound returns `ZSTD_CONTENTSIZE_ERROR`
if an error occurs (not `ZSTD_CONTENTSIZE_UNKNOWN`). This is consistent with
the error checking made in ZSTD_decompressBound, particularly line 545.
Introduces a new utility function `ZSTD_findFrameCompressedSize_internal` which
is equivalent to `ZSTD_findFrameCompressSize`, but accepts an additional output
parameter `bound` that computes an upper-bound for the compressed data in the frame.
The new API function is named `ZSTD_decompressBound` to be consistent with
`zstd_compressBound` (the inverse operation). Clients will now be able to compute an upper-bound for
their compressed payloads instead of guessing a large size.
Implements https://github.com/facebook/zstd/issues/1536.
* Move all ZSTDMT parameter setting code to ZSTD_CCtxParams_*Parameter().
ZSTDMT now calls these functions, so we can keep all the logic in the
same place.
* Clean up `ZSTD_CCtx_setParameter()` to only add extra checks where needed.
* Clean up `ZSTDMT_initJobCCtxParams()` by copying all parameters by default,
and then zeroing the ones that need to be zeroed. We've missed adding several
parameters here, and it makes more sense to only have to update it if you
change something in ZSTDMT.
* Add `ZSTDMT_cParam_clampBounds()` to clamp a parameter into its valid
range. Use this to keep backwards compatibility when setting ZSTDMT parameters,
which clamp into the valid range.
Test a positive compression level with uncompressed literals,
and a negative compression level with compressed literals.
I double checked the `results.csv` and made sure that the compressed
sizes make sense.
While fixing the detection of symbolic links on OpenBSD I noticed
inconsistent behaviour:
$ echo hello > hello
$ ln -s hello world
$ zstd hello world
Warning : world is a symbolic link, ignoring
hello :316.67% ( 6 => 19 bytes, hello.zst
$ ls *.zst
hello.zst
$ zstd world
world :316.67% ( 6 => 19 bytes, world.zst)
$ ls *.zst
hello.zst world.zst
In #1520 it is described that FreeBSD doesn't detect symbolic links. The
same is true for OpenBSD. This diff fixes this issue for OpenBSD. I'm
guessing that something similar works for FreeBSD as well. However, I'm
unable to test this.